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Li coefficients and the quadrilateral zeta
function
Kajtaz H. Bllaca, Kamel Mazhouda, and Takashi Nakamura

Abstract. In this note, we study the Li coefficients λn ,a for the quadrilateral zeta function. Further-
more, we give an arithmetic and asymptotic formula for these coefficients. Especially, we show that
for any fixed n ∈ N, there exists a > 0 such that λ2n−1,a > 0 and λ2n ,a < 0.

1 Introduction and statement of main results

1.1 Li coefficients

The Riemann hypothesis (RH) is a critical question in analytic number theory.
As such, it is interesting to examine different ways to frame it, which may shed more
light on its resolution. In 1997, Xian-Jin Li has discovered a new positivity criterion
for the RH. In [10], he defined the Li coefficients for the Riemann zeta function as

λn =
1

(n − 1)!
dn

dsn [s
n−1 log ξ(s)]s=1 ,

where ξ is the completed Riemann zeta function defined by

ξ(s) = s(s − 1)π−s/2�(s/2)ζ(s),
which satisfies ξ(s) = ξ(1 − s) and gave a simple equivalence criterion for the RH: RH
is true if and only if these coefficients are nonnegative for every positive integer n. The
Li coefficients λn can be written as follows:

λn =
∗
∑

ρ
[1 − (1 − 1

ρ
)

n

] = lim
T→∞

∑
ρ;∣Im(ρ)∣≤T

[1 − (1 − 1
ρ
)

n

] ,

where the sum runs over the nontrivial zeros of the Riemann zeta function counted
with multiplicity. This criterion is generalized by Bombieri and Lagarias [4] for any
arbitrarily multiset of numbers assuming certain convergence conditions. Voros [19,
Section 3.3] has proved that the RH true is equivalent to the growth of λn as 1

2 n log n
determined by its archimedean part, while the RH false is equivalent to the oscillations
of λn with exponentially growing amplitude, determined by its finite part. The Li
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Li coefficients and the quadrilateral zeta function 861

coefficients were generalized in two ways: by generalizing these coefficients to various
sets of functions (the Selberg class, the class of automorphic L-functions, zeta function
on function fields,. . .[8, 11, 17]) and by introducing new parameter in its definition
(see [12]). The Li coefficients (and its generalizations) have generated a lot of research
interest due to its applicability and simplicity.

1.2 Quadrilateral zeta function

Recall the definitions of Hurwitz and periodic zeta functions. The Hurwitz zeta
function ζ(s, a) is defined by the series

ζ(s, a) ∶=
∞
∑
n=0

1
(n + a)s , σ > 1, 0 < a ≤ 1.

The function ζ(s, a) is a meromorphic function with a simple pole at s = 1 whose
residue is 1 (see, for example, [1, Section 12]). The periodic zeta function Lis(e2πi a) is
defined by

Lis(e2πi a) ∶=
∞
∑
n=1

e2πina

ns , σ > 1, 0 < a ≤ 1

(see, for instance, [1, Exercise 12.2]). Note that the function Lis(e2πi a) with 0 < a < 1
is analytically continuable to the whole complex plane since Lis(e2πi a) does not have
any pole, that is shown by the fact that the Dirichlet series of Lis(e2πi a) converges
uniformly in each compact subset of the half-plane σ > 0 when 0 < a < 1 (see, for
example, [9, p. 20]). For 0 < a ≤ 1/2, we define zeta functions

Z(s, a) ∶= ζ(s, a) + ζ(s, 1 − a), P(s, a) ∶= Lis(e2πi a) + Lis(e2πi(1−a)),
2Q(s, a) ∶= Z(s, a) + P(s, a), ξQ(s, a) ∶= s(s − 1)π−s/2�(s/2)Q(s, a).

We can see that Q(s, a) is meromorphic functions with a simple pole at s = 1.
In addition, we have Q(0, a) = −1/2 = ζ(0) and ξQ(s, a) = ξQ(1 − s, a), which is
proved by

Q(1 − s, a) = �cos(s)Q(s, a), �cos(s) ∶=
2�(s)
(2π)s cos(πs

2
)(1.1)

(see [13, Theorem 1.1]). Moreover, the function Q(s, a) has the following properties.
When a = 1/6, 1/4, 1/3, and 1/2, the RH holds true if and only if all nonreal zeros of
Q(s, a) are on the line Re(s) = 1/2 (see [14, Proposition 1.3]). Let NCL

Q (T) be the
number of the zeros of Q(s, a) on the line segment from 1/2 to 1/2 + iT . In [13,
Theorem 1.2], the third author proved that for any 0 < a ≤ 1/2, there exist positive
constants A(a) and T0(a) such that

NCL
Q (T) ≥ A(a)T whenever T ≥ T0(a).

Next, let NF(T) count the number of nonreal zeros of a function F(s) having
∣Im(s)∣ < T . Then, for any 0 < a ≤ 1/2,

Nζ(T) − NQ(T) = Oa(T),
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and the third author [14, Proposition 1.8] proved that

NQ(T) =
T
π

log T − T
π

log(2eπa2) + Oa(log T).

Furthermore, he [14, Theorem 1.1] proved that there is a unique absolute a0 ∈ (0, 1/2)
such that

Q(1/2, a) > 0 ⇐⇒ 0 < a < a0 .

In addition, it is proved in [14, Corollary 1.2] that all real zeros of Q(s, a) are
simple and are located only at the negative even integers just like ζ(s) if and only
if a0 < a ≤ 1/2. Let us note by ZQ the set of all nontrivial zeros ρa of ξQ(s, a). Since it
is an entire function of order 1, one has

ξQ(s, a) = eA+Bs ∏
ρa∈ZQ

(1 − s
ρa
) e

s
ρa = ξQ(0, a) ∏

ρa∈ZQ

(1 − s
ρa
) ,(1.2)

where eA = 1/2, B = Q′
Q (0, a) − 1 − γ+log π

2 , and γ denotes the Euler constant. Note that
Q′(0, a) is given explicitly in [14, Theorem 1.5].

1.3 Main results

Recall that ζ(1 − s) = �cos(s)ζ(s) and Q(1 − s, a) = �cos(s)Q(s, a) by (1.1). However,
the function Q(s, a) does not have an Euler product except for a = 1/6, 1/4, 1/3, and
1/2. Hence, the function Q(s, a) is a suitable object to consider the influence of not
Riemann’s functional equation but an Euler product to zeros of zeta functions. We
show a criterion for nonvanishing of Q(s, a) in terms of the positivity of the Li coef-
ficients, an arithmetic and asymptotic formula for these coefficients in Theorems 1.1,
1.2, and 1.4, respectively. It should be emphasized that λn ,a defined in (1.3) are the first
Li coefficients that we can explicitly give n ∈ N such that λn ,a < 0. There is a possibility
that this fact would give an idea to find negative Li coefficients for ζ(s) if they would
exist.

For n ≠ 0, the Li coefficients attached to Q(s, a) nonvanishing at zero are defined
by the sum

λn ,a ∶=
∗
∑

ρa∈ZQ

(1 − (1 − 1
ρa
)

n

) = lim
T
→∞

∗
∑

∣Im(ρa)∣≤T
(1 − (1 − 1

ρa
)

n

) .

The symmetry ρa �→ 1 − ρa in the set ZQ of nontrivial zeros of Q(s, a) implies that
λ−n ,a = λn ,a = λn ,a for all n ∈ N. So, λn ,a are real. We have also

λn ,a ∶=
1

(n − 1)!
dn

dsn [s
n−1 log ξQ(s, a)]s=1 .(1.3)

Moreover, from (1.2), we have (see [4, Equations (2.3) and (2.4)] or [17, Appendix A])
∞
∑
n=0

λn+1,asn = d
ds

log [ξQ (
1

1 − s
, a)] .
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As an analogue of Li coefficients for the Riemann zeta function, we have the
following.

Theorem 1.1 The function Q(s, a) does not vanish when Re(s) > 1/2 if and only if
λn ,a ≥ 0 for all n ∈ N.

An arithmetic formula for λn ,a is stated in the following theorems.

Theorem 1.2 We have

λn ,a = 1 − n
2
(log(4π) + γ) +

n
∑
k=2
(−1)k(n

k
)(1 − 2−k) ζ(k) +

n
∑
k=1
(n

k
)γQ(k − 1),

where γQ(n) are defined as follows:

Q′

Q
(s + 1, a) + 1

s
=
∞
∑
n=0

γQ(n)sn .

Theorem 1.3 For a = 1/2, 1/3, 1/4, 1/6, under the RH, we have

λn ,a =
n
2

log n + n
2
(γ − 1 − log 2π) + O(

√
n log n).

For a fixed l ∈ N, we have the following asymptotic formula of λ l ,a when a → +0.
We can see that there exists n ∈ N such that λn ,a < 0 by Theorem 1.1 and the fact that
Q(s, a) does not satisfy an analogue of the RH when a ∈ Q ∩ (0, 1/2)/{1/6, 1/4, 1/3}
(see [14, Proposition 1.4]). Clearly, this argument gives no information on the
frequency of n ∈ N, the smallest n ∈ N such that λn ,a < 0 and so on. However, the next
theorem implies that λ2n ,a < 0 if we fix any n ∈ N and then we take a > 0 sufficiently
small.

Theorem 1.4 Fix l ∈ N. Then it holds that

λ l ,a =
(−1)l+1

(2a)l + O l(a1−l ∣ log a∣), a → +0.

Especially, for any fixed n ∈ N, there are a > 0 such that

λ2n−1,a > 0 and λ2n ,a < 0.

2 Proofs

2.1 Proof of Theorem 1.1

Since λ−n ,a = λn ,a = λn ,a for all n ∈ N, then Re(λ−n ,a) = Re(λn ,a) = λn ,a . Using
that ξQ(s, a) is an entire function of order 1, and its zeros lie in the critical strip
0 < Re(s) < 1, we obtain that the series ∑ρ∈ZQ

1+∣Re(ρ)∣
(1+∣ρ∣)2 is convergent. Application of

[4, Theorem 1] to the multiset ZQ of zeros of Q(s, a) gives that Re(ρ) ≤ 1/2 if and
only if λn ,a ≥ 0 for all n ∈ N. Now, the application of the same theorem to the multiset
1 − ZQ = ZQ gives Re(ρ) ≥ 1/2 if and only if λn ,a ≥ 0. This completes the proof.
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Theorem 1.1 can also be proved by the same argument used in [5, Theorem 1], which
is due to Oesterlé.

2.2 Proof of Theorem 1.2

From the expression of ξQ(s, a), one has

ξ′Q
ξQ
(s, a) = 1

s
+ 1

s − 1
− 1

2
log π + 1

2
�′

�
(s/2) + Q′

Q
(s, a),

which is rewritten as
ξ′Q
ξQ
(s + 1, a) = 1

s + 1
+ 1

s
− 1

2
log π + 1

2
�′

�
((s + 1)/2) + Q′

Q
(s + 1, a).(2.1)

Note that Q(s, a) is a meromorphic function on the whole complex plane, which
is holomorphic everywhere except for a simple pole at s = 1 with residue 1 (see [13,
Section 2.1]). Let us define the coefficients γQ(n) and τQ(n) as follows:

Q′

Q
(s + 1, a) + 1

s
=
∞
∑
n=0

γQ(n)sn(2.2)

and

− 1
2

log π + 1
2

�′

�
((s + 1)/2) =

∞
∑
n=0

τQ(n)sn .(2.3)

By Equation (1.2), one has

log ξQ(s, a) = log ξQ(0, a) − ∑
ρa∈ZQ

∞
∑
m=1

1
mρm sm .

From the functional equation for the function ξQ(s, a), in the neighborhood of s = 0,
we have

ξ′Q
ξQ
(s + 1, a) = −

ξ′Q
ξQ
(−s, a) =

∞
∑
m=0
(−1)m ∑

ρa∈ZQ

1
ρm+1 sm .(2.4)

Comparing Equations (2.1)–(2.4), we get

(−1)m ∑
ρa∈ZQ

1
ρm+1 = (−1)m + γQ(m) + τQ(m),

for m ≥ 0. Hence, the definition of λn ,a yields

λn ,a =
n
∑
k=1
(−1)k−1(n

k
) ∑

ρa∈ZQ

1
ρk = 1 +

n
∑
k=1
(n

k
)γQ(k − 1) +

n
∑
k=1
(n

k
)τQ(k − 1),

where

τQ(0) = −
1
2

log π + 1
2

ψ(1/2) and τQ(k − 1) = (−1)k
∞
∑
m=0

1
(2m + 1)k
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using that ψ(z) = −γ − 1
z +∑

∞
k=1

z
k(k+z) . Here, ψ(s) = �

′

�
(s) is the logarithmic

derivative of the Gamma function. Since ψ(1/2) = −γ − 2 log 2, we obtain

λn ,a = 1 − n
2
(log(4π) + γ) +

n
∑
k=2
(−1)k(n

k
)
∞
∑
m=0

1
(2m + 1)k +

n
∑
k=1
(n

k
)γQ(k − 1)

= 1 − n
2
(log(4π) + γ) +

n
∑
k=2
(−1)k(n

k
)(1 − 2−k) ζ(k) +

n
∑
k=1
(n

k
)γQ(k − 1).

The equality above implies Theorem 1.2.

2.3 Proof of Theorem 1.3

Let us note that
n
∑
k=2
(−1)k(n

k
)(1 − 2−k) ζ(k) =

n
∑
k=2
(−1)l(n

k
) ζ(k, 1/2)

2k ,

where ζ(s, a) is the Hurwitz zeta function defined in Section 1.2. With the notation
of Flajolet and Vespas [7, Lines 2–4, p. 70], this is An(1, 2) and which is equal to

n
2

ψ(n) + n (γ − 1
2
+ 1

2
log 2) + o(1),

where the o(1) error term above is exponentially small and oscillating and equal to

1
2
(n

π
)

1/4
exp(−

√
2πn) cos(

√
2πn − 5π

8
) + O (n−1/4e−

√
2πn) .

Then we have

λn ,a =
n
2

log n + n
2
(γ − 1 − log 2π) +

n
∑
k=1
(n

k
)γQ(k − 1) + O(1).

It remains to prove that
n
∑
k=1
(n

k
)γQ(k − 1) = O(

√
n log n).(2.5)

To do so, we follow very closely the lines of the proof of the corresponding result in
[8, Theorem 6.1] or [16, Lemma 3.3] and it will be shortened. We use the following
kernel function:

kn(s) ∶= (1 + 1
s
)

n
− 1 =

n
∑
k=1
(n

k
) 1

sk .

The residue theorem gives
n
∑
k=1
(n

k
)γQ(k − 1) = 1

2iπ ∫C
kn(s)(−

Q′

Q
(s + 1, a)) ds,

where C is a contour enclosing the point s = 0 counterclockwise on a circle of small
enough positive radius. The residue comes entirely from the singularity at s = 0, as
no other singularities lie inside the contour. Let T =

√
n + εn , for some 0 < εn < 1.
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Now we follow very closely the lines in [16, pp. 1106–1107] using that the function
Q′
Q (s, a) satisfies the properties1

Q′

Q
(s, a) = ∑

ρa ; ∣Im(ρa−s)∣<1

1
s − ρa

+ O(log(1 + ∣s∣)),

for −2 < Re(s) < 2 and

∣Q
′

Q
(s + 1, a)∣ = O(log2 T),

for −2 ≤ Re(s) ≤ 2, and we get
n
∑
k=1
(n

k
)γQ(k − 1) = λ−n ,a ,T + O(

√
n log n),

where

λ−n ,a ,T =
∗
∑

ρa∈ZQ ;∣Im(ρa ∣≤T
(1 − (1 − 1

ρa
)

n

) ,

with T =
√

n + εn . For a = 1/2, 1/3, 1/4, 1/6, under the RH, since ∣1 − 1
ρa
∣ = 1 and using

formula of NQ(T) given in Section 1.2, we obtain λn ,a ,T = O(T log T + 1). Therefore,
Equation (2.5) follows from that λ−n ,a ,

√
n = λ−n ,a ,

√
n = O(

√
n log n).

Remark Since 2Q(s, a) ∶= Z(s, a) + P(s, a), from Corollary 2.3 below and [6,
Equation (1.18)], we obtain

γQ(n) =
1
2
(δn(a) +

(−1)n

n!
(ln(a) + ln(1 − a))) ,

where δn(a) = ∣ log a∣n
an! + O(1) and ln(a) are the coefficients in the expansion of

Lis(e2πi a) at s = 1; for a ∉ Z, one has

Lis(e2πi a) =
∞
∑
n=0

(−1)n

n!
ln(a)(s − 1)n .

2.4 Proof of Theorem 1.4

To show Theorem 1.4, we quote the following lemmas from [2, 3].

Lemma 2.1 [3, Theorem 1] We set

(s − 1)ζ(s, a) = 1 +
∞
∑
n=0

γn(a)(s − 1)n+1 , 0 < a ≤ 1.

1These properties are well known for the Riemann zeta function. The proof for the function Q(s, a)
is exactly the same since the Riemann–von Mangoldt formula holds for Q(s, a) (see [14, Proposition 2.5]
or [18, p. 217]).
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Then it holds that

γn(a) =
(−1)n

n!
lim

m→∞

⎛
⎝

m
∑
k=0

logn(k + a)
k + a

− logn+1(m + a)
n + 1

⎞
⎠

.

Lemma 2.2 [2, Equation (26)] Let 0 < a ≤ 1, and let n be a nonnegative integer. Then
one has

ζ(n)(0, a) = ( 1
2
− a)∣ log a∣n − n! + n!a

∞
∑

m=n

∣ log a∣m
m!

+ (−1)n n∫
∞

0

φ(x) logn−1(x + a)
(x + a)2 dx

− (−1)n n(n − 1)∫
∞

0

φ(x) logn−2(x + a)
(x + a)2 dx ,

where φ(x) = ∫
x

0 (y − ⌊y⌋ − 1/2)d y is periodic with period 1 and satisfies 2φ(x) =
x(x − 1) if 0 ≤ x ≤ 1.

By using the lemmas above, we immediately obtain the following.

Corollary 2.3 When a > 0 is sufficiently small,

(s − 1)Z(s, a) = 2 +
∞
∑
n=0

δn(a)(s − 1)n+1 , δn(a) =
∣ log a∣n

an!
+ O(1),

Z(s, a) =
∞
∑
n=1

εn(a)sn , εn(a) = O(∣ log a∣n).

Proof The first formula and estimation are easily proved by Lemma 2.1 (see also [3,
Theorem 2]). For the first integral in Lemma 2.2, one has

∫
1

0

φ(x) logn−1(x + a)
(x + a)2 dx ≪ ∫

1

0

logn−1(x + a)
x + a

dx = O(∣ log a∣n),

∫
∞

1

φ(x) logn−1(x + a)
(x + a)2 dx ≪ ∫

∞

1

logn−1(x + a)
(x + a)2 dx = O(1)

from x < x + a when x , a > 0. In addition, we have

a
∞
∑

m=n

∣ log a∣m
m!

≤ a
∞
∑
m=0

∣ log a∣m
m!

= ae∣ log a∣ = ae− log a = 1, 0 < a < 1/2.

Hence, we obtain

ζ(s, a) =
∞
∑
n=0

ζ(n)(0, a)
n!

sn , ζ(n)(0, a) = O(∣ log a∣n).

Therefore, we have εn(a) = O(∣ log a∣n) and the second formula in this corollary by
the definition of Z(s, a) and Z(0, a) = ζ(0, a) + ζ(0, 1 − a) = 0 (see [15, Equation
(4.11)]). ∎
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Proof of Theorem 1.4 Recall the functional equation

Z(1 − s, a) = �cos(s)P(s, a), �cos(s) ∶=
2�(s)
(2π)s cos(πs

2
)

(see [15, Lemma 4.11]). By using �cos(s)�cos(1 − s) = 1, we have

2Q(s, a) = Z(s, a) + P(s, a) = Z(s, a) + �cos(1 − s)Z(1 − s, a).

Let ∣s − 1∣ be sufficiently small. Then, by lims→1(s − 1)Q(s, a) = 1, the equation above,
and the definitions of Q(s, a) and ξQ(s, a), we have

d l

ds l [s
l−1 log ξQ(s, a)]s=1 =

d l

ds l [s
l−1 log ((s − 1)Q(s, a)) + s l−1 log (sπ−s/2�(s/2))]

s=1

= d l

ds l [s
l−1 log( s − 1

2
(Z(s, a) + �cos(1 − s)Z(1 − s, a)))]

s=1
+ O l(1)

= d l

ds l [s
l−1 log(1 +

∞
∑
n=0
(δ′n(a) + ε′n(a))(s − 1)n+1)]

s=1
+ O l(1),

where δ′n(a) and ε′n(a) are defined by

δ′n(a) ∶=
δn(a)

2
, (s − 1)�cos(1 − s)Z(1 − s, a) = 2

∞
∑
n=0

ε′n(a)(s − 1)n+1 .

Clearly, the second estimation in Corollary 2.3 implies

Z(1 − s, a) =
∞
∑
n=1

εn(a)(1 − s)n , εn(a) = O(∣ log a∣n).

Thus, we can see that ε′n(a) = O(∣ log a∣n+1) from lims→1(s − 1)�cos(1 − s) = −2 and
the fact that the function (s − 1)�cos(1 − s) does not depend on a. Put ηn(a) ∶=
δ′n(a) + ε′n(a). Then, for n ≥ 0, we have

ηn(a) =
1

n!
∣ log a∣n

2a
+ O(∣ log a∣n+1), a → +0(2.6)

by Corollary 2.3. By virtue of

(a0x + a1x2 + a2x3 +⋯)m = am
0 xm + (m

1
)am−1

0 a1xm+1 +⋯

(a0x + a1x2 + a2x3 +⋯)m−1 = am
0 xm−1 + (m − 1

1
)am−2

0 a1xm +⋯

⋮
(a0x + a1x2 + a2x3 +⋯)1 = ⋯ + am xm +⋯,

where m ∈ N and am , x ∈ C, the coefficient of (s − 1)l in the function

f (s, a) ∶=
∞
∑
m=1

(−1)m+1

m
⎛
⎝
∞
∑
n=0

ηn(a)(s − 1)n+1⎞
⎠

m
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is expressed as

(−1)l+1

l
(η0(a))

l + (−1)l

l − 1
(l − 1

1
)η0(a)l−2η1(a) +⋯ +

(−1)1+1

1
η l−1(a).(2.7)

Note that the function above is estimated by

(−1)l+1

l
(η0(a))

l + O l(η0(a)l−2η1(a)) =
(−1)l+1

l
(2a)−l + O l(a1−l ∣ log a∣)(2.8)

from (2.6) when a → +0. We can find that

(s − 1)(Z(s, a) + �cos(1 − s)Z(1 − s, a)) = 1 +
∞
∑
n=0

ηn(a)(s − 1)n+1

is analytic when ∣s − 1∣ < 1 form the poles of Z(s, a) and �cos(1 − s). So we can choose
∣s − 1∣ > 0 such that

∞
∑
n=0
∣ηn(a)∣∣s − 1∣n+1 < 1

2
.

Then, from (2.7), the Leibniz product rule, the definition of ηn(a), and the Taylor
expansion of log(1 + x) with ∣x∣ < 1, one has

d l

ds l [s
l−1 log ξQ(s, a)]

s=1
= d l

ds l [s
l−1 f (s, a)]

s=1
+ O l(1)

= (l
l
)(−1)l+1

l
l !(η0(a))

l + O l(η0(a)l−2η1(a))(♭)

+ ( l
l − 1

)(l − 1)(−1)l

l − 1
(l − 1)!(η0(a))

l−1 + O l(η0(a)l−3η1(a))(♮)

+⋯+ (l
1
)(l − 1)!(−1)1+1

1
(η0(a))

1 + O l(1).(♯)

Note that (♭) comes from f (l)(s, a), (♮) is deduced by f (l−1)(s, a), and (♯) derives from
f (1)(s, a), f (0)(s, a), and O l(1) in the left-hand side of the formula above. Therefore,
by (2.8), we obtain

d l

ds l [s
l−1 log ξQ(s, a)]

s=1
= (−1)l+1(l − 1)!(η0(a))

l + O l(η0(a)l−2η1(a))

= (−1)l+1 (l − 1)!
(2a)l + O l(a1−l ∣ log a∣),

which implies Theorem 1.4. ∎

At the end of the paper, we give numerical computation for λn ,a by Mathematica
13.0. Let

λ[k]n ,a ∶=
1

(n − 1)!
dn

dsn [s
n−1 log ξQ(s, a)]s=1−10−k , λ∗n ,a ∶=

(−1)n+1

(2a)n .

Then, we have the following.
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For n = 1, we have

a ∶= 2−17 λ[10]
1,a = 65, 537... λ[10]

1,a /λ∗1,a = 1.00001...
a ∶= 2−18 λ[10]

1,a = 131, 074... λ[10]
1,a /λ∗1,a = 1.00002...

a ∶= 2−19 λ[10]
1,a = 262, 151... λ[10]

1,a /λ∗1,a = 1.00003...
a ∶= 2−17 λ[11]

1,a = 65, 536.6... λ[11]
1,a /λ∗1,a = 1.00001...

a ∶= 2−18 λ[11]
1,a = 131, 073... λ[11]

1,a /λ∗1,a = 1.00001...
a ∶= 2−19 λ[11]

1,a = 262, 145... λ[11]
1,a /λ∗1,a = 1.00000...

a ∶= 2−17 λ[12]
1,a = 655, 365... λ[12]

1,a /λ∗1,a = 1.00001...
a ∶= 2−18 λ[12]

1,a = 131, 073... λ[12]
1,a /λ∗1,a = 1.00000...

a ∶= 2−19 λ[12]
1,a = 262, 145... λ[12]

1,a /λ∗1,a = 1.00000...

For n = 2, we have

a ∶= 2−17 λ[10]
2,a = −4.29352... × 109 λ[10]

2,a /λ∗2,a = 0.999663...
a ∶= 2−18 λ[10]

2,a = −1.7177... × 1010 λ[10]
2,a /λ∗2,a = 0.999836...

a ∶= 2−19 λ[10]
2,a = −6.87162... × 1010 λ[10]

2,a /λ∗2,a = 0.999952...
a ∶= 2−17 λ[11]

2,a = −4.29478... × 109 λ[11]
2,a /λ∗2,a = 0.999956...

a ∶= 2−18 λ[11]
2,a = −1.71753... × 1010 λ[11]

2,a /λ∗2,a = 0.999736...
a ∶= 2−19 λ[11]

2,a = −6.87149... × 1010 λ[11]
2,a /λ∗2,a = 0.999933...

a ∶= 2−17 λ[12]
2,a = −4.29477... × 109 λ[12]

2,a /λ∗2,a = 0.999955...
a ∶= 2−18 λ[12]

2,a = −1.6911... × 1010 λ[12]
2,a /λ∗2,a = 0.984353...

a ∶= 2−19 λ[12]
2,a = −6.87187... × 1010 λ[12]

2,a /λ∗2,a = 0.999989...
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