J. Austral. Math. Soc. (Series A) 35 (1983), 221-226

LINEARITY AND WEAK CONVERGENCE
ON THE BOUNDARY OF NUMERICAL RANGE

K. C. DAS and B. D. CRAVEN

(Received 7 August 1981; revised 29 September 1982)

Communicated by E. Strzelecki

Abstract

Stampfli and Embry have shown that a point of the numerical range of an operator is extreme if and
only if a set of vectors corresponding to it is linear. This is generalized here to show that a point of the
closure of the numerical range is extreme if and only if a corresponding set of sequences forms a linear
space. A more geometric alternative proof is given for a theorem of Das and Garske concerning weak
convergence to zero at the unattained extreme points of the closure of the numerical range. The result
is shown to hold also for lone extreme points of the numerical range which lie on line segments on its
boundary. Further, a bound is obtained on the norm of the weak limit of the weakly convergent
sequences corresponding to points on a line segment on the boundary of numerical range.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 A 12.

1. Introduction

Let H be a complex separable Hilbert space with inner product (-, -) and norm
I ll. For T € B(H), the algebra of bounded linear operators, the numerical range,
its closure, and its topological boundary are denoted, in order, by W(T), W(T' )~
and 9WA(T'). For any complex number z, define M(T) = {f: f € H and (T, f)
— z(f, f) = 0}. Stampfli [1966] has shown that M,(T) is linear if z is an extreme
point of W(T'). An alternative proof of this result occurs in Embry [1975]. Embry
[1970] established the converse of this result, namely, if M,(T) is linear then z
must be an extreme point of W(T'). Since the numerical range W(T) is only a
convex set in the plane, not necessarily closed, the results of Stampfli and Embry
are inapplicable to the unattained boundary points of the numerical range.
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Therefore, a generalization of their results that may hold for all extreme points of
the closure of the numerical range seems to be called for. Das [1977] has shown
that if p is an unattained bare point on the boundary of W(T')", then all weakly
convergent sequences of unit vectors for which (77, f,) — p, must have zero only
as their weak limit. Garske [1979] has generalized it to all unattained extreme
boundary points of W(T)". He has also given an example to show that this
property does not hold in general for all boundary points of W(T)~. We have,
however, shown here that the above result holds also for lone extreme points of
W(T) lying on line segments on dW(T). The example of Garske shows that if
(Tf,, £,) = . f,—f, I £,Il = 1, where p is a point on a line segment of W(T'), then
it is possible that (77, f)/(f, f) = A # p. We show here that in such a case A
must be a point on the same line segment and the norm of the weak limit must
have an upper bound as given in Theorem 4.

2. Linearity on 0W(T)

For any complex number z, define

NAT) = {{£} € I"(H):(Tf,, f,) — z(f,. £,) = 0}.
If we look upon H as embedded in /*°( H) with the correspondence f — ({, f,...),
then M,(T') embedded in an evidently similar manner will be a subset of N(T') if
z € W(T). For unattained boundary points of W(T), M,(T) will consist of the
zero vector while N,(T) will be nontrivial set of sequences. It will now be our
endeavour to prove the following theorem:

THEOREM 1. N(T) is a subspace of I°(H) if and only if z is an extreme point of
W(T)".

ProoF. First we prove that N,(T') is a subspace if z is an extreme point of
W(T) . To that end we carry out the standard reduction by defining 4 =
exp(i@ T — zI), where 8 is so chosen that W(A) lies on the right half-plane.
Note that Re 4 = 0. Evidently, N,(T) is linear and homogeneous if and only if
Ny(A) is so.

Homogeneity being clear, we need prove only linearity. Let { /,}, {g,} € Ny(A4).
So (Af, + A*f,, f,) = 0 and hence h,, = Af, + A*f, - 0, by virtue of positivity of
ReA. Now (Af, + Ag,, f, + g8,) = k, + 2iIm(Af,, g), where k, = (Af,, f,) +
(Ag,, 8,) + (8, h,). Clearly k, — 0. If Im(Af,, g,) does not also tend to zero,
we get a contradiction as shown below.

Casel. || f, + g, =K>0and | f, — g,ll = K’ >0 for all n. By our hypothe-
sis, Im(Af,,, g,)/!l f, + g,1I? is bounded and we can, therefore, always choose a
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subsequence such that Im(Af,, g,)/|\f, + g, |I* converges to a nonzero number
a. Assume that such a choice has already been made for simplicity of notations.
Therefore (Af, + Ag,, f, + 8,)/(f, + &, f, + 8,) — 2ia. Let us say, for the sake
of definiteness, that a is positive. Consider again (Af, — Ag,, f, — 8.)/(f, —
%o fo = &) = (1, — 2i1m(A,, 8,)/(f, = &u» fu = 8,)» Where 1, = (Af,, f,) +
(A8 £,) — (8 h,). Cleatly 1, — 0. Since Im(Af,. g,)/Ilf, — > =
(Im(A4f,, g) /I £, + g,12) -l £, + g, 12/1 f, — g,I*), we see that it is always
possible to extract a subsequence such that 2iIm(Af,, g,)/Il £, — gl = 2ib,
where b > 0. Hence W(T)™ contains 2ia and -2ib on the boundary contradicting
that zero is an extreme point of W(T')".

Case 11. || f, + g, Il £, — g, |l is not bounded away from zero. Consider the
disjoint partition of the set {n} of all natural numbers such that {n} = {n} U {u"}
and min{ll f,. + g, I, IIf — g, I} <e/2M| All, where || f,I| < M for all n, with
Nf- + g, If-— g,Il bounded away from zero. Since |(Af,. g,)|<
| (Afys )| +1 (A £y —gm, we have | (Afy, 8,)|<|(Afy, f,)| +€/2. But
(Af,, f,-) = 0, and so |(4f,, g,)| can be made less than e by choosing n’
sufficiently large. Note that the case of finite {n’} is not of any interest. To the
other part the considerations of case I apply, and thus the linearity of Ny(A4) is
established.

Next, we prove the converse of the above result, that is, N,(7') is not a subspace
of I°(H) if z is not an extreme point of W(T)". If z is an interior point of
W(T')", then an easy application of the Embry’s theorem that M,(T') is not linear
if z is not an extreme point of W(T'), shows that N,(T) is not linear. If z is a
nonextreme boundary point of W(T' )™, we carry out the reduction 4 = exp(if)T
— zI as before. Hence there exist two sequences of unit vectors { f,} and {g,}
such that (Af,, f,) — ia and (Ag,, g,) —» —ia. We will now prove the existence of
two distinct scalars z; and z, such that {f, + z2,8,}, {f, + 2,8,} € Ny(A4), to
render the nonlinearity of Ny(A) obvious. As in the first part of the proof,
h, = Af,+ A*f, 0. So (Af, + z4g,, f, + 28,) = (Af,. £,) + | 2 |(Ag,. &) +
2(g,, h,) + 2ilm(z( Af,, g,)).- All the terms on the right hand side converge
except possibly Im(Z(Af,, g,)). But since (Af,, g,) is bounded we can always
choose a convergent subsequence. Assume that done for simplicity. So (Af,, g,)
— b+ ic, say. Hence (Af, + zA4g,, f, + zg,) - ia(1 — | z|*) + 2i(cx — by). So
all points on the real circle x2 + y2 + (2/a)(by — cx) — 1 = 0 will answer our
purpose. This completes the proof of Theorem 1.

3. An example

It is interesting to note that though N,(T) is linear if z is an extreme point of
W(T)", the following set, quite similar to N,(T'), defined by

NAT) = {{f,} € 1°(H): (4f,. £)/ (£, ) = 2, I £ 1l # 0},
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does not, in general, have the property that {f, + g,} € N(T) if {f,}, {g,} €
N(T). We give a counterexample.

Let {e,} and {e,} be disjoint sets of orthonormal elements of H. Define a
linear operator V such that Ve, = e, and Ve, = (1/n)e,,. It is easy to verify that
V is selfadjoint.

Let f, = (e, + ne,)/(1 +n*)'/2, and g, = (e, — e,)/(1 + n?)"/2 Clearly
Il £, = lig,l = 1. Hence Vf, = (e, + e,)/(1 + n?)!/? > 0. Likewise, Vg, — 0.
Define U = V2. So (Uf,, 1,)/(f., f,) and (Ug,, 8,)/(8&,, 8,) tend to zero. But
(U S, + 8. Uy + 8D/ fy + 8,12 = V£, + gI?/1 f, + 8,11> = 1 forall .

This proves our assertion.

4. Weak convergence on 0W(T')

THEOREM 2. Let p € L 0\ W(T)~, where L is a line of support of W(T)™ at p. and
f, —f be a weakly convergent sequence such that (Tf,, f,) ~ j1. Then either f = 0 or
(T, H/(f, /)€ LN WT).

PROOF. Let £ be a point on the outward drawn normal at . Define 4 = T — £1.
Clearly, |p — £|= Inf|(Ag, g)|/(g, g), g € H. Consider the operator B = AA
+ AA* — 2| A1, where A = p — £. B is easily seen to be positive and ( Bf,, f,) -
0. Hence, by a property of positive operators Bf, — 0. But Bf, — Bf and so
Bf = 0, by the uniqueness of weak limit. Therefore, (Bf, f) = 2 Re(A(4f, f)) —
2|NX(f, f)=0. If f# 0, we have consequently that cos@|(Af, f)/(f, J)|
=|A|, where 8 is the amplitude of A(Af, f). So, in terms of T, we can assert that

(1, £)/(f, f) € LW(T).

The following corollary is a mild generalization of a result of Das [1977] and
Garske [1979] in that is also holds for some extreme points of W(T') which are
not necessarily extreme points of W(T')".

COROLLARY 3. Let A be a boundary point but not necessarily an extreme point of
W(T) and let L be a line of support of W(T)at X\. If LN\ W(T) = (A}, and f,—~f
is a weakly convergent sequence such that (Tf,, f,) > pn, p € LN W(T)", then
either f =0 or (Tf, f)/(f, f) = A.

ProOOF. Follows immediately from Theorem 2 as L N W(T') consists of a single
point.

Let p be an extreme point of W(T)™ and f,—f, | f,Il =1 be such that
(Tf,, f,) — p. Das [1977] and Garske [1979] have shown that either f =0 or

https://doi.org/10.1017/51446788700025714 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025714

[s] Boundary of numerical range 225

(Tf, £)/(f, f) = p. The situation may, however, be quite different if u is a
nonextreme boundary point of W(T)". It may very well happen that (Tf,, f,) - p
while (7f, f)/(f, f) = A ¥ p. An example of this may be found in Garske
[1979]. While Theorem 2 and Corollary 3 above throw some light on the position
(Tf, £)/(f, f), the following theorem (Theorem 4) gives a bound for the norm of
the weak limit f in such a case.

THEOREM 4. Let f, — f be a weakly convergent sequence of unit vectors such that
(Tf,, £,) = wwhere p € OW(T). Then either

WDf=0,or

@) (TS, N)/f, f) = p,or

(iii) p is not an extreme point of W(T) and (f, f) < a/b, where a and b are the
distances from p and (Tf, f)/(f, f) respectively to the extreme point of W(T )~
collinear with p. and (Tf, f) and on the opposite side of p from (Tf, f)/([. f).

PrROOF. In light of the facts mentioned above, we need only discuss the case
when p is not an extreme point of W(T)™ and (Tf, f)/(f, f) = A # p. Since we
may always carry out the transformation from T to 4 as in Theorem 2, we may
assume without loss of generality that 0 & W(T)™ and | p|= Inf | (7%, g)|/(8, 2),
g € H. For any real ¢, we have

(T +4Th S+ 1)/ (f+ th S+ 1)
- (pe + Qe+ )T, £))/ (2 + Qe+ 1)(f, f))
=p+ A=p)2e = DS, f)/ (2 + @+ 1D)(f, f))-

If || f1l = 1, then f, - f, and as a result A\ = p. So we may assume that (f, /) < 1.
Let u=Qt+ 1)/, f)/(t2+ Qt+ 1)(f, f)). It is easily verified that u lies
between 1 and (f, f)/((f,f)—1). By Theorem 2, A, p and p+ (A —
) f, £)/((f, f) — 1) liec on the same line segment. Clearly A and p + (A —

p)f, £)/(f, f) — 1) lie on opposite sides of p. Hence |A — p|(f, f)/(1 —
(f,f)<a,or(f, f)<a/(|A— p| +a) = a/b. This brings the proof to an end.
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