AN APPLICATION OF ULTRAPRODUCTS TO LATTICE-ORDERED GROUPS

A. M. W. GLASS

Using ultraproducts, N. R. Reilly proved that if G is a representable lattice-ordered group and J is an independent subset totally ordered by \prec , then the order on G can be extended to a total order which induces \prec on J (see [5]). In [4], H. A. Hollister proved that a group G admits a total order if and only if it admits a representable order and, moreover, every lattice-order on a group is the intersection of right total orders. The purpose of this paper is to provide a partial converse, viz: if G is a lattice-ordered group and J is an independent subset totally ordered by \prec , then the order on G can be extended to a right total order which induces \prec on J. In view of the above remarks, this is the best generalization of Reilly's result. The method of proof uses ultraproducts together with the idea used by H. A. Hollister in [4] and P. F. Conrad in [2] in his existence theorem for free lattice-ordered groups over a p.o. group.

For background material, see [1] and [3].

Notation and proof. Let G be a p.o. group with identity e. $G^{\dagger} = G \setminus \{e\}$ and $G^* = \{g \in G : g > e\}$. If $g \in G^{\dagger}$ and G is a lattice-ordered group, then there exists a convex *l*-subgroup of G maximal with respect to missing g. Such a convex *l*-subgroup is said to be a *value* of g in G. If G is a lattice-ordered group and $X \subseteq G$, then O(X) will denote the *l*-ideal of G generated by X. If, in addition, X is a convex *l*-subgroup of G, R(X) will denote the set of right cosets of X in G. $J \subseteq G^*$ is said to be *independent* if and only if for all $j \in J$, $j \notin O(J \setminus \{j\})$. $S_{\omega}(J)$ will denote the set of finite subsets of J.

THEOREM. Let G be a lattice-ordered group and J an independent subset of G totally ordered by \prec . There exists a right total order on G which extends the lattice order and induces \prec on J.

Proof. Let $g \in J$. Then $g \notin O(J \setminus \{g\})$. Hence there exists a value C_g of g which contains $O(J \setminus \{g\})$. For $g \in G^{\dagger} \setminus J$, choose any value C_g of g. Let $T_g = R(C_g)$ be ordered by: $C_g x \ge C_g$ if and only if there exists $y \in C_g$ such that $x \ge y$. Each T_g is a totally ordered set. Let $T = \bigcup \{T_g : g \in G^{\dagger}\}$.

Let $i \in I = S_{\omega}(J)$, say $i = \{g_1, \ldots, g_n\}$ where $g_1 \prec \ldots \prec g_n$. Well-order $G^{\dagger} \setminus i = B$. Now well-order G^{\dagger} by extending the order on B by:

$$h <' g_1 <' \ldots <' g_n$$

Received September 28, 1971.

for each $h \in B$. This induces a total ordering on T, namely: $t_1 < t_2$ if and only if $t_1 \in T_{f_1}, t_2 \in T_{f_2}$ and $f_1 <' f_2$ or $f_1 = f_2$ and $t_1 < t_2$ (in T_{f_1}). Let A(T) be the set of all order-preserving permutations of the totally ordered set T. Let $\phi_i: G \to A(T)$ be given by: $(C_x y)(g\phi_i) = C_x yg$ for all $x \in G^{\dagger}$ and $y \in G$. For each $g \in G^{\dagger}$, well-order T_{θ} , say by $<_1$. This gives rise to a well-ordering $<_1$ of T, namely: $t_1 <_1 t_2$ if and only if $t_1 \in T_{f_1}, t_2 \in T_{f_2}$ and $f_1 <' f_2$ or $f_1 = f_2$ and $t_1 <_1 t_2$ (in T_{f_1}). Define $A(T)^*$ by: $h \in A(T)^*$ if and only if th > t where t is the least element (with respect to $<_1$) of $\{s \in T : sh \neq s\}$. Then A(T) is a right totally ordered group, ϕ_i is an θ -homomorphism and $e < g_1\phi_i < \ldots < g_n\phi_i$. Moreover, ϕ_i is 1-1 and onto $G_i = G\phi_i$.

Let *D* be a regular ultrafilter on *I* and H = D-prod λiG_i . *H* is a right totally ordered group when ordered by: $h^{\sim} > e$ if and only if $\{i \in I : h_i > e\} \in D$ (the order is total since $\{i \in I : h_i \ge e\} \cup \{i \in I : h_i \le e\} = I \in D$). Define $\phi: G \to H$ by: if $g\phi = f^{\sim}$, then $f \sim k$ where $k_i = g\phi_i$ for all $i \in I$. ϕ is an *o*-homomorphism of *G* onto $G\phi$ which is 1-1 and if $j, j' \in J$ and j < j', then $j\phi < j'\phi$ since $\{i \in I : j\phi_i < j'\phi_i\} \supseteq \hat{j} \cap \hat{j}' \in D$ where $\hat{j} = \{i \in I : j \in i\}$.

Suppose that independence had been defined as follows: let G be a latticeordered group and $X \subseteq G$. C(X) will denote the convex *l*-subgroup of G generated by X. $J \subseteq G^*$ is said to be *independent* if and only if for all $j \in J$, $j \notin C(J \setminus \{j\})$. The proof of the theorem goes through with this weaker definition of independence.

It should be noted that this application of ultraproducts is the same as that in a proof of the compactness theorem for first order theories and is closely related to that theorem.

References

- 1. C. C. Chang and H. J. Keisler, Model theory (to be published).
- 2. P. F. Conrad, Free lattice-ordered groups, J. Algebra, 16 (1970), 191-203.
- W. C. Holland, The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399-408.
- 4. H. A. Hollister, *Contributions to the theory of partially ordered groups*, Ph.D. thesis, University of Michigan, Ann Arbor, 1965.
- 5. N. R. Reilly, Some applications of wreath products and ultraproducts in the theory of lattice ordered groups, Duke Math. J. 36 (1969), 825–834.

Bowling Green State University, Bowling Green, Ohio