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1. INTRODUCTION 

We have heard so far at this meeting from the practical-minded men 
of radio astronomy. Faced with the problem: 'my map has sidelobes and 
noise on it', they promptly reach for the nearest available weapons -
'cleaners, polishers and kneaders'. All these use varying amounts of 
subjective human judgement, as for example in 'window cleaning'. 

The ideas of the maximum entropy method are intriguing, since they 
suggest that one can in principle remove the effects of sidelobes from 
the map, reduce the apparent noise, and give extra resolution. But 
maximum entropy is not just another image reconstruction technique, it 
is a technique for the idealist; the man who cares what should be done 
with his data. It is more fundamental than other techniques and deals 
with problems in a very general way. What the maximum entropy method 
sets out to do is to seek the most likely answer to a particular 
question that can be obtained from a given body of scientific data. 

2. BAYES' THEOREM 

We declare immediately our scientific philosophy. We are followers 
of Jeffreys (1) and are unashamed Bayesians. We further believe, follow­
ing Jaynes (2), that the various techniques and ideas of maximum entropy 
should be regarded as simplified ways of applying Bayes' Theorem in 
probability theory. Although the fundamental ideas are very general, we 
refer here to a radioastronomical context; the problem is to make a map 
of the radio sky. 

All our knowledge of the sky can be expressed, we believe, as the 
relative probabilities of various possible maps of the sky. Bayes' 
Theorem is then the basic theorem of probability theory that tells us 
how to modify our knowledge or prejudice about the sky when some 
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additional data are acquired. It says: 

Posterior Prob.(sky | data) <* Prior Prob.(sky) x Prob.(data | sky). 

The constant of proportionality can be found by normalizing the posterior 
probability. 

The second term on the right is easy to obtain: we can calculate 
what we ought to observe from any given sky, and hence the probability 
of this giving rise to our measured data. For the special case when our 
measurements have independent Gaussian errors this second term is 
exp(~x2/2) where: 

2 
2 _ 2 (misfit to data) 

X data . , _ .2 ' 

(error in data) 

so that: 

Posterior Prob. of sky <* Prior Prob. of sky x exp.(~x2/2). 

When the number of sample points in the sky (pixels) is large, and 
certainly in the continuous limit, this probability distribution of maps 
of the sky is far too complicated to comprehend. One, albeit very in­
adequate, way of summarizing it and displaying a single, useful map is 
to pick the map for which the posterior probability is a maximum. 

This maximum in the distribution may, or may not, be sharp; there 
may even be several local maxima. If the maximum is broad a single map 
is not very useful, and if there are several maxima it is downright mis­
leading. The occurrence of these situations simply means that the data 
collected do not determine the sky properly; you must do a better 
experiment! 

We emphasize that in this formulation the data enters into a 
probability distribution, prior prejudice or prior knowledge of the sky 
is modulated by a combination of the data values and their errors. 
Highly uncertain data simply changes one's opinion less than more 
accurate data. 

The vital importance of the errors in the data is not always 
realized; for example in the Burg (3) algorithm for maximum entropy 
spectral analysis the data are estimates of the autocorrelation function 
of a time series. These estimates will have errors, nevertheless the 
spectrum is made to agree exactly with the estimates. We suggest that 
the deficiencies of maximum entropy spectral analysis, the line split­
ting and line shifts, are basically due to ignoring the errors of 
estimation. 
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There is danger in interpreting any map of the sky that fits the 
data exactly, it will almost certainly contain features arising from 
the noise in the data. The above analysis shows the importance of the 
statistic x2 in any problem where the data values have independent 
Gaussian errors. 

3. THE PRIOR AND MAXIMUM ENTROPY 

The fundamental limitation of Bayesian statistics lies in the 
selection of a suitable expression for the prior probability; in our 
example the prior probability of various maps of the radio sky before 
we are given any data. If we write this exp (S/A), where S is a function 
of the map and A a fixed constant, we see that to display the single 
map that maximizes the posterior probability we have to maximize 
S-Ax2. This is the recipe used by Gull and Daniell (4) and by Wernecke 
and D'Addario (5) for constructing maximum entropy maps. 

We can therefore identify S as the 'entropy of a map of the sky' 
and the result of Bayes' theorem is identical with the maximum entropy 
algorithm in which we maximize an entropy expression, S, subject to the 
constraint that the final map fits the data. The constant, A, has 
become a Lagrange multiplier. It follows, in accordance with the 
philosophy of Jaynes (2), that the maximum entropy method is a 
simplified Bayesian approach and the various entropy expressions in use 
are really statements of a prior prejudice about the sky, given no data. 

The problem of determining appropriate prior distributions cor­
responding to such ignorance has led to considerable controversy since 
the time of Laplace and there is, as yet, no entirely satisfactory way 
of assigning priors, even in the simplest situations. Therefore, at 
this stage, we suggest that it is most useful to understand the proper­
ties of the prior distributions that arise from the various entropy 
expressions and to collect arguments that lead to different priors, 
without attempting to decide which, if any, are correct. 

4. THE ENTROPY EXPRESSION 

There are two schools of thought concerning the entropy of a map of 
the sky. If we label a set of areas on a map by an index i and the flux 
of radio waves from the ith area is f., then we can express the results 
thus: The H. school says that S <* 5 log f•, and the H„ school says 
S = -? f. log f.. We are members of this second school and we can give 
an outline derivation of the entropy expression using a model in­
corporating prior assumptions about the sky. 

For ease of counting maps we assume the flux f^ from each cell of 
the sky is quantized. We then employ a secret weapon - the canonical 
team of monkeys. Each monkey is assumed to be given a large number N of 
flux quanta which he scatters randomly across the cells of the sky to 
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make a trial map. Suppose n. quanta land in the ith cell. Not all sets 
of n. generated in this way by the monkeys are equally likely. The 
probability that a particular set occurs is proportional to Nl/7 n.!. 
If N and all the n. are large, we can use Stirling's approximation and 
obtain S = log(probability) <* -? n^ log n^/N. When the question of 
relating our artificial flux quinta to the continuous quantities f. is 
considered we are led to the entropy expression: 

S * - ^ 
i 

ff- 1 
1 

. Z f -

l o g 
f. 

l 

. Zf -

Suppose now we are given a body of data, for example samples of a 
spatial coherence function, having independent errors. The fit of a 
trial map to these data may be defined using x2 and the probability of 
the data given the map {f^} is then proportional to exp(~x2/2). 
Maximizing S - Ax2 yields: 

1 
exp { " i V 0 8 f.i 1" 

I S ' J JJ 
3X2 

e x p ( - A •) 
3f. 

l 

The first term in brackets is just a constant and it ensures that the 
final map does not depend on the units in which the data are given. 
The value of A is not determined by this argument and we have suggested 
(Gull and Daniell (A)) that A is chosen so that x2 f°r the final map 
equals its statistically expected value, i.e. the number of data 
samples. In this way we get a safe map that is unlikely to contain arti­
facts arising from the noise in the data. Of course, if there are 
several maxima in the probability this map will still be misleading. 
However, for the problem of aperture synthesis, with phase information, 
or for deconvolution, this cannot happen. The prior based on the monkey 
mechanisms is strongly peaked about uniform maps so we can loosely say 
that we have constructed the most uniform map consistent with the data 
and their errors. 

The above discussion shows in outline how a prior probability 
distribution or entropy expression follows from assumptions or pre­
judice about the sky. Other entropy expressions follow from other pre­
judices corresponding apparently to different types of 'complete 
ignorance' about the sky. The expression H2 is a configurational entropy 
of the radio flux, although the above calculation is similar to those 
used in statistical mechanics. One cannot run a heat engine on an image! 

5. OTHER ENTROPY EXPRESSIONS 

We will not deal in such detail with the alternative expression 
H., but will give some idea of how it arose and the assumptions it makes. 
It has been used for many years in Burg's (3) algorithm and is based on 
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Shannon's information theory. 

Burg is concerned with the estimation of the power spectrum of a 
Gaussian random process or time series. The relation of this to the 
autocorrelation function certainly involves a Fourier transform, and 
so indeed does aperture synthesis, but here the analogy ceases; there 
is no 'space series' in radio astronomy. The expression H.. = /log P(v)dv 
(Bartlett (6)) is the entropy rate of a noise source with power P(v) at 
frequency v. It is distinct from the configurational entropy of the 
spectrum itself. In more recent work on the Burg method the information 
theoretic aspects have been relatively neglected and interest has 
centred on the fact that the method is equivalent to fitting an auto-
regressive process to the time series. This has a natural interpretation 
for the estimation of power spectra of time series but it does not make 
sense to regard the signals from successive aerials in an interferometer 
as being derived by spatially filtering random noise. We conclude that 
Burg's and Shannon's arguments, whilst sound within their terms of 
reference for time series, are not appropriate to radio astronomy. 

More recently Kikuchi and Soffer (7) have claimed that both H. and 
H„ expressions are limiting cases of a single one, and the choice 
between them depends on a parameter n/z, n being the number of photons 
received and z their number of degrees of freedom. Their expression is 
based on a discussion of the entropy of the radiation field coming from 
the sky and the fact that photons obey Bose-Einstein statistics is 
central to their argument. They claim that if n/z » 1, which is true in 
radio astronomy, the Hj expression is correct, whereas in optical 
astronomy where n/z « 1 the H„ expression should be used. The trouble 
with this is that, in our language, they are saying that we should have 
a different prior prejudice about the shape of radio sources from the 
shape of optical sources, which is ludicrous. Surely we are interested 
in extracting information about the sky itself, not the radiation field. 
We cannot accept that the analysis of the shape of radio sources depends 
on the real quantized nature of light. We have used quanta to assist in 
the counting of states, as in elementary treatments of classical 
statistical mechanics, and have used this to derive H2, but we then 
take the limit as the quanta become indefinitely small. The results of 
Kikuchi and Soffer seem to imply that, by studying the relative 
efficiency of the Hj and H2 algorithms on the restoration of a photo­
graph, one could determine Planck's constant, or at least its order of 
magnitude. 

6. PRACTICALITIES 

So much for theory, can it be done in practice? Yes! 

The H. algorithm has been used by Wernecke and D'Addario (5) and 
the H2 by Gull and Daniell (4), on real astronomical data. In aperture 
synthesis the latter implementation takes 5 minutes on an IBM 370/165 
for a 128 x 128 point image and a program for 256 x 256 points is 
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working. For deconvolution there exists a working program for 128 x 128 
pixels and the results are significantly better than the ART algorithm. 
Gull and Daniell have also successfully applied their method to 
aperture synthesis without phase information, and to VLBI data. 

7. CONCLUSIONS 

1. The maximum entropy method can do what its inventors hoped, it 
is a fundamentally sound, but different, way of looking at data, derived 
from Bayes1 theorem and rooted in the foundations of scientific methodo­
logy. 

2. It can be used for any problem for which one can predict the 
data that would be observed from a trial map. 

3. It provides an objective, uniquely defined, procedure for analys­
ing data and therefore runs counter to the trend for interactive data 
processing. 
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DISCUSSION 

Comment C. VAN SCHOONEVELD. 
1) What is the difference between the results when the H.- and H -
definition are applied to the same data? 2) How can we expect a 
resolution improvement if we start from the a-priori assumption of a 
most uniform sky? 
Reply S.F. GULL. 
I) We have not made calculations using H., but with nearly complete and 
accurate data the choice of prior distributions has comparatively little 
effect and both H, and H.2 will give similar results. (See also comment 
to question by CRANE.) 2) For accurate data a modest improvement results 
(never more than a factor of 2). This arises from the positivity and 
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from the fact that ungraded Fourier data can be used without creating 
sidelobes. 

Comment R. GORDON. 
In what sense is Max.Entropy the spatially smoothest solution? 
Reply S.F. GULL. 
In no sense whatsoever. The Max.Entropy solution gives the statistically 
most uniform map, in the sense that it has the most uniform histogram 
of flux values. 

Comment L.R. D'ADDARIO 
The sense in which Max.Entropy maps are "smooth" is made precise by a 
theorem due to Wernecke (1977, Radio Science, 12, 831-844), which says 
that given the ME-map with measurement discrepancy D, any linear 
smoothing of the map results in a new map with a discrepancy > D. 

Comment Y.G. BIRAUD. 
1) Analogous work was done by R. Herschel and B.R. Frieden. 2) What is 
the importance of the pixel size? 3) What is the gain in resolution 
versus S/N? 
Reply S.F. GULL. 
2) Decreasing the pixelsize and increasing their number improves the 
detail visible on the map until the limit set by the signal-to-noise 
ratio. After that, smaller pixels simply interpolate smoothly between 
their neighbours. 3) We made quantitative tests for the deconvolution 
case. Until a signal-to-noise ratio of 3:1 is reached (per pixel), the 
MEM gives a smoother result than conventional analysis. Beyond that 
ratio the method gives increasing resolution until a super-resolution 
of a factor 2 is reached at S/N % 100. After that, virtually no im­
provement is possible. 

Comment P.C. CRANE. 
Two versions of Wernecke and D'Addario's algorithm operating at NRAO, 
one implementing H. and the other H„, give, in one case, results 
identical to < 10%. 
Reply S.F. GULL. 
I am not at all surprised. For the radio astronomical case the data are 
often extremely good. The posterior probability distribution is then 
largely determined by the data, not by the prior. It is when only a 
small amount of noisy data is available that the influence of the prior 
distribution will be seen. 

Comment U.-J. SCHWARZ. 
How stable is the MEM solution against the choice of A? 
Reply S.F. GULL. 
Very stable. The quantity x2decreases as A is increased but the map does 
not change much unless x2 is very different from its expected value. 
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