ON THE STRUCTURE OF TAME NEAR-RINGS

H. HEATHERLY and G. PILZ

(Received 21 July 1989)

Communicated by B. J. Gardner

Abstract

Tame near-rings form an important class of near-rings. They have the common feature that all N-subgroups in a faithful N-group are ideals. Tame near-rings can be very close to and very far from rings. Most of the important classes of distributively generated near-rings and all 2-semisimple near-rings are examples of tame near-rings.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 76.

If a near-ring N is tame on some N-group T then T is of type 2 if and only if it is of type 0. Hence it might make sense to ask if for tame near-rings these types 0 and 2 coincide on all N-groups. The answer is "yes", if a quite general condition is fulfilled, but we give a counterexample in the other case.

DEFINITIONS. Let N be a right zero-symmetric near-ring, and let T be an N-group. Then T is said to be *tame* if every N-subgroup of T is an ideal of T. If, moreover, T is faithful then N is said to be *tame* on T.

For more on tame near-rings, see the papers cited in the references. Now we are going to study the behaviour of a tame near-ring on some (other) N-group Γ . For this, we need a slight generalization of a result of G. Betsch [1, 3.4(i)].

LEMMA. Let N be a zero-symmetric near-ring, Γ an N-group with $\Gamma=N\gamma_0$ for some γ_0 in Γ , and L_1 , L_2 be left ideals of N such that $L_1+(0:\gamma_0)=L_2+(0:\gamma_0)=N$, but $L_1\cap L_2\subseteq (0:\gamma_0)$. Then $N/(0:\Gamma)$ is a ring.

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

This follows easily from [1, 3.14(a) and 3.4(i)], applied to Γ as an $N/(0:\Gamma)$ -group.

DEFINITION. Let T and Γ be N-groups. Then T is said to be *subversive* to γ_0 in Γ if $N\gamma_0 = \Gamma$ and there is a family $(\tau_\alpha)_{\alpha \leq \lambda}$ in T such that λ is a limit ordinal and $\bigcap_{\alpha \leq \beta} (0:\tau_\alpha) \nsubseteq (0:\gamma_0)$ for all $\overline{\beta} < \lambda$, but $\bigcap_{\alpha \leq \lambda} (0:\tau_\alpha) \subseteq (0:\gamma_0)$.

Since all $(0: \tau_{\alpha})$ (and their intersections) are left ideals in N, we get

PROPOSITION. If N has the descending chain condition on left ideals then no N-group can be subversive.

THEOREM. Let N be a zero-symmetric near-ring, T be a tame N-group and let $\Gamma = N\gamma_0$ be of type 0. If $(0:T) \subseteq (0:\gamma_0)$ and if T is not subversive to γ_0 then Γ is of type 2.

PROOF. Case (i): $(0:\tau_0)\subseteq (0:\gamma_0)$ holds for some $\tau_0\in T^*=T-\{0\}$. Then $h\colon N\tau_0\to \Gamma=N\gamma_0$, $n\tau_0\to n\gamma_0$, is a well-defined N-epimorphism. Also, $N\tau_0$ is tame. By [1, 9.171], $N\tau_0/\operatorname{Ker} h$ (which is N-isomorphic to Γ) is tame. Hence Γ is tame and thus of type 2.

Case (ii): not (i). Then $(0:\tau) \nsubseteq (0:\gamma_0)$ holds for all $\tau \in T^*$.

Case (a): there is no $\Sigma \subset T^*$ such that $(0:\Sigma) \subseteq (0:\gamma_0)$,

$$L_1:=(0\colon\ T-\{\tau\})\nsubseteq(0\colon\gamma_0)\,,\quad L_2:=(0\colon\ \tau)\nsubseteq(0\colon\ \gamma_0)\,,$$

but

$$L_1 \cap L_2 = (0: T) \subseteq (0: \gamma_0)$$
 for each $\tau \in T^*$.

Since Γ is of type 0 and $N/(0:\gamma_0)\cong_N\Gamma$, $(0:\gamma_0)$ is a maximal left ideal in N. Hence $L_i+(0:\gamma_0)=N$ for i=1,2. By the lemma, $N/(0:\Gamma)$ is a ring. Case (b): there exists some $\Sigma\subset T^*$ with $(0:\Sigma)\subseteq (0:\gamma_0)$. Let $\Sigma=\{\sigma_\alpha|\alpha\in A\}$ and let A be well-ordered. Hence $\Sigma=\{\sigma_0,\sigma_1,\ldots\}$. Let ω be the ordinal of A. Take some $\tau\in T^*-\Sigma$ and add τ to Σ as $\tau=\sigma_\omega$ (=last element of $\overline{\Sigma}:=\Sigma\cup\{\tau\}$). Then again $(0:\overline{\Sigma})\subseteq (0:\gamma_0)$ and $\overline{\Sigma}=\{\sigma_\alpha|\alpha\le\omega\}$. Take $B:=\{\alpha\in A|\bigcap_{i\le\alpha}(0:\sigma_i)\subseteq (0:\gamma_0)\}$. Since $\omega\in B$, $B\neq\varnothing$ and hence B contains a smallest element β_0 . Take $L_1:=\bigcap_{\alpha<\beta_0}(0:\sigma_\alpha)$ and $L_2:=(0:\sigma_{\beta_0})\nsubseteq (0:\gamma_0)$. If β_0 is not a limit ordinal then $L_1=\bigcap_{\alpha\le\beta_0-1}(0:\sigma_\alpha)\nsubseteq (0:\gamma_0)$ and we might proceed as in (a) to show that $N/(0:\Gamma)$ is a ring. If β_0 is a limit ordinal, however, the family $(\sigma_\alpha)_{\alpha\le\beta_0}$ is subversive to γ_0 , a contradiction.

Hence in both cases (a) and (b), we know that $N/(0:\Gamma)$ must be a ring. Let Δ be an N-subgroup of Γ . We want to show that Δ is an ideal of Γ . For this, take $\delta = d\gamma_0 \in \Delta$, $\gamma = n\gamma_0 \in \Gamma$ and $A := (0:\Gamma)$.

(1) (N/A, +) is abelian, so $n + d - n \equiv d \pmod{A}$. Thus $\gamma + \delta - \gamma = n\gamma_0 + d\gamma_0 - n\gamma_0$ $= (n + d - n)\gamma_0 = d\gamma_0 + a\gamma_0 \quad \text{(for some } a \in A)$ $= d\gamma_0 = \delta.$

Hence Γ is abelian and Δ is normal.

If $n' \in N$ then a similar argument shows that

$$n'(\gamma + \delta) - n\gamma = (n'(d+n) - n'n)\gamma_0 = n'd\gamma_0 = n'\delta \in \Delta.$$

Hence Δ is an ideal in Γ and hence trivial.

This shows that Γ is of type 2.

The subversity-condition in the theorem cannot be omitted.

EXAMPLE. Let N be the near-ring of all analytic functions from $\mathbb C$ into $\mathbb C$ which have an (everywhere) convergent power series expansion at 0 with only real coefficients. Take $\Gamma = \mathbb C$ and $\Delta = \mathbb R$.

- (i) N can easily be seen to be 2-primitive on Δ (1 can serve as a generator; if E would be a non-trivial N-subgroup, take $\varepsilon \in E^*$, $\delta \notin E$, $n = \delta z/\varepsilon$, then $n(\varepsilon) = \delta \notin E$). Also, if n is zero on Δ , n = 0.
- (ii) Therefore, N is tame on Δ , too.
- (iii) Γ is an N-group of type 0: as γ_0 we might take $i=\sqrt{-1}$, since if $a+bi\in\mathbb{C}$ and $n=bz-az^2$ then n(i)=a+bi. If Θ is an ideal of Γ then all $n(\gamma+\Theta)-n(\gamma)$ must be contained in Θ for $\gamma\in\Gamma$ and $\theta\in\Theta$. Take $n=e^z$. Then

$$n(\gamma + \theta) - n(\gamma) = e^{\gamma + \theta} - e^{\gamma} = e^{\gamma}(e^{\theta} - 1) \in \Theta.$$

If $\theta \neq 0$, it is always possible to get $e^{\gamma}(e^{\theta} - 1)$ to be any value in \mathbb{C} . Hence θ must be trivial.

- (iv) N is even 0-primitive on Γ , but Γ is not of type 2, since it has Δ as a non-trivial N-subgroup.
- (v) $T = \Delta$ is subversive to $\gamma_0 = i$. To see this, take $\tau_k = k^{-1}$ $(k \in \mathbb{N})$. Each $\bigcap_{k=1}^m (0:\tau_k) \nsubseteq (0:i)$, since, for example, $n = \prod_{k=1}^m (z \tau_k)$ belongs to $\bigcap_{k=1}^m (0:\tau_k)$, but not to (0:i). But $\bigcap_{k=1}^\infty (0:\tau_k) = 0$, since any n in this intersection has a non-isolated pole, something an analytic function cannot have.
- (vi) $(0:\gamma_0) = (0:i) \neq 0$, since, for example, $n = z^2 + 1 \in (0:i)$.

COROLLARY. Let N be zero-symmetric and tame on T. If T is not subversive to any γ_0 in some N-group Γ then Γ is of type 0 if and only if it is of type 2.

COROLLARY. Let N be zero-symmetric, tame, and with the descending chain condition on left ideals. Then any N-group of type 0 is of type 2, the J_0 - and the J_2 -radicals coincide, and $J_2(N)$ is nilpotent.

Compare this corollary to [1, 9.188]. Some interesting problems remain open.

Open problems. (i) Find a tame near-ring such that its J_0 - and J_2 -radicals do not coincide.

(ii) If I is an ideal of N, such that I and N/I are tame, is N then necessarily tame, too?

Acknowledgement

This work was done while the second author was a Visiting Professor at the Department of Mathematics at the University of Southwestern Louisiana. He expresses his gratitude for the hospitality he received there, especially from Professor Blumberg.

References

- [1] Günter Pilz, Near-rings, (North-Holland, Amsterdam, 1983, 2nd ed.).
- [2] Stuart D. Scott, Tame theory, (Amo Publ. Co., Univ. Auckland, New Zealand).

University of Southwest Louisiana Lafayette, Louisiana 70504 U.S.A. Institut für Mathematik Universität Linz A-4040 Linz Austria