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Discretizing Hyperbolic Transport Equations

So far in the book, we have introduced you to several basic discretizations: Section 4.4
introduced the two-point scheme for elliptic operators of the type ∇ · K(�x)∇ and the
upstream scheme for hyperbolic operators ∇ · �v. Likewise, Section 7.2 introduced fully
implicit discretizations for compressible single-phase flow, and discussed how to use a
Newton–Raphson method to linearize and solve the resulting system of discrete equations.
With some modifications, these techniques are all we need to describe the most widespread
approach to simulate compressible, multiphase flow.

For incompressible multiphase flow, on the other hand, it is common to write the sys-
tem as a pressure equation and one or more transport equations and use specialized dis-
cretization schemes for each subequations. Chapter 6 discussed consistent schemes for
elliptic pressure equations. This chapter reviews some of the particular challenges that lie
in discretizing transport equations. If you are not interested in this wider perspective and
only wish to know the simplest possible approach to solving saturation equations, you can
jump directly to Section 9.4 on page 286, which discusses the standard upstream mobility-
weighting method implemented for general polyhedral grids in the incomp module of
MRST.

9.1 A New Solution Concept: Entropy-Weak Solutions

In the first part of this chapter, we continue to discuss the homogeneous conservation law
introduced in the previous chapter,

ut + f (u)x = 0, u(x,0) = u0(x). (9.1)

Here, u is some conserved quantity, which need not necessarily be a fluid saturation, and
f (u) is a generic flux function. Equation (9.1) usually arises from a more fundamental
physical law on integral form,

d

dt

∫ x2

x1

u(x,t) dx = f
(
u(x1,t)

)−f
(
u(x2,t)

)
, (9.2)

which states that the rate of change of quantity u within the interval [x1,x2] equals the flux
across the ends x = x1 and x = x2 of the interval.
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In the previous chapter, we saw that solutions to (9.1) may develop discontinuities in
finite time, even for smooth initial data if the flux function f is nonlinear. This means that
the solution of (9.1) is usually understood in the weak sense,∫ ∞

0

∫
R

(
uϕt + f (u)ϕx

)
dtdx =

∫
R

u0(x)ϕ(x,0) dx. (9.3)

Here, ϕ(x,t) is a continuous and smooth test function that has compact support so that it
vanishes outside a bounded region in the (x,t)-plane.

Solutions defined by the weak form (9.3) are not necessarily unique. The solution con-
cept must therefore be extended to include additional admissibility conditions to single out
the correct solution among several possible candidates satisfying the weak form. A classical
method to obtain uniqueness is to add a regularizing second-order term to (9.1), giving a
parabolic equation

uε
t + f (uε)x = εuε

xx,

which has unique, smooth solutions. The unique solution of the hyperbolic equation (9.1)
is then defined as the limit of uε(x,t) as ε tends to zero. In models from fluid dynamics,
such a second-order term can be proportional to the viscosity of the fluid, and the method
is therefore called the vanishing viscosity method. For flow in porous media, the transport
equations will already have a second-order term coming from capillary forces (see (8.35)).
However, capillary forces are often neglected when studying flow dominated by global
pressure gradients, or the capillary function may vary with rock type and this can introduce
discontinuities in the phase saturations at the interface between different rock types.

Since the vanishing viscosity solutions uε(x,t) are smooth, it is possible to use tech-
niques from classical analysis to prove the existence, uniqueness, and stability of the solu-
tion to (9.1). This was first done in a seminal work by Kružkov [173], which paved the road
for the modern theory of nonlinear partial differential equation of a hyperbolic-parabolic
type. Working with limits of viscous solutions is not very practical. Instead, we impose
other admissibility conditions. We have already encountered the Lax and Oleinik entropy
conditions, (8.57) and (8.58), which were used to single out permissible discontinuities. An
alternative approach is to introduce a (convex) entropy function η(u) and a corresponding
entropy flux ψ(u), and require that an admissible weak solution u must satisfy the entropy
condition

η(u)t + ψ(u)x ≤ 0, (9.4)

which must be interpreted in the weak sense as∫ ∞
0

∫
R

(
η(u)ϕt + ψ(u)ϕx

)
dtdx +

∫
R

η(u0(x))ϕ(x,0) dx ≥ 0. (9.5)

The solution u(x,t) is called an entropy weak solution of (9.1) if it satisfies (9.5) for all
k ∈ R and nonnegative test functions ϕ.
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274 Discretizing Hyperbolic Transport Equations

9.2 Conservative Finite-Volume Methods

You have already seen that using a finite-volume method made it simple to formulate a
discretization on general polyhedral grids and ensured that the resulting method obeys the
important property of mass conservation. Approximating the unknown function in terms of
its cell averages has one additional advantage for hyperbolic conservation laws. Because the
differential equation ceases to be pointwise valid in the classical sense once a discontinuity
arises in u(x,t), we should expect that pointwise approximations used in standard finite-
difference methods will break down, since these rely on the assumption that the function is
smooth in a small neighborhood where the discrete difference is taken. Instead of seeking
solutions in a pointwise sense, the finite-volume approach seeks globally defined solutions
of the integral form (9.2), which is more fundamental, represented in the form of discrete
cell averages, as we have already seen in previous chapters.

To develop a finite-volume method for (9.1), we first define the sliding average,

ū(x,t) = 1

�x

∫ x+�x/2

x− 1
2 �x

u(ξ,t) dξ . (9.6)

We then associate these sliding averages with grid cells, {[xi−1/2,xi+1/2]}, where xi±1/2 =
xi ± 1

2�xi , and set ui(t) = ū(xi,t). By inserting ui(t) into the integral form of the
conservation law (9.2), we obtain a semi-discrete version of (9.1),

dūi

dt
= 1

�xi

[
f
(
u(xi−1/2,t)

)− f
(
u(xi+1/2,t)

)]
. (9.7)

Alternatively, we may define un
i = ūi (tn) for a set of discrete times tn and then integrate

(9.7) from tn to tn+1 to derive a fully discrete version of (9.1),

un+1
i − un

i =
1

�x

∫ tn+1

tn

f (u(xi−1/2,t)) dt − 1

�x

∫ tn+1

tn

f (u(xi+1/2,t)) dt . (9.8)

While (9.7) and (9.8) tell us how the unknown cell averages ui(t) and un
i evolve in time,

they cannot be used directly to compute these cell averages, since we do not know the
point values u(xi±1/2,t) needed to evaluate the integrand. To obtain these, we need to make
additional assumptions and approximations, e.g., as discussed in Section 4.4.3 for the linear
case. Nevertheless, (9.8) suggests that a viable numerical method for (9.1) should be of the
form

un+1
i = un

i − rn
i

(
Fn

i+1/2 − Fn
i−1/2

)
, rn

i = �tn/�xi, (9.9)

where Fn
i±1/2 approximates the average flux over each cell interface,

Fn
i±1/2 ≈

1

�tn

∫ tn+1

tn

f
(
u(xi±1/2,t)

)
dt . (9.10)

In Section 8.4 we showed that information propagates at a finite speed along so-called
characteristics, which implies that the flux integral (9.10) will only depend on the solution
u(x,tn) in a local neighborhood of the interface xi±1/2. This means, in turn, that Fi±1/2 can
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be approximated in terms of a small collection of neighboring cell averages, i.e., Fi+1/2 =
F(un

i−p, . . . ,un
i+q), which we alternatively will write as Fi±1/2 = F(un;i ± 1

2 ).
Any numerical method written on the form (9.9) will be conservative. To see this, we

multiply (9.9) by �xi and sum over i. The flux terms will cancel in pairs and we are left
with

N∑
i=−M

un+1
i �xi =

N∑
i=−M

un
i �xi −�tn

(
Fn

N+1/2 − Fn
−M−1/2

)
.

From this, it follows that the method is conservative on a finite domain, since the accumula-
tion inside any interval balances the sum of the flux across the interval edges. To see that the
same is true in an infinite domain, we must make some additional assumptions. If the initial
solution u0(x) has bounded support, it follows that the two flux terms will cancel if we
choose M and N sufficiently large. Hence, the scheme (9.9) is conservative in the sense that∑

i

un+1
i �xi =

∑
i

un
i �xi = · · · =

∫
u0(x) dx.

9.3 Centered versus Upwind Schemes

To provide important insight into the numerical solution of hyperbolic equation, we briefly
outline two main classes of classical schemes.

9.3.1 Centered Schemes

The simplest approach to reconstruct the point values u(xi±1/2,t) needed in (9.7) and (9.9),
is to assume that u(x,t) = ui(t) inside each grid cell and average the flux values on opposite
sides of the grid interface, i.e., set

Fn
i±1/2 = 1

2

[
f (un

i±1)+ f (un
i )
]
. (9.11)

This approximation is referred to as a centered approximation, which unfortunately gives a

notoriously unstable scheme. We can add an artificial diffusion term, �x2

�t
∂2
xu, to stabilize,

but then it is no longer possible to go back to the semi-discrete form (9.7), since the artificial
diffusion will blow up in the limit �t → 0. Discretizing the artificial diffusion through
standard centered differences gives the classical Lax–Friedrichs scheme

un+1
i = 1

2

(
un

i+1 + un
i−1

)
− 1

2
r
[
f (un

i+1)− f (un
i−1)

]
. (9.12)

Alternatively, the scheme can be written in conservative form (9.9) using the numerical flux

F(un;i + 1/2) = 1

2r

(
un

i − un
i+1

)+ 1

2

[
f (un

i )+ f (un
i+1)

]
. (9.13)

To ensure stability, we have to impose a restriction on the time-step through a CFL con-
dition, named after Courant, Friedrichs, and Lewy, who wrote one of the first papers on
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finite-difference methods in 1928 [75]. The CFL condition states that the true domain of
dependence for the PDE (9.1) should be contained in the domain of dependence for (9.9).
For the Lax–Friedrichs scheme, this means that

�t

�x
max

u
|f ′(u)| ≤ 1. (9.14)

Under this condition, the scheme is very robust and will always converge, albeit painstak-
ingly slow in many cases. The robustness is largely due to the added numerical diffusion,
which tends to smear discontinuities. As an illustration, consider a stationary discontinuity
satisfying ∂tu = 0. Here, the approximate solution in each cell is defined as the arithmetic
average of the cell averages in the neighboring cells, i.e., un+1

i = 1
2 (un

i+1 + un
i−1). From

this, we see that the scheme will smear the discontinuity one cell in each direction per time
step. By using a formal Taylor expansion on a single time step, it follows that the scheme
has a truncation error of order two. In practice, we are more interested in the error at a
fixed time, which we need to use an increasing number of time steps to reach as �x → 0
because of (9.14). This means that we must divide with �t so that the error of the scheme
is O(�x) as �x → 0, and we say that the scheme is formally first-order accurate.

We can improve accuracy if we make a more accurate approximation to the integral
defining Fn

i±1/2. Instead of evaluating the integral at the endpoint tn, we can evaluate it at

the midpoint tn+1/2 = tn + 1
2�t . One can show that the corresponding point values can be

predicted with acceptable accuracy by the Lax–Friedrichs scheme on a grid with half the
grid spacing. This gives a second-order, predictor-corrector scheme called the (Richtmeyer
two-step) Lax–Wendroff method [178]

u
n+1/2
i+1/2 = 1

2

(
un

i + un
i+1

)− 1
2 r
[
f (un

i±1)− f (un
i )
]
,

un+1
i = ui − r

[
f (u

n+1/2
i+1/2 )− f (u

n+1/2
i−1/2 )

]
, (9.15)

which is stable under the same CFL condition (9.14) as the Lax–Friedrichs scheme. The
corresponding numerical flux reads

F(un;i + 1/2) = f
(

1
2 (un

i + un
i+1)− 1

2 r
[
f (un

i+1)− f (un
i )
])

. (9.16)

Both the Lax–Friedrichs and the Lax–Wendroff scheme can either be interpreted as a finite-
difference or as a finite-volume scheme, and by only looking at the formulas written in
terms of un

i , it is not possible to determine which formulation is in use. However, the under-
lying principles are fundamentally different. Finite-difference methods evolve a discrete set
of point values by using discrete differences to approximate the differential operators in
(9.1). Finite-volume methods evolve globally defined solutions given by (9.2) and realize
them in terms of a discrete set of cell averages. This latter perspective is the key to modern
so-called high-resolution methods [183, 294], which have proved to be very successful.

Let us now see how we can implement these two schemes compactly in MATLAB.
When computing on a bounded domain, one generally has to modify the stencil of the
scheme in the cells next to the domain boundary to account for boundary conditions.
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A widely used trick to avoid this is to pad the domain with a layer of ghost cells, i.e.,
extra cells that are not really part of the domain and whose states can be set manually to
impose the desired boundary conditions.

function u=lxf(u0,cfl,dx,T,flux,df,boundary)
u = u0; t = 0.0;
dt = cfl*dx/max(abs(df(u0)));
i = 2:numel(u0)-1; % do not compute on the ghost cells
while (t<T)
if t+dt>T, dt = T-t; end
t=t+dt;
u = boundary(u); % set values in the ghost cells
f = flux(u);
u(i) = 0.5*(u(i+1)+u(i-1)) - 0.5*dt/dx*(f(i+1)-f(i-1));
dt = cfl*dx/max(abs(df(u)));

end

Here, u0 gives the initial data, cfl and dx are the CFL number and the spatial discretization
parameter, T is the desired end time, and flux, df, and boundary are handles to functions
that compute the flux f and its derivative and set appropriate states in the ghost cells.
Notice, in particular, how we use the vector i to avoid computing in the ghost cells that pad
our domain. To get the Lax–Wendroff scheme, we introduce an auxiliary array U and then
simply replace the second last line by

U(i) = 0.5*(u(i)+u(i+1)) - 0.5*r*(f(i+1)-f(i));
U = boundary(U); f = flux(U);
u(i) = u(i) - r*(f(i)-f(i-1));

9.3.2 Upwind or Godunov Schemes

The centered schemes introduced in the previous subsection are black-box schemes that can
be utilized without any particular knowledge about the flux function apart from an estimate
of its maximum and minimum derivative (or eigenvalues for systems of equations). The
reason for this is that these schemes utilize information from both sides of the grid interface
when computing approximations to the flux integral in (9.10). In many cases we can do
better, since we know more of how the solution behaves at the interface. If f ′(u) > 0, for
instance, we know that all characteristics are positive, and hence we can use the solution
from the left side of the grid interface to evaluate the integral in (9.10). With a constant
reconstruction inside each cell, this means that Fi+1/2 = f (un

i ) is the exact value of the
integral, provided that the solution at time tn is constant and equal un

i in grid cell i. The
resulting scheme,

un+1
i = un

i − r
[
f (un

i )− f (un
i−1)

]
, (9.17)

is called an upwind scheme, which you have already encountered in Chapters 4 and 7.
Similarly, if f ′(u) ≤ 0, the upwind scheme takes the form
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un+1
i = un

i − r
[
f (un

i+1)− f (un
i )
]
. (9.18)

In either case, the upwind scheme is a two-point scheme that, instead of using a cen-
tered difference, uses a one-sided difference in the upwind direction, i.e., in the direction
from which the waves (or information) is coming. This type of upwind differencing is the
underlying design principle for so-called Godunov schemes, named after the author of the
seminal paper [118]. If we assume a constant reconstruction so that u(x,tn) ≡ un

i inside
grid cell number i, the evolution of u(x,t) can be decomposed into a set of local Riemann
problems

∂tv + ∂xf (v) = 0, v(x,0) =
{

un
i , x < xi+1/2,

un
i+1, x ≥ xi+1/2,

(9.19)

which are of the same type as those we have already accounted in Section 8.4. Each of these
Riemann problems admits a self-similar solution vi+1/2(x/t), which can be constructed by
introducing a local convex or concave envelope1 fc(u;un

i ,u
n
i+1) of the flux function f

over the interval [un
i ,u

n
i+1], as discussed in (8.60). The cell averages can then be correctly

evolved a time step �t forward in time by (9.9) if we use vi±1/2(0) – or a good approxi-
mation thereof – to evaluate f in the flux integral (9.10). The Riemann fan will generally
expand in each direction at a constant speed, and using vi±1/2(0) to evaluate the integrand
of (9.10) is only correct until the first wave from the neighboring Riemann problem reaches
the interface. This implies a time-step restriction of the form

max
i,n
|f ′c(· ;un

i ,u
n
i+1)|

�tn

�xi

≤ 1, (9.20)

which we recognize as a sharper version of the CFL condition (9.14). The resulting scheme
is formally first-order accurate, but will generally be much less diffusive than the centered
Lax–Friedrichs scheme.

Let us now go back to the general transport equation (8.35), which is hyperbolic if
P ′c ≡ 0. Here, the fractional flow function f (S) has a characteristic S-shape and its
derivative is therefore always positive. This means that if gravity forces are negligible,
like in the horizontal displacements we studied in Section 8.4.1, the correct Godunov
scheme would be either (9.17) or (9.18), depending upon the sign of the flux �v. For the
gravity segregation problem considered in Section 8.4.2, on the other hand, the flux function
g(S) = λwλn/(λw+λn) has derivatives of both signs and we would generally have to solve
the Riemann problem (9.19) like we did in Figure 8.14 on page 265 to apply the Godunov
scheme. The same is generally true for flow involving a combination of viscous and gravity
forces, as illustrated in Figure 8.17. Having to solve a Riemann problem each time we need
to evaluate the flux Fn

i±1/2 may seem rather cumbersome, and fortunately there is a rather
elegant and physically motivated fix to this. Instead of upwinding the flux itself, we can use
the phase fluxes to evaluate the relative mobilities in the upstream direction

1 The notation f (· ;a,b) signifies that the functional form of the function f depends on the parameters a and b.
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λα(S)u
∣∣
xi+1/2

=
{

λα(Sn
i ), if vα > 0,

λα(Sn
i+1), otherwise.

(9.21)

and then use these upwind values to evaluate both the S-shaped viscous flux fw(S) and the
bell-shaped gravity flux λn(S)fw(S). Here, we have used the phase flux vα , which in the
multidimensional case can be computed as

(∇pα−gρα∇z)·�ni , where �ni is the normal to the
interface. The resulting method, called the explicit upstream mobility-weighting scheme, is
usually the method of choice for porous media application because of its accuracy and
simplicity. In [49] it was shown that the method also satisfies the mathematical properties
necessary to get a consistent and convergent scheme.

9.3.3 Comparison of Centered and Upwind Schemes

The classical schemes introduced so far in this section all have certain weaknesses and
strengths that are common for many other schemes as well. In short, first-order schemes
tend to smear discontinuous solutions, whereas second-order schemes introduce spurious
oscillations. To highlight these numerical artifacts, we consider two different cases; you
can find complete source codes for both examples in the nummet directory of the book
module. The directory also contains two examples of high-resolution methods, which to a
large extent cure these problems. Very cursorily explained, the idea of such a scheme is to
introduce a nonlinear function that enables the scheme to switch from being high-order on
smooth solutions to being first-order near discontinuities.

Example 9.3.1 Consider linear advection on the unit interval with periodic boundary
conditions

ut + ux = 0, u(x,0) = u0(x), u(0,t) = u(1,t).

The advantage of using periodic data is that we know that the exact solution at time t = n

for an integer number n equals u0(x). As initial data u0(x) we choose a combination of a
smooth squared sine wave and a double step function,

u(x,0) = sin2
(x − 0.1

0.3
π
)
χ[0.1,0.4](x)+ χ[0.6,0.9](x).

Using the lxf solver outlined in Section 9.3.1, we can set up the case as follows, where the
function periodic simply sets u(1)=u(end-1) and u(end)=u(2).

dx = 1/100;
x = -.5*dx:dx:1+.5*dx;
u0 = sin((x-.1)*pi/.3).^2.*double(x>=.1 & x<=.4);
u0((x<.9) & (x>.6)) = 1;

f = @(u) u; % flux function
df = @(u) 0*u+1;
uf = lxf(u0, .995, dx, 20, f, df, @periodic);
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Upwind Lax−Friedrichs Lax−Wendroff Nessyahu−Tadmor

Figure 9.1 Approximate solutions at time t = 20.0 for the linear advection equation ut + ux = 0,
with periodic boundary conditions computed by three classical schemes and a high-resolution scheme
on a grid with 100 cells and CFL number 0.995.

Figure 9.1 shows approximate solutions after 20 periods (t = 20) computed by the upwind,
Lax–Friedrichs, and Lax–Wendroff methods and the high-resolution Nessyahu–Tadmor
scheme [224] on a grid with 100 cells for �t = 0.995�x. Both the centered schemes
clearly give unacceptable resolution of the solution profile. The first-order Lax–Friedrichs
scheme smears both the smooth and the discontinuous part of the advected profile. The
second-order Lax–Wendroff scheme preserves the smooth profile quite accurately, but
introduces spurious oscillations at the two discontinuities. This behavior is representative
for classical schemes. The upwind method represents a reasonable compromise in the sense
that it does not smear the smooth wave and the discontinuities as much as Lax–Friedrichs,
and does not introduce oscillations like Lax–Wendroff. The Nessyahu–Tadmor scheme
gives accurate resolution of both the smooth and the discontinuous parts of the profile,
thereby combining the best of the low and high-order schemes.

The advection equation can serve as a conceptual model for more complex cases. As
we saw in Figures 8.9 and 8.10, a displacement front will be self-sharpening in the sense
that if the leading discontinuity is smeared, smeared states behind the displacement front
will travel faster than the discontinuity (since they have characteristics pointing into it) and
will hence “catch up.” Likewise, smeared states ahead of the front will travel slower and
be overrun by the front, since these states have characteristics that point into the front. For
linear waves, the characteristics of any smeared state will run parallel to the discontinuity
and hence there will be no self-sharpening to counteract the numerical dissipation inher-
ent in any numerical scheme. Linear waves are therefore more susceptible to numerical
dissipation than nonlinear shock waves.

In water-based EOR methods, for instance, active chemical or biological substances
are added to modify the physical properties of the fluids or/and the porous media at the
interface between oil and water. The resulting displacement processes are governed by
complex interplays between the transport of chemical substances and how these substances
affect the flow by changing the properties of the fluids and the surrounding rock. These
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Upwind Lax−Friedrichs Lax−Wendroff Nessyahu−Tadmor

Figure 9.2 Approximate solutions at time t = 1.0 for the linear advection equation ut + ux = 0,
with periodic boundary conditions computed by three classical schemes on a grid with 100 cells and
time step of 0.5 relative to the stability limit.

property changes are often very nonlinear and highly sensitive to threshold parameters
that determine sharp transitions between regions of very different behavior. The transport
of chemical substances is largely linear and hence more affected by numerical diffusion.
A simulation may therefore fail to resolve the local displacement process if the chemi-
cal fronts are smeared out or contain overshoots. As a result, unresolved simulation can
therefore lead to misleading predictions of injectivity and recovery profiles.

Example 9.3.2 For many systems, the linear waves travel significantly slower than the
leading shock wave, and hence will be computed with a smaller effective CFL number. In
Figure 9.2, we have rerun the experiment assuming that the linear waves travel at half
the speed of a leading shock wave. Even after one period, the first-order schemes have
introduced significantly more smearing, and the oscillations for Lax–Wendroff are much
worse. The high-resolution scheme, on the other hand, maintains its resolution much better.

The two previous examples are admittedly idealized cases compared with what we see in
reservoir simulation, but illustrate very well the potential pitfalls of classical schemes. In
the next example, we consider a more relevant case.

Example 9.3.3 Let us revisit the classical Buckley–Leverett profile studied in Example
8.4.1, i.e., consider the following equation,

St +
( S2

S2 + (1− S)2

)
x
= 0, S(0,t) = 1, S(x,0) =

{
1, x < 0.1,

0, x ≥ 0.1.

Figure 9.3 shows the solution at time t = 0.65 computed by the same four schemes. The
first-order schemes compute qualitatively correct approximations of both the leading shock
wave and the trailing rarefaction wave. As expected, Lax–Friedrichs introduces significant
smearing of both the shock and the kink. The upwind scheme delivers acceptable accuracy.
Lax–Wendroff fails completely to capture the correct structure of the composite: not only
does it introduce oscillations behind the displacement front, but the propagation speed is
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Upwind Lax−Friedrichs Lax−Wendroff High−resolution

Figure 9.3 Approximate solutions at time t = 0.65 for the Buckley–Leverett problem on a grid with
50 cells computed by three classical schemes.

also incorrect. The reason is that once overshoots are introduced near the leading disconti-
nuity, the only way to maintain a mass-conservative solution is if the numerically computed
wave (with overshoots) travels slower than the true wave. Likewise, the scheme introduces
an overshoot at the kink where the solution has discontinuous derivative. These are serious
deficiencies typical of higher-order classical schemes. The high-resolution scheme com-
putes a qualitatively correct solution and overall delivers the best accuracy. On the other
hand, it is more computationally costly and would be outperformed by the upwind scheme
if we compare accuracy versus computational cost.

Computer exercises

9.3.1 Try to set �x = �t so that the CFL number equals one exactly for the periodic
advection problem in Example 9.3.1. Can you explain what you observe? Why is
using a CFL number identical to one not that interesting from a practical point of
view?

9.3.2 Implement a Godunov solver that works correctly for strictly convex or strictly
concave flux functions. Hint: try to find a formula that gives the correct self-similar
Riemann solution along the line x/t = 0.

9.3.3 Implement the single-point upstream mobility-weighting scheme (9.21) and use it
to simulate the 1D cases discussed in Examples 8.4.2–8.4.4.

9.3.4 Extend the schemes introduced in this section to the two-dimensional conservation
law ut +f (u)x +g(u)y = 0, and implement a solver that can run a 2D analogue of
the periodic advection problem in Example 9.3.1. Try to make the changes in the
existing solver as small as possible. Hint: In 2D, the Lax–Friedrichs scheme reads,

un+1
ij = 1

4

(
un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1

)
− 1

2
r
[
f (un

i+1,j )− f (un
i−1,j )

]− 1

2
r
[
g(un

i,j+1)− g(un
i,j−1)

]
.
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9.3.5 The nummet folder of the book module also contains another high-resolution
scheme, the semi-discrete central-upwind scheme Kurganov et al. [174]. Use the
supplied scripts to also familiarize yourself with this scheme.

9.3.4 Implicit Schemes

So far, we have only considered schemes based on explicit temporal discretization, since
this is the most common approach in the literature on numerical methods for hyperbolic
conservation laws. In principle, we could also have used implicit temporal discretization, as
we have already encountered in Chapter 7. Going back to (9.8), we could approximate the
integral using point values at tn+1 rather than at time tn, which would give us a numerical
method on the form,

un+1
i + rn

i

(
Fn+1

i+1/2 − Fn+1
i−1/2

) = un
i . (9.22)

To get a specific scheme, we must specify how the cell averages un+1
i−p, . . . ,un+1

i+q are

used to evaluate the numerical flux Fn+1
i+1/2. The standard approach in reservoir simulation

is to use the upstream mobility-weighting approximation from (9.21) with Sn replaced
by Sn+1.

In the explicit method (9.9), the flux terms were written on the right-hand side to signify
that they are given in terms of the known solution un

i . In (9.22), the numerical flux terms
appear on the left-hand side to signify that they depend on the unknown cell averages
un+1

i . Equation (9.22) hence represents a coupled system of nonlinear discrete equations,
which typically must be solved by use of a Newton–Raphson method as discussed in
Section 7.1. Computing a single time step of an implicit method is typically significantly
more costly than computing an explicit update, since the latter involves fewer evaluations
of the flux function and its derivatives. On the other hand, the fully implicit discretiza-
tion (9.22) is unconditionally stable in the sense that there is no stability condition (CFL
condition) limiting the size of the time step. In principle, this means that the additional
computational cost can be offset by using much larger time steps. In practice, however,
viable time-step sizes are limited by numerical errors (as we will see shortly) and by the
convergence of the numerical method used to solve the nonlinear system. For Newton–
Raphson-type methods, in particular, the convergence may be quite challenging if the flux
function contains inflection points/lines separating regions of different convexity; see e.g.,
[147, 306, 213] for a more detailed discussion.

For 1D horizontal displacements, we have already seen that the flux function has a
characteristic S-shape with positive derivatives. Like in the explicit case, we can therefore
use one-sided values to evaluate the flux integrals, giving the following scheme,

un+1
i + rn

i

[
f
(
un+1

i

)− f
(
un+1

i−1

)] = un
i .

The result is a triangular nonlinear system with one nonzero band below the diagonal.
For cases like the Buckley–Leverett displacement considered in Example 9.3.3, we can
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Figure 9.4 Approximate solutions at time t = 0.65 for the Buckley–Leverett problem on a grid
with 100 cells computed by the single-point upstream mobility-weighting scheme with explicit and
implicit time discretization.

therefore solve the nonlinear system very efficiently using a substitution method. That is,
we start at the cell next to the inflow boundary,

un+1
1 + rn

1 f (un+1
1 ) = un

1 + rn
1 fL,

where fL is the known inflow. This single nonlinear equation can be solved robustly for an
arbitrarily large �t by use of a classical bracketing method that tracks the end points of an
interval containing the unknown root. Once un+1

1 has been computed, we can move to the
next cell, and solve a similar scalar equation,

un+1
2 + rn

2 f (un+1
2 ) = un

1 + rn
2 f (un+1

1 ),

and so on. The same strategy can, in fact, be applied to the multidimensional case under
certain assumptions guaranteeing that the system has a similar cocurrent flow property; see
[220] for more details.

Example 9.3.4 Let us revisit the setup from Example 9.3.3 and compare the explicit (9.9)
and the implicit (9.22) discretizations. Instead of implementing the 1D implicit scheme,
we rely on the general transport solvers from the incomp module in MRST, which will be
discussed in more detail in the next chapter. Figure 9.4 shows solutions computed by the
explicit scheme with a unit CFL number and by the implicit scheme with CFL numbers 1
and 10. At a unit CFL number, the explicit scheme resolves the displacement front somewhat
sharper than the implicit scheme. When the CFL number is increased ten times for the
implicit scheme, the numerical smearing is significant and will lead to the prediction of a
(much) too early water breakthrough.

To explain the difference in numerical smearing, let us do some simple numerical analy-
sis. However, rather than studying the nonlinear Buckley–Leverett model, we go back to the
simple advection equation, ut+aux = 0, and consider the schemes discussed earlier in this
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section as finite-difference schemes rather than finite-volume schemes. The classical way of
analyzing numerical schemes is to first compute the truncation error, which is obtained by
inserting the exact solution into the numerical scheme, assume a smooth solution, and use
Taylor expansions to express the various terms around a common point (x,t). In addition,
we also use the fact that ut = −aux and that �t and �x are proportional. Starting with the
explicit scheme,

0 = u(x,t +�t)− u(x,t)

�t
+ a

u(x,t)− u(x −�x,t)

�x

= ut (x,t)+ 1
2�t utt (x,t)+O(�t2)+ aux(x,t)− 1

2a�x uxx(x,t)+O(�x2)

= ut + 1
2�t a2uxx +O(�t2)+ aux − 1

2a�x uxx +O(�x2)

= ut + aux − 1
2a
[
�x − a�t

]
uxx +O(�x2).

In other words, the explicit scheme will up to order O(�x2) solve a parabolic equation.
This equation is only well-posed if the coefficient in front of the second-order term is
negative, implying that a�t/�x ≤ 1, which is exactly the same requirement as in the
CFL condition. We also notice that the higher the CFL number we use, the less numerical
diffusion we introduce in the approximate solution and in the special case that a�t = �x,
the scheme has no numerical diffusion.

For the implicit scheme, we only need to expand the un+1
i−1 term since we have already

computed the expansion for un+1
i for the explicit scheme,

un+1
i−1 = u(x −�x,t +�t)

= u(x −�x,t)− a�tux(x −�x,t)+ 1
2 (a�t)2uxx(x −�x,t)+O(�t3)

= u−�xux + 1
2�x2uxx +O(�x3)− a�t∂x

[
u−�xux +O(�x2)

]
+ 1

2 (a�t)2∂2
x

[
u+O(�x)

]+O(�t3).

Collecting terms, we have that

0 = u(x,t +�t)− u(x,t)

�t
+ a

u(x,t)− u(x −�x,t)

�x

= ut + aux − 1
2a
[
�x + a�t

]
uxx +O(�x2).

This means that the implicit scheme also will solve a parabolic equation with accuracy
O(�x2). In this case, the coefficient in front of the uxx term is always negative and the
scheme is therefore stable regardless of the choice of �t . However, this also means that the
numerical diffusion increases with increasing time steps.

One can also conduct a similar analysis in the nonlinear case and arrive at similar con-
clusions. This in turn implies an interesting observation if we look back at our discussion
of linear waves on page 280. For an explicit scheme, slow waves are computed with more
numerical diffusion than fast waves. For an implicit scheme, on the other hand, slow waves
are computed with less numerical diffusion than fast waves. Explicit schemes are therefore
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best suited for systems having relatively small differences in wave speeds, whereas implicit
schemes are better suited for systems with large differences in wave speeds. In a typical
reservoir setting, wave speeds are large in the near-well region, of medium size in high-flow
regions away from the wells, and low near or in stagnant zones. It is therefore reasonable to
expect that implicit schemes are best suited for simulating real reservoir systems. However,
explicit schemes are still used, mainly because of their simplicity and in connection with
higher-resolution discretizations.

Computer exercises

9.3.1 Implement the implicit upwind scheme in 1D and verify against the solver from the
incomp module.

9.3.2 Use the single-point upstream mobility-weighting scheme (9.21) to extend your
implicit solver to also account for countercurrent flow and use it to simulate the 1D
cases discussed in Examples 8.4.2–8.4.4. Compare with the corresponding explicit
scheme.

9.4 Discretization on Unstructured Polyhedral Grids

So far, this chapter has introduced you to various types of numerical methods that can be
used to discretize saturation equations. The methods discussed, and some of their high-
resolution extensions included in the book module, are all reasonably simple to implement
on regular Cartesian and rectilinear grids and on grids consisting entirely of simplices (tri-
angles in 2D and tetrahedrons in 3D). However, as you have seen multiple times throughout
the book, realistic grid models are rarely that simple. For the baseline solvers in MRST we
have therefore chosen to go with the most robust choice of them all, namely the explicit
or implicit version of the single-point upstream mobility weighting scheme. This section
therefore discusses in more detail how to formulate this scheme on unstructured, polyhedral
grids for a general transport equation

φ
∂S

∂t
+ ∇ · �H(S) = 0. (9.23)

Here, the flux function �H includes viscous flow driven by pressure gradients, as well as
gravity segregation and capillary forces,

�H(S) = λw

λw + λn

�v + λwλnK
λw + λn

(
�ρ �g +∇Pc(S)

)
= �Hf (S)+ �Hg(S)+ �Hc(S). (9.24)

To discretize this equation, we start from a multi-dimensional analogue of the integral form
(9.8) of the conservation law,

Sn+1
i − Sn

i =
1

φi |�i |
∑

k

∫ tn+1

tn

∫
�ik

�H (S(�x,t)
) · �ni,k ds dt, (9.25)

https://doi.org/10.1017/9781108591416.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.013


9.4 Discretization on Unstructured Polyhedral Grids 287

pi
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�ni,k

�ci,k

�g

Figure 9.5 Two cells used to define the finite-volume discretization of the general two-phase transport
equation (9.23). Here, the interface �i,k between the two cells �i and �k has normal vector �ni,k and
area Ai,k .

defined over a general grid cell �i as illustrated in Figure 9.5. We do not want to develop a
higher-order discretization, and hence it is sufficient to evaluate the time integral at one of
its end-point, so that (9.25) simplifies to

Sn+1
i − Sn

i =
�t

φi |�i |
∫

�ik

�H (S(�x,tm)
) · �ni,k ds, m = n,n+ 1. (9.26)

Before we describe the discretization of the three flux functions Hf , Hg , and Hc, let us
quickly recap how we discretize the viscous flux �v = −K∇p in the corresponding pressure
equation. Referring to Figure 4.10 on page 133, the flux reads

vi,k ≈ Ai,kKi

(pi − πi,k)�ci,k

|�ci,k|2 · �ni,k = Ti,k(pi − πi,k)

= [T −1
i,k + T −1

k,i

]−1
(pi − pk),

where the first line gives the one-sided formulation computed entirely from quantities
associated with cell i, and the second line gives the formulation that also couples to the
neighboring cell k. From this expression, it follows naturally that the capillary term should
be discretized as follows:

Ai,k∇Pc(S) · �ni,k ≈
[
T −1

i,k + T −1
k,i

]−1[
Pc(Si)− Pc(Sk)

] = Pi,k(S). (9.27)

Likewise, we can define a “gravity flux” gik that is independent of saturation,

gik =
[
g−1

i,k + g−1
k,i

]−1
,

gi,k = (�ρ)|�i
(Ki �g) · �ni,k,

gk,i = (�ρ)|�k
(Kk �g) · �nk,i .

(9.28)

With this, all we need to do is to find the correct upstream value λu
α for each of the two

phases, and then the overall approximation of the interface flux reads:

Hik = λu
w

λu
w + λu

n

vik + λu
wλu

n

λu
w + λu

n

[
gik + Pik

]
. (9.29)
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To determine the upstream directions, we need to compare the Darcy flux vik and the gravity
flux gik . (If there are capillary forces, these are henceforth assumed to be added to the
gravity flux, i.e., gik + Pik → gik .) If vik and gik have the same signs, we know that the
correct choice of the wetting mobility is from the left (right) of the interface if the fluxes
are positive (negative). Likewise, when the two fluxes have different signs, we know that
the correct choice of upstream value for the non-wetting fluid is independent of the actual
mobility values. These cases can be summarized in the following tabular:

sign(vik) sign(gik) λu
w

≥ 0 ≥ 0 λw(SL)

≤ 0 ≤ 0 λw(SR)

sign(vik) sign(gik) λu
n

≥ 0 ≤ 0 λn(SL)

≤ 0 ≥ 0 λn(SR)

If neither of these cases are fulfilled, we need to check the sign of the phase fluxes to
determine the correct upstream direction. In practice, we do not check the phase fluxes
themselves, but rather the phase fluxes divided by the fractional flow functions as these
quantities are less expensive to compute. That is, we check the sign of vik + gikλn and
vik − gikλw and use this to pick the correct upstream value.

For most cases in reservoir simulation, we also have source terms that drive flow, so that
(9.23) is replaced by an inhomogeneous equation

φ
∂S

∂t
+ ∇ · �H(S) = max(q,0)+min(q,0)f (S).

In the next chapter, we describe how the resulting transport solvers are implemented in
MRST, and discuss how to combine them with incompTPFA, or one of its consistent
alternative, in a sequential solution procedure to solve incompressible, multiphase flow
on general polygonal and polyhedral grids.

https://doi.org/10.1017/9781108591416.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.013

