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PERTURBATION THEORY OF
MULTIVALUED ATKINSON OPERATORS IN NORMED SPACES

TERESA ALVAREZ AND DIANE WILCOX

We prove several stability results for Atkinson linear relations under additive per-
turbation by small norm, strictly singular and strictly cosingular multivalued linear
operators satisfying some additional conditions.

1. INTRODUCTION

The perturbation problem in Fredholm theory refers to the stability of the semiFred-
holm operators under additive perturbations. This problem has been around for many
years. Its origen can be traced back to some classical results due to Kato and Vladimirskii.
Let T and K be continuous operators acting from a Banach space X into a Banach space
Y. In [9, 2], Kato proved that T + K is upper semiFredholm whenever T is upper
semiFredholm and K is strictly singular. Similarly, in [14, 1], Vladimirskii proved that
T + K is lower semiFredholm if T is lower semiFredholm and K is strictly cosingular.
Subsequently, Miiller- Horrig {10] and Gonzailez [6] proved the analogous results for Atkin-
son operators in Banach spaces, that is, semiFredholm operators with complemented null
space and range.

Atkinson linear relations in normed spaces are introduced in [3], where the authors
obtain characterisations theorems of such multivalued linear operators in terms of the
existence of left and right generalised inverses. In this paper, these characterisation
theorems will be used in conjunction with perturbation theorems for Fredholm linear
relations to establish a perturbation theory for Atkinson type relations.

The paper is organised as follows:

Section 1 recalls the general notation and some basic definitions from the theory of
linear relations in normed spaces.

In Section 2 we describe some perturbation results for semiFredholm relations as well
as some characterisation theorems for Atkinson relations which will be used extensively
in Section 3.

Section 3 contains the main results. We show that with additional hypothesis, the
class of a-Atkinson relations (respectively, the class of S-Atkinson relations) is stable
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under small norm and strictly singular (respectively, small norm and strictly cosingular)
perturbations.

NOTATIONS. We adhered to the notation and terminology of the book [4]: X and Y
are infinite dimensional normed spaces over K = R or C, By the closed unit ball of X,
X' the dual space of X. A linear relation or multivalued linear operator T : X —» Y is
a mapping from a subspace D(T) C X, called the domain of T, into the collection of
nonempty subsets of Y such that T'(az, + fz;) = aT'(z,)+ BT (z,) for all nonzero scalars
a, and z1,z2 € D(T). The class of such linear relations is denoted by LR(X,Y). f T
maps the points of its domain to singletons, then T is said to be single valued or simply
an operator.

Let T € LR(X,Y). The graph G(T) of T is defined by G(T) := {(z,y) € X
xY :z € D(T),y € Tz}. Let M be a subspace of D(T). Then M* := {2’ € X' :
z'(m) = 0,Vm € M} and the restriction of T to M, denoted by T |y is defined by
G(T |u) == {(m,y) € X xY : m € M,y € Tm}. For any subspace M of X such that
M N D(T) # 0 we write T |pmapr)= T |m. The inverse of T is the linear relation 7!
defined by G(T?) := {(v,2) : (z,y) € G(T)}. If T~ is single valued, then T is called
injective, that is, T is injective if and only if its null space N(T') := T-*(0) = {0}. The
subspace T(D(T)) denoted d by R(T) is called the range of T and the completion T of
T is defined by G(T) := G(T) C X x Y where X denotes the completion of X. The
conjugate or adjoint 7" of T is defined by G(T") := G(=T"')* C Y’ x X'. We also define
a(T) := dim N(T) ; B(T) := dimY/R(T) and the index of T, denoted by k(T), is the
quantity a(T) — B(T) provided «(T) and S(T) are not both infinite.

For a given closed subspace M of X let Q% or simply Qs denote the natural qudtient
map from X onto X/M and Jx is the canonical injection from X into its completion. We
shall denote Qzpy by Qr. Clearly QrT is single valued. Forz € D(T), || Tz ||:=(| @rTz ||
and the norm of T is defined by || T ||:=]| @rT ||

A linear relation T € LR(X,Y) is said to be closed if its graph is a closed subspace,
continuous if for each open set V in R(T), T~V is an open set in D(T) equivalently
|| T ||< oo, open if T~! is continuous equivalently ¥(T") > 0 where ~(T) is the minimum
modulus of T defined by 7(T) := sup{A >0 : Adist(z, N(T)) <|| Tz |,z € D(T)},
precompact if QrTBpt) is totally bounded, strictly singular if there is no infinite
mensional subspace M of D(T) for which T | is injective and open, strictly cosingular if
A'(T) = 0 where A(T) := sup{l"(QuT) : M € E(Y)} (here I'(T) := inf{|| QuJyT ||:
Mecé€ (}7)} and £(X) denotes the class of all closed infinite codimensional subspaces
of X), F; if there exists a finite codimensional subspace E of X such that T |gnp(r) is
injective and open, ¢, if R(T) is closed and dim N(T') < oo, F_ if T is F, and ¢_. if
R(T) is closed and dim Y/R(T) < oo.

The class of strictly singular, F,, ¢, strictly cosingular, #_ and ¢_ linear relations
in LR(X,Y) will be denoted by SS(X,Y), F.(X,Y), ¢+(X,Y), SC(X,Y), F-(X,Y)
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and ¢_(X,Y) respectively.

Following [3, 2.3], we say that a linear relation T is an a-Atkinson type relation,
denoted T € Aq(X,Y), if T € F, and R(T) is complemented in Y. T is said to be a §-
Atkinson type relation, denoted T € Ag(X,Y), if T € F_ and N(T') is complemented
in D(T). The class of Atkinson linear relations is defined to be A(X,Y) 1= A,(X,Y)
N Ag(X,Y).

B(X,Y) denotes the class of continuous operators from X into Y.

A single valued S is said to be a linear selection of a linear relation T if T = S+T-T
with D(S) = D(T).

Finally, a closed subspace M of X is said to be complemented in X if there exists
a continuous projection P defined in X with R(P) = M. In that case N(P) is said to
be a complement of M and we write X = M & N to indicate that X = M + N and
MnN = {0}.

An underlying motivation for the introduction of linear relations into operator theory
by von Neumann [12] was to aid the investigation of differential equations governed by
non-densely defined operators. The conjugate of such operators are linear relations. One
main reason why linear relations are more convenient than operators is that one can
define the inverse, the closure and the completion for a linear relation. Interesting works
on multivalued linear operators include the treatise on partial differential relations by
Gromov (8], the application of multivalued methods to solution of differential equations
by Favini and Yagi [5], the development of fixed point theory for linear relations to the
existence of mild solutions of quasi-linear differential inclusions of evolution and also to
many problems of fuzzy theory (see, for example, 1, 7, 11, 13, 15]) and several papers
on linear relations type semiFredholm and other classes related to them (see, for example,
[2, 4], among others).

Throughout this paper T will be an element of LR(X,Y) except where stated oth-
erwise,

2. PRELIMINARY RESULTS

We begin by giving some auxiliary results that we shall need to obtain the main
Theorems of Section 3.

LEMMA 1. Let T € LR(X,Y) be closed and let S € LR(X,Y) be continuous

such that D(T) C D(S) and S(0) C T(0). Then T + S is closed.

ProOOF: Assume first that T and S are single valued. Let (z,) be a sequence in
D(T + S) = D(T)n D(S) = D(T) such that z, — z and (T + S)z, — y for some
z€ X andy €Y. Then z € D(T) ¢ D(S) and Sz, = St since S is continuous. Thus
Tz, — Sz~y and as T is closed, we have that z € D(T') and Tz = Sz —y, that is, T+ S
is closed. For the general case, we observe that QrT is a closed operator and T(0) is
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closed ([4, II. 5.3]), (T + S)(0) = T(0) because S(0) C T(0) and QrS = Qr)/5w@sS by
(4, IV. 5.2]. Hence, from what has been proved for the single valued case, Qrys(T +5)
= QrT + QrS is closed and since (T + S)(0) is closed, applying again [4, II. 5.3] we
obtain that T + S is closed, as desired.

In [4, Chapter V], Cross proved the following properties about semiFredholm linear
relations in normed spaces.

PROPOSITION 2.

(a) The following equivalences hold:

TeF,oTecp, T € ¢_
TeF.aTep. T €d,.

(b) (i) IfT is closed and R(T") is closed, then k(T) = —k(T").
(i) If T is open, then k(T) = —k(T").
(iii) T € ¢4 Ug-, then k(T) = —k(T") = —k(T").
PROPOSITION 3. LetT € F.(X,Y) and suppose that S € LR(X,Y) satisfies

S(0) C T(0). Then
(i) IfT isopenand || S||<v(T), thenT + S is F,.
(it) IfS is strictly singular, then T + S is F,.
PROOF: (i) We may clearly assume that dim D(T'+S) = oo, so that dim D(T") = oo.

Then by using properties of the operational quantities (not discussed here), the result
follows from [4, V. 3.2 and V. 5.1]. 1]

PROPOSITION 4. ([4,V.5.12 and V. 5.20]) Let T € F_(X,Y), and suppose
that S € LR(X,Y) with D(T) C D(S). We have:
(i) IfS is precompact, then T + S is F._.
(i) If||Sll<y(T"), then T+ S is F_.
(iii) If Jy S is strictly cosingular and dim @rS(0) < oo, then T + S is F_.
PROPOSITION 5. LetT € Fy(X,Y)UF_(X,Y) and let S € LR(X,Y) such
that D(T) € D(S), $(0) C T(0) and || S ||< ¥(T). Then k(T + S) = k(T).
PROOF: The proof is along the lines of the proof of the analogous result provided
in [4, V. 15.6] for the case when S is single valued. 0
PROPOSITION 6. LetT € LR(X,Y).
(i) Suppose T € F,(X,Y) and let S € SS(X,Y) be continuous such that
$(0) € T(0) and D(T) C D(S). Then k(T + S) = k(T).
(ii) Suppose T € F_(X,Y), and let S € LR(X,Y') be such that S’ is strictly
singular. If || §' ||< o0, S(0) C T(0) and D(T) C D(S), then k(T + )
= k(T).
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PRrROOF: (i) By Proposition 2, T € ¢, and hence, we can assume that X and Y
are complete, that T is closed, and show that the stability holds for k(T).

Since T+AS € F, (Proposition 3) and T+ AS is closed (Lemma 1) is T+AS € ¢, for
all X (Proposition 2). Let I := [0, 1] with its usual topology and let Z := ZU {—o0, +o0}
with the discrete topology. Then, by substituting T + AS € ¢, for T in Proposition 5,
we deduce that the map 8 : A € I = 8()\) := k(T + AS) € Z is continuous and 6(I) is
connected and therefore consists of only point. Thus k(T') = 8(0) = 8(1) = k(T + S).

(ii) By Proposition 2, T € ¢, and hence as in (i) we can assume that X and ¥
are Banach spaces, that T is closed, and show that the stability holds for k(7).

Since T + S is closed (Lemma 1), (T +S)' =T'+ 5’ ([4, IIL. 1.5]) and || S" |i<I| S ||
([4, I1L. 1.13]), we obtain from (i) applied to T' € ¢, that

k(T) = —k(T') = -k(T' + §") = —k((T + S)') = k(T + S),

as desired. 0

THEOREM 7. ([3, 24]) Let T € LR(X,Y). If T(0) is complemented in Y, then
the following properties are equivalent:
(i) T e A.(X,Y).
(ii) There exists A € B(Y,X) and a finite rank projection K € B(X) such
that A is defined densely with N(A) complemented in Y, R(A) C D(T),
R(K) € D(T) and AT = (I — K) |p(r)-
THEOREM 8. ([3, 25]) Let T € LR(X,Y). If N(T) is closed in D(T), then the
following properties are equivalent:
(i) Te As(X,Y).
(ii) There exists B € B(Y, X) and a finite rank projection K € B(Y') such that
B is everywhere defined, R(B) is complemented in D(T), BT and KT are
continuous operators and (I — K) is a linear selection of TB.

We refer to an operator A € B(Y, X) satisfying Theorem 7 (ii) as a left regulariser
or left generalised inverse of T € A,, and refer to an operator B € B(Y, X) satisfying
Theorem 8 (ii) above as a right regulariser or right generalised inverse of T € Ag.

The left generalised inverse A of T € A,(X,Y) is continuous and everywhere defined

when the spaces X and Y are complete and T is closed (see, [3, 24]).
REMARK 9. ([3, 23]) In Theorem 7 above, it is suffices to consider the proof applying
to the case when I — K is F, in the place of having K precompact. Similarly, in the
proof of Theorem 8 it is suffices to consider the case (I — K) € F, N F. instead of K
precompact.
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3. PERTURBATION OF ATKINSON LINEAR RELATIONS

In this section we investigate the stability of Atkinson linear relations under small
norm, strictly singular and strictly cosingular perturbations, as well as the behaviour of
the index under perturbation.

THEOREM 10. Let T € LR(X,Y) and suppose S € LR(X,Y) satisfies D(T)
C D(S) and S(0) C T(0).
(i) IfT € Aa(X,Y) and T(0) is complemented in Y, then there exists ¢ > 0
such that || S ||< € implies T + S € A.(X,Y).

(i) Let T € Ag(X,Y) such that N(T) is closed in D(T), (T + S)(0) and
N(T + S) are closed in R(T + S) and D(T + S) respectively. Then there

exists € > 0 such that || S ||< ¢ implies T + S € Ag(X,Y).

(iii) If (i) or (ii) holds and || S ||< v(T"), then k(T + S) = k(T).

PROOF: (i) By Theorem 7, AT = (I — Kar) |p(r) where K4r is the finite rank
projection operator associated with T € A, and the given left regulariser A. Therefore
0 < (I = Kar) < ¥(( = Kaz) Ivg-kary+pm) (4, 1 6.1]) = v((I = Kar |omy) (as
N(I—Kar) = R(Kar) C D(T) by Theorem 7) and thus y(AT) > 0. Let ¢ := (v(AT)/ ||
Al]) > 0. By Theorem 7,

A(T + 8) = AT + AS = (I — Kar + AS) |p(r) -

Since || AS ||<ll Al S || ([4, I1. 3.13]) < ¥(AT), on perturbing I — K47 by AS, it
follows from Proposition 3 that A(T + S) € F,. Moreover, from Theorem 7 it is clear
that R(A) € D(T) = D(T + S), R(Kar — AS) C D(T + S) and (T + S)(0) = T(0)
(as S(0) c T(0) ) is complemented in Y. Hence, applying Theorem 7 to T + S with A
serving as a left generalised inverse, and substituting K4+ — AS for the operator K in
the same Theorem, it follows from Remark 9 that T + S € A, (X,Y).

(i) We first show that the assertion holds for the case when 7" and S are single
valued. By Theorem 8, TB = I — Krp where Krp is the finite rank projection operator
associated with T € Ag and the given right regulariser B. Thus TB is open. Let
e:= (v(TB)/ || B||) > 0. Then,

(T+S)B=TB+SB=I—KTB+SB.

On perturbing I — Krg € F,. N F_ by SB, it follows from Propositions 3 and 4
that (T + S)B € F. N F_-. By Theorem 8, R(B) is complemented in D(T + S) = D(T),
B(T+S) = BT+ BS and Krg(T+ S) = KrpT + KrpS are continuous operators. Thus,
applying Theorem 8 to T + S with B serving as a right regulariser and substituting
Krg — SB for the operator K in the same Theorem, it follows from Remark 9 that
T+ S € As(X,Y).
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Passing to the general case, let By := BQp' € LR(Y/T(0),X). Thus, for
[y] € Y/T(0), we have Bgly] = B(y+T(0)) C By + BT(0) = By (since BT is single val-
ued). Hence, By is single valued. Define Kq € LR(Y/T(0)) by Kgly] := [Ky]. It is easy
to verify that QrTBg = IY/T(O_)—‘KQ and QrT, Bq and Kg satisfy the hypothesis of Theo-

rem 8 (ii). Furthermore, Q745(T+S)Bq = Qr(T+S)Bg (as S(0) C T(0) = Qr = Qr+s)
= QrTBg + QrSBq. In consequence

Qr+s(T + S)Bg = IY/W ~ Kq+ QrSBq

Now, assume that || S ||< ¥(QrTBg)/ || Bg ||- Then, from what has been proved
for the single valued case, it follows that Qr,s(T + S) € F_ and N(Qr+s(T + 5)) is
complemented in D(T'+S). Thus T+ S € F_ and since (T + S)(0) is closed in R(T +S),
we have that N(Qrys(T +S)) = N(T + S) by [4, II. 3.4]. The result follows.

(iii) This follows immediately from Proposition 5. 0

THEOREM 11. Let T € A.(X,Y) with T(0) complemented in Y, and suppose
S € 88(X,Y) such that D(T) c D(S) and S(0) C T(0). Then
(i) T+Se€AXY).
(i) If S is continuous, then k(T + S) = k(T).
Proor: By Theorem 7, AT = (I — Kr) |p(r) where K 4r is the finite rank projec-
tion associated with T' € A, and the given left generalised inverse A. Since AS is strictly
singular ([4, V. 2.10]), we have

A(T+S) = (I—KAT+AS) |D(T) .

On perturbing I — Ksr by AS, it follows from Proposition 3, that A(T + S) € F,.
As in Theorem 10 (i) we have R(A) C D(T + S) and R(Kar — AS) C D(T + S).
Furthermore, (T + S)(0) is complemented in Y since (T + 5)(0) = T(0) (as S(0) c T(0)).
Now, applying Theorem 7 to T + S with A serving as a left regulariser, and substituting
K, r — AS for the operator K in the same Theorem, we conclude from Remark 9 that
T+S € A

(ii) This assertion follows immediately from Proposition 6 (i). 0

In Theorem 11, the proof of stability of the index was restricted to perturbation by
continuous strictly singular relations. Using the graph norm, we show that this result
can be extended to strictly singular linear relations which are relatively bounded.

DEFINITION 12: ([4, VIL 2.1]) A linear relation S € LR(X,Y) is said to be T-
bounded if D(T) C D(S) and there exists a,b > 0 for which the inequality

I Szll<alzll+b] Tz |

holds for all z € D(T'). S is called T-precompact (respectively, T-strictly singular ) if S
is precompact (respectively, strictly singular) with respect to the graph norm defined in
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D(T) by
_ lzllr:=llz||+ Tz, =z e D(T).

THEOREM 13. Let X and Y be complete, and let T € A,(X,Y) be closed with
T(0) complemented in Y. If S satisfies D(T) c D(S), S(0) c T(0), and S is T-bounded
and T-strictly singular, then T + S € A4(X,Y) and k(T + S) = k(T).

PROOF: Since X and Y are complete and T is closed, the space X7 := (D(T), || . ||r)
is also a Banach space. Let Tr, St € LR(X7,Y) be defined by Trz := Tz and Srz := Sz
for z € Xr. Clearly St is continuous with || Sy ||< 1. Thus Tr+ Sr is closed by Lemma 1.
IfU € LR(D(T), Xr) denotes the identity map from D(T') onto Xr, then U is continuous
and T+ S = (Tr + Sr)U is closed by (4, II. 5.18]. By Theorem 7, AT = I — K where K
denotes the finite rank projection associated to T" and the given left regulariser A which
is continuous and everywhere defined.

Let Ay € LR(Y,Xr), Kr € LR(X7) be defined by Krz := Kz for z € X7 and
Aty := Ay for y € Y. We shall prove the following properties:

(1) TA is continuous

Indeed, TA is closed by [4, II. 5.18} with D(TA) =Y (since R(A) c D(T) ) and
thus it follows from the Closed Graph Theorem for linear relations(4, 1I. 5.4], that T4 is
continuous.

2) A7 is continuous
By (1) it follows that

| Aryllr=all Ay | +b (| TAy | < @ Al +0{ITA) NIy ll, veY.
(3) Tr € Aa(XT1,Y)

This property is deduced trivially from Theorem 7, upon noting that N(Tr) = N(T),
R(Tr) = R(T) and Ar and K7 satisfy the conditions of the Theorem 7 (ii).

In this situation, by virtue of (3), Tr and Sy verify the hypothesis of Theorem
11 and so the desired result follows immediately since R(T + S) = R(Tr + Sr) and
N(T + S) = N(Tr + Sr).

THEOREM 14. Let T,S € LR(X,Y) such that N(T) is closed in D(T), D(T)
c D(S), S(0) c T(0), (T + S)(0) and N(T + S) are closed in R(T + S) and D(T + S)
respectively. If T € Ag(X,Y), S € 88(X,Y), JyS € 8C(X,Y) and dim QrS(0) < oo,
then
(i) T+Se€A(X,Y).

(i) IfS' is continuous and strictly singular, then k(T + S) = k(T).
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PROOF: (i) Let us consider two cases for T and S:

CAsE L. T and S are single valued. Let B denote a continuous right regulariser of T
Then SB is strictly singular ([4, V. 2. 12]), JySB is strictly cosingular (4, IV. 5.8]) and
we obtain by Theorem 8 that

(T+S)B=I-Krp+SB

where Krp is the finite rank projection operator associated with T € Az;. Hence, on
perturbing I — K7g € F,. N F_ with SB it follows from Propositions 3 and 4 that
(T+S) € FyNF_. Furthermore, as S is continuous we deduce from Theorem 8 that R(B)
is complemented in D(T + S), B(T +S) = BT + BS and Krg(T+ S) = KrgT + K1S
are continuous operators. In this situation, applying Theorem 8 to T+ S with B serving
as a right generalised inverse, and substituting K75 — SB for the operator K in the same
Theorem, it follows from Remark 9 that T + S is a 8 -Atkinson operator.

CAsk II. T and S are linear relations. We adopt the notation of the proof of Theorem
10 (ii) and arguing exactly as in the same proof we obtain

Qr+s(T + S)Bq = I ~ Ky 75 + @rSBq.
Moreover, we shall now show that
QrSByq is a strictly singular operator.
This property follows trivially from [4, V. 2.11 and V. 2. 12].

JY/To)QTS is a strictly cosingular operator.

Indeed, we may clearly suppose that dim Y/T(0) = oo. Let T(0) denote the closure

of T(0) considered as a subspace of Y.

From the canonical equality }7/7{(0\) = Y/T(0), the operator Jy/r@@r is naturally
identified with QT/,@Jy. In consequence, Jy 75 Q@rS = QT’.@JyS and then an application
of [4, IV. 5.4] yields immediately the desired property.

In this situation, substituting QrSBq for SB, Bq for B and Qris(T'+S) for T+ S
the result follows from the Case I, upon noting that N(Qr4+s(T +S)) = N(T + 5) since
(T + S)(0) is closed in R(T + S).

(i) This assertion is clear from Proposition 6 (ii). 0
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