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AN APPLICATION OF ULTRAPRODUCTS TO 
LATTICE-ORDERED GROUPS 

A. M. W. GLASS 

Using ultraproducts, N. R. Reilly proved that if G is a representable 
lattice-ordered group and J is an independent subset totally ordered by <, 
then the order on G can be extended to a total order which induces < on J 
(see [5]). In [4], H. A. Hollister proved that a group G admits a total order 
if and only if it admits a representable order and, moreover, every lattice-
order on a group is the intersection of right total orders. The purpose of this 
paper is to provide a partial converse, viz: if G is a lattice-ordered group and J 
is an independent subset totally ordered by <, then the order on G can be 
extended to a right total order which induces < on J. In view of the above 
remarks, this is the best generalization of Reilly's result. The method of proof 
uses ultraproducts together with the idea used by H. A. Hollister in [4] and 
P. F. Conrad in [2] in his existence theorem for free lattice-ordered groups 
over a p.o. group. 

For background material, see [1] and [3]. 

Notation and proof. Let G be a p.o. group with identity e. G+ = G\{e} 
and G* = {g £ G : g > e}. If g Ç Gf and G is a lattice-ordered group, then 
there exists a convex /-subgroup of G maximal with respect to missing g. Such 
a convex /-subgroup is said to be a value of g in G. If G is a lattice-ordered 
group and I Ç G , then 0(X) will denote the /-ideal of G generated by X. If, 
in addition, X is a convex /-subgroup of G, R(X) will denote the set of right 
cosets of X in G. J C G* is said to be independent if and only if for all j 6 / , 
; Ç? 0(J\{j}). Sa(J) will denote the set of finite subsets of J. 

THEOREM. Let G be a lattice-ordered group and J an independent subset of G 
totally ordered by < . There exists a right total order on G which extends the lattice 
order and induces < on J. 

Proof. Let g (z J. Then g Ç? 0(J\{g}). Hence there exists a value Cg of 
g which contains 0(J\{g}). For g 6 G*\J, choose any value Cg of g. Let 
T0 = R(Cg) be ordered by: Cgx ^ Cg if and only if there exists y £ Cg such 
that x ^ y. Each Tg is a totally ordered set. Let T = U {Tg : g Ç G*}. 

Let i G I = SU(J), say i = \gh . . . , £»} where gi < . . . < gn. Well-order 
G V = B- Now well-order G by extending the order on B by: 

h <' g! < r . . . <' gn 
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for each h G B. This induces a total ordering on T, namely: h < h if and only if 
h G Tfl, h G Th a n d / i < 7 2 o r / i = f2 and fc < *2 (in Tfl). Let 4 ( r ) be the 
set of all order-preserving permutations of the totally ordered set T. Let 
4>t : G —> i4 ( r ) be given by: (Qy)(g0*) = Cxyg for all x f G f and 31 G G. 
For each g G G , well-order Tg, say by < 1. This gives rise to a well-ordering < 1 
of r , namely: /1 < i £2 if and only if tx G Tfl, t2 G r / 2 and /1 < ' / 2 or /1 = /2 
and /1 < i / 2 (in r A ) . Define A(T)* by: A € A (T)* if and only if /ft > * 
where / is the least element (with respect to < i ) of {s G T" : sh 9^ s\. Then 
A(T) is a right totally ordered group, 4>t is an o-homomorphism and 
e < gi<t>i < . . . < gn<t>i' Moreover, 0* is 1-1 and onto Gt = G<i>t. 

Let D be a regular ultrafilter on I and H = D-prod XiG*. i7 is a right 
totally ordered group when ordered by: fc~ > e if and only i f { i C / : / z ; > e } CD 
(the order is total since {i d I : ht ^ e} \J {i £ I : ht ^ e} = I G D). 
Define 4> : G -^ H by: if g# = /~, then f ~k where &̂  = gcfri for all i Ç / . 
<£ is an 0-homomorphism of G onto G$ which is 1-1 and if j , f G / and 7 -< / , 
then j<j> < jf4> since {i £ I : j4>% < j'<t>i) S j ' H / G .D where j = {2 G / : j G i]. 

Suppose that independence had been defined as follows: let G be a lattice-
ordered group and I Ç G . C(X) will denote the convex /-subgroup of G 
generated by X. J CZ G* is said to be independent if and only if for all j G / , 
7 g C(/\{j}). The proof of the theorem goes through with this weaker defini
tion of independence. 

It should be noted that this application of ultraproducts is the same as that 
in a proof of the compactness theorem for first order theories and is closely 
related to that theorem. 
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