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ON STRONG MATRIX SUMMABILITY WITH RESPECT TO 
A MODULUS AND STATISTICAL CONVERGENCE 

BY 

JEFF CONNOR 

ABSTRACT. The definition of strong Cesaro summability with respect 
to a modulus is extended to a definition of strong A -summability with 
respect to a modulus when A is a nonnegative regular matrix summability 
method. It is shown that if a sequence is strongly A-summable with respect 
to an arbitrary modulus then it is A-statistically convergent and that A-
statistical convergence and strong A-summability with respect to a modulus 
are equivalent on the bounded sequences. 

The original definitions of the summability methods discussed in this note both 
appeared in the context of Cesaro summability. Recall that if x is a sequence of 
complex numbers we say that 

(a) x is strongly (Cesaro) summable to L if limw n~l XX=i \xk — L\ = 0, and 
(b) x is statistically convergent to L if lim„ n~l\(k S n : \xk — L\ ^ e)| = 0 for all 

e > 0 . 

Strong summability and statistical convergence were introduced separately and, until 
recently, followed independent lines of development (cf. [1]). Strong summability first 
appeared in the paper by Hardy and Little wood which improved Fejer's theorem on 
the Cesaro convergence of a Fourier series [9] and the strong summability of Fourier 
series continues to be an active area of research (i.e. [10]). Statistical convergence was 
originally introduced in [4]. Jamison and Flemming [5] have recently characterized the 
linear isometries which map the strongly summable sequences onto themselves: the 
ideas underlying the techniques used in this note can be used to characterize the linear 
isometries which map the bounded strongly summable sequences onto themselves [2]. 
It should also be noted that strong summability appears in ergodic theory as "weakly 
mixing" [8] and that the summability methods discussed in this note are also related 
tp the method of "convergence in density" discussed in [7]. 

The class of sequences which are strongly Cesaro summable with respect to a 
modulus was introduced by Maddox [12] as an extension of the definition of strongly 
Cesaro summable. In this note, following Maddox, we further extend his definition by 
replacing the Cesaro matrix with an arbitrary nonnegative regular matrix summability 
method A and establish some elementary connections between strong A-summability, 
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strong A-summability with respect to a modulus and A-statistical convergence. In 
particular, by exploiting an observation regarding closed ideals of bounded sequences, 
we show that all three of these notions are equivalent for bounded sequences of 
scalars and that A-statistical convergence includes strong A-summability with respect 
to modulus for any modulus. 

Before continuing with the discussion, we pause to establish some notation. 
Throughout the following we let e denote the sequence which is identically 1 and 
let 

s = {all complex valued sequences}, 

ôo — {x £ s : sup \xn\ < oo}. 
n 

If x,y G s, we let xy denote the sequence ( J C ^ ) , ||JC|| = sup„ |JC„| and, given e > 0, 
S(x;e) = {k ÇN : |jt*| ^ e}. If S Ç N, we let \s denote the characteristic function 
of S. 

If A = (an^) is a nonnegative regular matrix summability method and 2 denotes 
the summation from k = 1 to oo (as it does throughout this note), then we let 

wo(A) = {x G s : lim2<2„*|x£| = 0} 

w(A) = {x G s : there is an L G C such that x —Le G H>O(A)}. 

The collection w(A) is commonly referred to as the collection of strongly A-summable 
sequences. If x — Le G M>O(A), we say that x is strongly A-summable to L. We extend 
the notion of strong A-summability by using a modulus in the same fashion as Maddox 
extends strong summability. 

DEFINITION 1. A function f : [0, oo) —> [0, oo) is called a modulus if 
a) f(x) — 0 if and only if x = 0, 

b) / ( j t+30^/ to+/(y) , 
c) / is increasing and 
d) / is continuous from the right at 0. 

DEFINITION 2. Let f be a modulus and A be a nonnegative regular matrix summa­
bility method. We let 

w0(A,f) = {x £s : MmXanikf(\xk\) = 0} and 
n 

w(A, f) = {xGs: there is an L G C such that x —Le G w>o(A,/)}. 

If x — Le G vt>o(A,/), we say that x is strongly A-summable to L with respect to the 
modulus f'. 

Using the same technique as Maddox, it is easy to extend Theorem 4 of [12] to 
the following result. 
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PROPOSITION 3. If f is a modulus and x is strongly A-summable to L, then x is 

strongly summable to L with respect to the modulus f ', 

We now record two useful observations regarding ideals in / ^ and wo(A,/) H/OO­

LEMMA 4. Let M be an ideal in loo and let x G loo Then x is in the closure of M in 

loo if and only if Xs(x-,e) £ M for all e > 0. 

PROOF. Suppose that x is in the closure of M and e > 0 has been given. Select 

z G M such that ||JC — z\\ < e/2 and observe that S(x;e) Ç S(z;e/2). Define y G loo 

by yk = \jzk if \zk\ ^ e/2 and yk = 0 otherwise. Note that vz = xs(z-e/2) £ M and 

hence, since S(x;e) C S(z\e/2) and xs(*;e) G /oo, Xsc*;e)Xs(z;e/2) = Xsfe) G M. 

Conversely, note that if JC G /©o then \\x— xxs(x-,e)\\ < e- It follows that if xsfoc) G M 

for all 6 > 0, then JC is in the closure of M. D 

We also use the following result, which appears in [7] and [3]. 

LEMMA 5. If A is a nonnegative regular matrix summability method, then wo(A)nioo 

is a closed ideal of loo. 

We also note that M>o04,/)n/oo is an ideal in l^ for any modu lus / . This follows 

from observing that if x G w0(A, / ) , y G loo and K is an integer such that \\y\\ ^ K, then 

^Gn,kf(\xkyk\) = K%<*n,kf(\xk\) f ° r a n v natural number n. Since lim„ %an^f{\xk\) — 0, 

it follows that \imnXan^f{\xkyk\) = 0, i.e. xy G wo(A,/) . We are now ready to 

establish: 

THEOREM 6. Let x be a bounded sequence, f be a modulus and A be a nonnegative 

regular matrix summability method. Then x is strongly A-summable to L with respect 

to the modulus f if and only if x is strongly A-summable to L, i.e. w( /4 , / )n /oo = 

vt>G4)n/oo. 

PROOF. First we establish that wo(A)n/oo = wo(A, / ) n /oo - Observe that, once this 

has been established, the theorem follows immediately from the definition of w(A, f). 

Note that proposition 3 yields that WQ(A)CMOQ Q wo04, / )n /oo . Now notice that if 

S Ç N, then %an^f(xs(k)) = 10)2an^Xs(k) for all n G N. The last observation, in 

tandem with Lemma 4 and that wo(A, / ) Pi loo is an ideal, yields that w${A, f)CMoo Q 

w0(A) D loo since xs(x-.e) G w0(A) n /<*, whenever x G w0(A, / ) Pi /oo and w0(A) Pi l^ is 

closed. 

If A is a regular nonnegative matrix summability method, we can make some 

connections between strong A-summability with respect to a modulus and A-statistical 

convergence. The following definition is an extension of the original definition of 

statistical convergence which appears in [4]. Statistical convergence is discussed in 

[6], [13] and [3]. 

DEFINITION 7. Let A be a nonnegative regular summability method and let x be a 

sequence. Then x is said to be A-statistically convergent to L if Xs(x-Le-.e) is contained 

in WQ(A) for every e > 0. 
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It is fairly easy to show that the bounded sequences which are A-statistically con­
vergent to 0 from an ideal which, via Lemma 4, is closed in l^. 

The proofs of the preceding results can be modified to yield the following result 

THEOREM 8. Let A be a nonnegative regular matrix summability method and f be 
a modulus. 

(a) IfxGs is strongly A-summable to L with respect to f', then x is A-statistically 
convergent to L. 

(b) If x G s is bounded and A-statistically convergent to L, then x is strongly 
A-summable to L with respect to the modulus f'. 

PROOF, (a) First recall that if x G w0(A, / ) and y e loo then xy G w0(A, / ) . Now 
suppose that x G H>O(A,/) and e > 0 has been given. Define _y G l^ by yk — \/xk if 
\xk\ ^ e and yk = 0 otherwise. Observe that 

Xy = XS(x,e) € W0(A, / ) fi /oo = H>0(A) fi /«J 

and hence x is A-statistically convergent to 0. The remainder of the claim follows 
immediately. 

(b) Now suppose that x G l^ and x is A-statistically convergent to L, then the 
definition yields that Xs(x-Le-e) € wo(A) D l^ for every e > 0. Lemmas 4 and 5 
assert that x — Le is strongly A-summable to 0 and hence, via theorem 6, strongly 
A-summable to L with respect to any modulus/. D 

It is easy to check that if a sequence is A-statistically convergent to L, then it must 
have a subsequence which is convergent to L. The above theorem now yields the 
following corollary: 

COROLLARY 9. If x is strongly A-summable to L with respect to the modulus f, then 
x has a subsequence which is convergent to L. 

The special cases of strong summability and statistical convergence can be used to 
show that a boundedness condition cannot be omitted from the hypothesis of Theorem 
8(b). One observation in this direction is to note that if x is strongly summable then 
x — 0(n) whereas a statistically convergent sequence is not required to satisfy any 
order growth condition. This observation is sufficient to show that, while the strongly 
summable sequences can be given a BK topology [11], the statistically convergent se­
quences cannot be given aBK topology [14, p.58]. (In fact, the statistically convergent 
sequences cannot even be given a locally convex FK topology [1].) 

The above considerations suggest the conjecture that if x is statistically convergent 
to L and x — 0(/i), then x is strongly summable to L. However, it is easy to verify 
that the sequence defined by xk = \fk if k is a perfect square and 0 otherwise is a 
counterexample to this conjecture. In fact, x = o(n). The following observation is a 
partial converse to theorem 8(a). Note that the hypothesis forces the sequence to be 
statistically convergent to L. 
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PROPOSITION 10. Let x E s such that x — 0(y/n) and \imn(^/n \{k ^ n : \xic — L\ è 
e}| = 0 for all e > 0. Then x is strongly summable to L. 

PROOF. Note that if \xn — L\ ^ Myfn for all n, then 

n 

n~l^2\xk-L\ ^e+M(y/n~X\{k^n\ \xk - L\ ^ e}\ 
k=\ 

for all e > 0. D 

This result is unsatisfying since it requires the sequence to be more than statistically 
convergent. Theorem 8(b) is the best partial converse I have been able to find which 
only requires that the sequence by statistically convergent. 
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