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1. Introduction. A permutation group is quasiregular if it acts regularly on each of its
orbits (i.e. the stabiliser of an element fixes every other element in its orbit). So, in particular,
any permutation representation of an abelian or hamiltonian group must be quasiregular.

If P is a finite projective plane of order n with a quasiregular collineation group G then,
since G must act faithfully on at least one orbit [2, p. 181], \G\^n2+n + l. In [3] quasi-
regular collineation groups G with | G \ > %(n2+n+1) were studied and the following theorem
was proved.

THEOREM 1. Let G be a quasiregular collineation group of a projective plane P of order n.
Denote by t the number of point {or line; see [6, p. 257]) orbits of G and by F the substructure
of the elements fixed by G. If | G | > i(n2 + n +1), then there are only the following possibilities:

(a) | G | = « 2 + « + l , t=l andF=<t>.
(b) j G j = n2, t = 3 and F is a flag.
(c) | G | = n2, t = n + 2 and F is either a line with all its incident points or its dual.
(d) | G | = n2 — 1, t = 3 and F is a non-incident point-line pair.
(e) \G\ = n2-y/n,t = 2andF=(f>.
(f) | G | = n(n— 1), t = 5 and F consists of two points, the line joining them and a second

line through one of the points.
(g) | G | = («— I)2, t = 7 and F consists of the vertices and sides of a triangle.

(h) | G | = ( n

Examples of quasiregular groups of each type are known in finite desarguesian planes.
However the only known cases of type (e) or type (h) occur when n = 4 and it is possible
that there are no others. Certainly if there are other examples then the groups must act on
non-desarguesian planes; in fact the planes must be new as it is easy to check that no known
plane with n ^ 4 can admit a group of type (e) or (h).

In this note we discuss planes that admit quasiregular groups of type (e) and show that
such planes of order q2 exist if and only if there is a group G of order q^—q with a relative
difference set with respect to a normal subgroup H of order q2—q. This is a natural analogue
to the theorem that says that a plane P admits a group G of type (a) (i.e. a Singer group)
if and only if G has a difference set.

For the standard definitions and basic results on projective planes see [6].

2. Relative difference sets. Let G be a finite group with a normal subgroup H. A subset
S of G is called a relative X-difference set of G with respect to H if, for every g in G\H, there
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exist exactly A pairs su s2 in 5 with g = s ^ 1 and exactly A pairs s3, J 4 in 5 with g = s$ isA.
If | G | = w?n, | 771 = n and 1S| = k, then we say that 5 has parameters (m, n, k, A). Thus a A-
difference set is a special case of a relative A-difference set with H=\, i.e. one with para-
meters (m, 1, k, A) (see [1] or [5]). If A = 1, then we shall call S a relative difference set of G
with respect to H. We now establish two lemmas which are simple extensions of well-known
results on difference sets. (Note that Lemmas 1 and 2 have obvious generalisations to relative
A-difference sets.)

LEMMA 1. Let G be a finite group with a normal subgroup H and let S be a subset of G.
The following three statements are equivalent:

(a) S is a relative difference set of G with respect to H.
(b) For any g in G\H there exist unique su s2 in S with g = s^1.
(c) For any g in G\H there exist unique s3, s^ in S with g = s$ 1s4.

Proof. By definition, (a) implies (b) and (c). Thus we have only to show that (b) and (c)
are equivalent.

Assume (b), i.e. that G\H = {s^J1 \ st, Sj e S, s, # Sj), and put L = {sf1 sm | s,, sm eS,st^ sm}.
If sf^j = sflsm then s^1 = s^J1, which, since (b) holds, implies that s, = sm and 5, = Sj.
Thus the elements of L are all distinct and | £ | = | G\H\. In order to prove that L = G\H
it is now sufficient to show that LnH = <j). If s^Sj = heH then Sj = sth, so that st and
sth are in S. So, by (b), sthsf1 e G\H. But, since H is normal in G, there exists an element
h' in H with sth = h'st and thus h' = sths^1 is in G\H. This contradiction shows that LnH = <j>
and proves that (b) implies (c).

Similarly (c) implies (b) and the lemma is established.

LEMMA 2. Let S be a relative difference set for a finite group G with respect to a normal
subgroup H and let a. be a homomorphism from G on to K^ G/H with kernel H. Then

(a) for any g in G, Sg (gS) is a relative difference set for G with respect to H.
(b) S" 1 = {s-i | j in S} is a relative difference set for G with respect to H.
(c) S* is a X-difference set of K with X = \H\.

Proof, (a) If gt is any element of G\H, then there exist unique su s2 in S with gi = s^f1.
Thus there exist unique s{g, s2g in Sg with gt = (slg)(s2g)~1 and so, by Lemma 1, Sg is a
relative difference set for G with respect to H. Similarly gS is a relative difference set.

(b) If g2 is any element of G\H then there exist unique s3,s4 in S with g2 = sj1s4..
Thus there exist unique st =s$ 1

) s2=Sti in S" 1 such that g2 = ^ i ^ 1 and, by Lemma 1,
S~l is a relative difference set for G with respect to H.

(c) For any k ¥= 1 in K, k = (Hg)x for some g in G\H. Thus, since k has exactly | H\
preimages in G\H, there are exactly \H\ pairs slts2 in S such that (s^1)' = k. Hence
there are exactly | H\ pairs s", s2 in 5* such that k = ^ ( i l ) " 1 . i-e- S" is a | H|-difference set
ofK[4, p. 122].

Finally we state a well-known result about A-difference sets (see, for example, [1, p. 3]).
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LEMMA 3. If D is a(v, 1, k, X) difference set for a finite group G then the complement of D
in G is a(v, \,v — k,v—2k+X) difference set for G.

3. Planes with quasiregular groups of type (e). Let G be a quasiregular collineation
group of type (e) of a finite projective plane P of order q2. Then, from [3], one point and
line orbit form a Baer subplane Po and G acts faithfully on the remaining points and lines.
If H is the subgroup fixing Po pointwise then, since H is an orbit stabiliser, H is a normal
subgroup of G.

We now show that if X and / are any point and line of P\P0 then S = { g e G | Xg is on /}
is a relative difference set of G with respect to H. This gives us a geometric definition for a
relative difference set of quasiregular collineation group of type (e). We call X and / the
base elements of S.

LEMMA 4. Let G be a quasiregular collineation group of type (e) acting on a finite projective
plane P of order q2. Let Po be the Baer subplane formed by the non-faithful point and line
orbits and let H be the subgroup fixing Po pointwise. If X and I are any point and line of P\P0

then S = {g in G\Xg is on /} is a relative difference set of G with respect to H, having para-
meters (q2 + q+l, q2-q, q2, 1).

Proof. Since G is regular on the orbit of X, the points X and Xg are distinct. As X is
not in Po, there is a unique line x of Po such that X is on x (see [6, p. 82]). This line x is also
the only line through X which is not in the orbit of /. Since g is not in H, xg ^ x and con-
sequently Xg is not on x. Thus the line joining X to Xg is la for some a in G\H. But now
Xa~l and XgaT1 are both on / so that a~v =s2 and ga~l =s1 are in 5 ; solving gives
g = s^1. Conversely, if g = s'^'1, where s[, s'2 are in S, then gs'2 — s[ and so Xgs'2 =Xs[
is on /. Thus Xg is on ls'2 ~

1 and clearly, since s'2 is in S, X is also on ls'2 ~
1 • Hence ls'2 ~ * is the

line joining X and Xg. But this means that ls'2~
l = la and so, by the regularity of G on the

orbit of /, a = s'2~
x. It is now easy to see that st = s[ and s2 = s2 so that st and s2 are unique.

Similarly, by considering the lines / and Ig, we find there is a unique pair s3, s4 in 5 with
g - J J ls4. This shows that S is a relative difference set of G with respect to H and simple
counting now gives its parameters.

4. The converse of Lemma 4.

THEOREM 2. Let G be a finite group of order q*-q with a relative difference set S with
respect to a normal subgroup H of order q2—q. Then there is a unique (up to isomorphism)
projective plane P admitting G as a quasiregular collineation group of type (e) with relative
difference set S.

Proof. Let A" be a group isomorphic to GjH, let a be a homomorphism from G on to K
with kernel H and let t be any element of K\S". Put D = K\t(S'r)~1. By Lemma 2(c), S"
is a (?2-^-difference set of K. Thus tiS*)'1 is a (q2-^-difference set of K. Clearly
\K\=q2 + q+l and, since | S | - ( | S | - 1 ) = | G | - | # | , \S\=q2. Hence, by Lemma 3, D is a
(2 2q2 + q2—q)-diherence set for K; i.e. D is a difference set for K.
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We now use the elements of G and K to construct P.
For each g in G and k in K let (g) and (k) be points of P. For any kinK let the line [k] be

the point set Dk<u {g in G | #" = A:} and for any g in G define the line [#] to be the point set
SgKj{tg'}. Clearly P has q*+q2 + l points and lines and each line of P contains exactly q2 + l
points. Thus in order to show that P is a projective plane it is sufficient to show that any two
distinct points are on a unique common line [6, p. 86]. There are three cases to consider;
(i) (fci) and (k2), (ii) (gt) and (g2), (iii) (gj and (A^).

Case (/). Since D is a difference set for K there is a unique line [k] with (kt)e[k] and
(k2)e[k]. Furthermore, since the only point (k1) on the line [g] is (tg*), there is no line (g)
containing both (kt) and (k2). Thus [k] is the unique line of P containing (A )̂ and (k2).

Case (ii). If g" — g\ = k, then (gj and (#2) are both on [k] and there is no other line [k]
containing either of these points. Suppose that there is also a line [g] containing them. Then
gxsSg and g2eSg. But, by Lemma 2, Sg is a relative difference set for G with respect to H
which implies that gig2

xsG\H. However, g\=g\ implies that gleffg2; i.e. gvglleH.
This contradiction shows that there is no such line [g] and that [A:] is the unique line of P
containing (gt) and (g2).

If ff" / 9% then, clearly, there is no line [k] containing (gt) and (g2). The points
and (#2) are on [g] if and only if g1g~1eS and g2g~1eS. Since #" # ^> ffid^^H
there exist unique Sj, J 2 in S with ^ J 1 = 'V2~1. Thus (#,) and (#2) are on [s2

lg2] and
this is the only line of P containing both points.

Case (iii). If g* = ku then clearly, since 1 eD, both points are on [kt] and on no other
line [A:]. Suppose (gx)e[g] and (k^)e[g] then g^eSg and A:t = tgCL$(Sg)x. This contradicts
#J = A:, and shows that [A:,] is the unique line of P containing (#,) and (kt).

If g\ = k2 / A:,, then there exists a line [A:] containing (g^) and (A )̂ if and only if kt eDk2.
Similarly there exists a line [g] containing both points if and only if k1 = t(sa)~ik2 for some s
in S, i.e. if and only if A^e^S")"1/^. But, by the choice of D, K=Dut(S")~l and
Dn^S")'1 = (j). Thus # = Dk^^S*)'1^ and either klsDk2 or A-t e/(5"r)"1A:2, which means
there is a unique line of P containing (g^) and (A^).

Thus we have shown that P is a finite projective plane of order q2.
K ^ j s G , then the mapping 99l given by (#)8"i = (ggj and (A:)"9' = (A:^) is a collineation

of G and it is easily seen that the group of all such 6g is isomorphic to G and is a quasiregular
collineation group of type (e). If we choose ^ = (1) and / = [1], then the relative difference
set for the collineation group with these base elements is

{09|(l)°
9e[l]} = [e,\(g)e[l]} = {8g\geS}.

Now suppose that Px and P2 are two planes admitting G as a quasiregular collineation
group of type (e) with relative difference set 5. Let Xh l( (i= 1, 2) be the base elements of
G acting on /*,- and let /•/ be the Baer subplane of Pt consisting of the non-faithful orbits of G.

If 0 is the mapping given by (Xlg)d = X2g and (1^)6 = l2g for all geG then 6 is a one-
to-one mapping from the points and lines of P^Pl on to the points and lines of P2\P'2. But
X^g is on /tA if and only if gh'1 eS which is also the condition for Xzg to be on l2h. Thus
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0 is an isomorphism between the incidence structures consisting of the points and lines of
PX\P[ and P2\P'2. Since P\P't uniquely determines Pit the theorem is proved.

It would be very interesting to find examples of planes with groups of type (e), as there
are only two known families of planes (desarguesian and Hughes planes) for which the full
collineation group fixes no point or line. The simplest groups to consider are the cyclic or,
slightly more generally, the abelian ones. (The cyclic case is considered in [4].) If any relative
difference sets exist then these results show how to construct them. Namely, choose a difference
set for K, take its complement and then consider subsets of G which consist of one element
from each preimage of this complement under all homomorphisms from G on to K with
kernel H.

As a simple illustration, we consider the case q = 2 where, of course, we know an example
exists. Here we write the groups additively, take G = Z1 4 , K = Z7 and consider the natural
homomorphism. In this case the preimage of any keK is {k,k+7}. Thus we must find
au a2, a3, a4 such that the twelve differences formed from {2+a^, 4+a27, 5+a37, 6+o47}
(where at = 0 or 1, i = 1, 2, 3,4) take all possible values modulo 14 except 0 or 7. Straight-
forward checking of all possibilities give {2, 4, 12, 13} and {5, 6, 9, 11} as the only solutions.
In view of the results in [4] it seems likely that q = 2 is the only value for which such planes
exist.
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