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1. Introduction 

The term accretion originally referred, in astronomical contexts, to the capture of mass 
by stars, and, later, to mass capture by other centers of gravitational force. As such, 
the process has not proved to be of general importance, in spite of early hopes. How­
ever, there are other aspects of the problem which may yet prove worthy of attention 
in interstellar gas dynamics. In particular, the effects of stars, galaxies, or even clusters 
of galaxies, on ambient matter streaming by them may be detectable, directly or indi­
rectly, and it is on such possible effects that I shall concentrate here. These effects 
are related to the original accretion problem but may be thought of separately; never­
theless, I retain the use of the term accretion to refer to all aspects of the motions 
induced in an ambient medium by a gravitating object. 

In a certain sense, a disturbing gravitating object can be thought of as a probe 
which may be of use in the diagnostics of the ambient medium. However, the distinc­
tion from plasma probes is that we concentrate here more on the effects produced in 
the medium than on the response of the probe. Anyone who wishes to go deeply into 
the subject would do well to study the literature on plasma probes. In the list of refer­
ences, I give a sampling of seven papers. f But here, I shall only go into the astronom­
ical literature, which provides a suitable introduction. 

2. Traditional Theory 

To provide a background to the fluid dynamical problems, I should like to mention 
briefly some of the early work on the traditional accretion process. A detailed review 
has been given by Lyttleton (1953) and it is not necessary to go into details. The 
simplest case to consider is that of a stationary star embedded in a uniform medium. 
Bondi (1952) gave a gas dynamical treatment of this problem, the equations of which 
are now familiar since they are essentially those of Parker 's solar wind theory (1958). 
Bondi found the rate of accretion 

(2GM\2 

A = Xn\ — J - I Q0c ( 1 ) 

where M is the mass of the star, c is the speed of sound in the medium whose density 

* During the Symposium this Report was presented later than its present location suggests. (Ed.) 
t These are marked with asterisks in the bibliography. 
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infinitely far from the star is g 0 , and where X is a pure number which varies from 0.25 
to 1.1 as the ratio of specific heats, y, varies from \ to 1. For Q 0 & 1 0 " 2 4 g e m " 3 , M= 
M Q , c— \ km sec" 1 , we find that A&5x 1 0 " 1 2 M o y r " 1 , which indicates that under 
normal conditions, spherically symmetric accretion is not a significant process. Of 
course, one can imagine extreme situations where accretion is more important, but 
they may also involve rather different conditions than contemplated here. Moreover, 
the Bondi theory does not delve into the physical conditions at the surface of the star, 
which can make a serious difference. Some additional work along these lines was done 
by Mestel (1954) who found that unless the ambient medium is dense enough, the 
H I I region around the star will prevent any rapid accretion; he finds the critical den­
sity to be 10 3 c m " 3 for 1.75 M 0 . This would seem to preclude accretion by early-
type stars. Late-type stars, on the other hand, would be expected to have strong winds, 
thus they too would not be likely to accrete. However, we might still consider a small 
accumulation of matter in a shell around the star, where the wind and accretion inflow 
bring one another to rest. Such a shell is probably unstable and I do not know whether 
there would be any observable effects. 

A more extensive literature exists on the capture of mass by stars moving with 
respect to the ambient medium. The simplest case is that in which the medium is cold, 
uniform, collisionless, and non-gravitating, and the star moves uniformly through it. 
In the frame of the star a gas particle has the orbit 

1 R A , X 1 
= - 2 (1 + cos a) + sin a , (2) 

q 2s s 

where q is distance from the star, a is the angle measured from the downstream 
symmetry axis, or accretion axis, s is the impact parameter, and 

RA = 2GM/V^ (3) 

where V0 is the velocity at upstream infinity (see Figure 1). It is easy to see that the 

Fig. 1. Illustrating the notation, s is impact parameter; sc is the critical impact parameter of 
Equation (5). Coordinates (q, a) are used in this section. Coordinates (r, 6) are introduced in Section 3 . 
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smallest value of q for given s is 

qmin = 2s2/[RA+(R2

A + 4s2y/2]. (4) 

This formula can be used to determine whether the particle can strike the surface of 
the star, whose radius is R. We readily find that particles for which 

S ^ 5 C E E \R{R + RA)-\112 (5) 

strike the star. If we assume that all such particles are captured, we then obtain the 
accretion rate 

A = ns2Q0V0. (6) 

With the same assumptions as above, and with R = RQ and Fo = 1 0 k m s e c _ 1 we 
obtain 7 ^ = 7 x 1 0 1 4 c m a n d ^ = 1 0 _ 1 8 M o y r - 1 . 

Lyttleton (1953) has argued that inelastic collisions among the streaming particles 
could lead to an enhanced rate of accretion. The argument is based on the recognition 
that if the incident gas is cold, a large density develops on the accretion axis. In the 
limit of zero temperature, the density distribution becomes 

e w , « ) = iQoCsc - I ~~- + sin - I 

~RA 2 a a (RA 2 a \ 1 / 2 l 
x ^ . + sin 2 + s i „ 2 | 7 + s i n ^ j , (7) 

where the contribution of particles which have already crossed the axis is neglected. 
(For a detailed discussion of the density distribution see Danby and Camm, 1957.) 
We see that for a = 0, g = oo; the fact that in this flow rings of gas squeeze down into 
points on the axis is associated with the singular behavior of Q. Hoyle and Lyttleton 
argued that in this high density region, inelastic collisions will occur and annihilate 
the transverse momentum of the particles. The downstream velocity is approximately 
conserved, and particles which cross the axis close enough to the star move too 
slowly to escape and are accreted. By conservation of angular momentum we find 
that if no collisions occur, the a-velocity of a particle is 

v* = -sV0lq, (8) 

while energy conservation implies that its velocity is 

« 2 \ 
(9) 

From Equation (2) we see that the particle crosses the accretion axis (a = 0) at a 
distance q = s2/RA from the star so that at a = 0, vq= V0, for all particles. Thus particles 
which cross the axis at distances less than about RA from the star, on having their 
a-momenta destroyed in collisions, will be below escape velocities. From Equation 
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(2) we see that a particle for which q = RA at a = 0 has s = RA, so that we obtain an 
accretion rate 

A « nRAg0 V0, (10) 

which exceeds the estimate of Equation (6) by a factor of about RA/R0, but still does 
not give encouragement. 

The theory has been further elaborated in the particle picture by Bondi and Hoyle 
(1944; see also Lyttleton, 1953) and a picture of the flow in a wake of free particles 
has been developed. However, the estimated capture rate is not appreciably modified. 
Various details of these calculations have been cause for debate, and a list of some of 
the more important papers is given in a brief review by McCrea (1955). 

Here I want to mention what appears to be the most serious objection, which has 
been raised by Danby and Camm (1957) and Danby and Bray (1967). These authors 
have considered the effect of a finite temperature on the density distribution in the wake 
of a star and have shown how the singular behavior near the axis is averted. Under typ­
ical interstellar conditions, they contend, the density is lowered sufficiently so that col­
lisions will not be important, and they conclude that the mechanism of Hoyle and 
Lyttleton will not operate. On the other hand, they do not include self-interaction of 
the gas either through plasma effects or gravitation, and it seems likely that such 
effects will be of importance. Just what the details of the motion become then is not 
clear, but if we consider that different 'streams' interpenetrate as they cross the axis, 
we might speculate on the possibility of collective instabilities which perhaps act 
like collisions. Whether the collective energy resulting from instabilities is carried 
away in waves or results in plasma instabilities probably depends on the Mach 
number, but there does seem to be a case for treating the region near the accretion 
axis as a continuum to gain some impression of the general nature of the flow. At any 
rate, with only these vague assurances, I shall devote the rest of this discussion to a 
gas dynamical discussion of accretion processes. 

3. Linearized Gas Dynamics 

The treatment of the gas dynamics of a flow past a center of gravitational force is 
sufficiently difficult that some drastic approximations have been made in this subject. 
One quite tempting, but not necessarily justifiable, approach is linearization, in which 
the perturbing body is assumed to produce small deviations from uniformity. This 
approach was used by Dokuchaev (1964) who considered the uniform motion of a 
point mass through a uniform medium; this problem is closely similar to that of the 
motion of a charged satellite moving through a plasma as treated by Kraus and 
Watson (1958). Dokuchaev also considered the effects of a uniform magnetic field 
along the motion and the effects of mass loss from the star; but let us discuss here the 
purely gravitational case, as it stems from the classical problem of the previous section. 
(I shall also mix into the discussion some unpublished results on this problem ob­
tained by Prendergast, Ruderman, and me.) 
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Let the density in the ambient medium be £ = £ 0 + < ^ where Q 0 is a constant and 
I M(?o- Similar remarks apply to the other state variables and it is assumed that 
the gas velocities are small in the stationary frame. We also assume isentropic motion. 
Then, on linearizing the equations of motion and performing the usual manipulations 
of acoustics (Ward, 1955), we obtain the wave equation (Appendix A) 

^ - c2 V 2 ^ = AnGM S(r - V 0 f ) , (11) 

where 
V = S Q / Q 0 9 (12) 

and where c is the speed of sound and S is the Dirac function. This kind of problem 
is very like that of Cherenkov radiation and procedures for solving it are standard 
(Landau and Lifshitz, 1960). If we ignore the homogeneous solutions of Equation 
(12) and consider the forced solution, we obtain for M= V0/c< 1 

RAM2 

W~q(l-M2 s i n 2 a ) 1 / 2 ; ( 1 3 ) 

while for M> 1, 

RAM2 

for a < a rcs in ( l /M) 
q(l - M 2 s i n 2 a ) 1 / 2 v ' ' (14) 

0 for a > arcsin (1 jM). 

These solutions are expressed in the frame of the star, where they are time-independent. 
The supersonic solution has a discontinuity on the Mach cone, which indicates the 
formation of a shock. However, on the cone the density is singular which is a standard 
difficulty in the linear theory of supersonic motion of point sources (Ward, 1955). It 
can be removed by considering a mass of finite size (Huebner and Herring, unpublished 
report). 

If we have the density, we can then find the velocity from the equations of motion. 
In the star's reference frame this gives 

"II = " Vo ~ iRAVo \- - n J . 2 W21 (15) \_q q(l — M sin a) ' J 

[1 + cos a 2 cot a "I 
. _ 7_ 2__^^ 

g s i n a q(l - Mz sin a) 1 J 
behind the shock and 

. 1 + cos a 
= " V0 - iRAV0q~\ u± = iRAV0 : (16) 

q sin a 

ahead of the shock, where w() and u± are the velocities parallel and perpendicular 
to the original uniform flow, V 0 . We see that behind the shock = 0 on the surface 

(</ + WA)2 = , A i . 2 • (17) 1 — M sin a 
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Between the shock cone and this 'accretion' surface, w(| is starwards; while downward of 
the surface, U\\ is downstream. This is in line with what one would expect, but u L has an 
unpleasant feature. Behind the shock u L is negative, whereas ahead it is positive. This 
means that the velocity is into the shock from both sides, and this does not seem to be 
physically meaningful. However, mass is conserved to the accuracy of linear theory and 
to get an idea of the flow we must consider the linearized mass flux: \ 0 ( g 0 + dg) +g0u. 

This gives the flow pattern shown in Figure 2. Mass capture does not occur in this 

2 + 

1 1 1 1 - 1 h 
2 1 0 - 1 - 2 - 3 - 4 

Fig. 2. The mass current as given by linear theory. Unit of length = RA. 

model unless a sink is introduced in the continuity equation; the strength of such a 
sink would have to come from aspects not yet considered, such as conditions on the 
stellar surface. 

Another result of interest from linear theory is the drag, F D , on the body. This 
results from the gravitational force of the disturbed gas on the star. If we calculate 
this drag by Fourier transform techniques we find that the Fourier inversion gives a 
divergent integral, as is usual with Coulombic potentials; indeed the calculations are 
much like those encountered in Cherenkov radiation. As in that problem, the limits of 
integration must arbitrarily be cut off at large and small distance. The long range cut­
off is not needed, however, if the self-interaction of the gas is included, and a sort of 
gravitational shielding occurs. On the other hand, the introduction of self-gravity of the 
gas brings Jeans instability into the problem so that the results with self-gravity are 
only suggestive of what happens. For M= V0/c> 1 and with 

k2j = 4nGg0/c2 (18) 

we find, for M > 1, 

\&AQOV09 (19) F^ = 7 r l n [ ^ ( : 
where R is the stellar radius, introduced as the short range cut-off. 
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4. Galactic Wakes* 

The linear theory gives some inkling of the difficulties involved in the gas dynamics of 
accretion, but it is rather unsatisfactory in many ways, and it seems worthwhile to 
attempt a nonlinear theory. In doing this it is helpful to distinguish two cases R>RA 

and R<RA, where R is the radius of the moving body. For our Galaxy, M&2x 1 0 4 4 

g, and if we assume Vo&200 km s e c " 1 , we find RA&20 kpc which is about the radius 
of the Galaxy. Thus, galaxies belong typically in the class where R>RA. This means 
that gas focused into the wake of a galaxy has already begun to leave the zone of 
gravitational influence, and this permits a simplification of the problem which is 
not usually possible in the stellar case. 

We treat the Galaxy as spherical and its motion as hypersonic so that the upstream 
gas is effectively cold. The gas is also collisionless upstream. We assume that particles 
which strike the Galaxy are absorbed so that no pressure builds up ahead of the 
Galaxy and we may ignore bow shocks. An orbit which just grazes the Galaxy 
crosses the accretion axis at a distance, R0, from the Galaxy (Figure 1), where 

R0 = R(i + ( 5 _ 1 ) , S = RA/R, (20) 

so that R0>2R^2RA. If no collisions occurred, we could completely describe the 
density and velocity fields by means of orbit theory; for our purposes such a de­
scription is most effectively expressed in spherical polar coordinates with origin at 
q = R0, a = 0. Orbits which miss the Galaxy converge conically onto the axis about an 
apex at this point. We introduce spherical polar coordinates (r, 9) and express quan­
tities in this system. Then density [Equation (7)] is quite complicated in these new 
coordinates, but for r<^ R0 it simplifies to 

Q = QoR(l+dy/2l(2rsme), (21) 

while the velocity becomes 

u = V0U + 8(l+6)-l]co$(0 + 0,)t 

v = K 0 [ l + 8(1 + Syl] sin(0 + 6,), K ' 

tan0,. = / T T - . / 2 . (23) 

where u and v are the r- and 0-components and 

3 

(1 +S)1 

This describes the flow near the apex of the convergence onto the axis. We assume 
that this flow encounters a (collisionless) shock and that behind the shock the motion 
obeys the equations of gas dynamics, but that by now we are far enough downstream 
to neglect the gravity. We also treat the flow as adiabatic and steady in the Galaxy's 
frame of reference. Equations (21) and (22) suggest that we look for similarity solutions 

* This section is based on an unpublished MS of M. A. Ruderman and the author, as is Section 5C. 
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of the form 

q = ±Q0(Rlr)f(0)9 p = iQoVZ(Rlr)g(9)9 

u = V0U(9), v=VoV(0). K } 

For adiabatic flow the equations admit such solutions (Appendix B) and we obtain 
a set of ordinary differential equations for £/, V, g, and / . These equations can be 
solved numerically but I will not discuss such solutions here. It suffices to point out 
that near the axis (9< 1) the solutions behave like 

U = W0 [ i - A92(y-1)K2y~1) + -..] , V = - 2y--— 9 +. - , 
2y 

/ = / 0 e - 2 ( r - D / ( 2 , - i ) + . . . s ( 2 5 ) 

' - * 4 , + & ( V ) w , H -

where W0,f0, g09 and A are constants with the constraint 

A=90(J-

fo\y-K 
and where we have assumed K(0) = 0. We see that even in the gas dynamical case the 
density is singular on the axis, as it is in the collisionless case. (For y = l , / i s not 
singular, but Kis.) 

Fig . 3. Solid flow lines indicate the flow sketched from the theory. Dashed lines are the orbits 
which these should join o n t o ; the bow shock is not in the theory but is indicated. 
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The gas flow of Equations (25) must now be matched to the incoming flow with the 
usual conservation conditions for strong shocks, and from this matching we obtain 

V 2y I 2y 3y — 1 

/ A ( 2 6 ) 

w0

2 = l + s2(i + 5)-', / „ = y ± ± j ( i + ay/* 0 ; 
where 0 S is the shock angle. Thus the solution is determined for given S. Figure 3 
shows a typical flow pattern. The picture we have here is only schematic since many 
simplifying assumptions have been built into the calculation, but it shows how one 
might begin to get an idea of which way the flow goes. To do better one should prob­
ably try to integrate the equations numerically, but in view of the uncertainties in the 
plasma effects, perhaps the time for this is not yet ripe. 

5. Some Applications 

Accretion has at times been suggested as the cause of a variety of phenomena including 
heating of the solar corona, X-ray sources, galaxy formation, spiral arm formation, 
comet formation, and novae. I would not like to try to evaluate all of these, and 
instead, will compound the list a bit. 

A. JETS 

We know that a variety of galaxies and quasars reveal jet-like appendages, and we 
might wonder whether these could be accretion wakes. After all, whether you treat 
the accretion flow as collisionless or gas dynamical, you seem to get evidence of jets. 
However, it is unlikely that the ambient medium is anywhere dense enough to give 
rise to an observable galactic jet. On the other hand, the flow we considered in Section 4 
need not be the result of accretion, but simply a portion of a non-spherical collapse or 
implosion. To this extent, the accretion work points a moral. If we want to make a jet 
we must focus momentum. We would not find this easy to do with ordinary explosions, 
but the possibility of jet formation in asymmetric collapse does arise. Thus some 
observed galactic jets might be produced by asymmetric implosions, just as collapsing 
bubbles often produce prolonged jets (Benjamin and Ellis, 1966), and the kind of 
convergent flows considered in accretion theory may be quite relevant to this problem, 
but in a rather different context. 

B. THE TAIL OF BETELGEUSE ( a ORIONIS) 

The star a Orionis shows a jet-like appendage with what looks like a dust core (Mor­
gan et al, 1955). Very little is known except for the picture shown in Figure 4 ; the 
tail just barely shows up on the Sky Survey, but it is highly unlikely that even this 
faint object could be produced by accretion alone. However, the accretion wake might 
be rendered visible if it were seeded by dust escaping from the star, and the following 
picture seems possible. 
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Fig. 4. The Tail of a Orionis: Yerkes Observatory photographs by H. M. Johnson with Meinel 
8 in. fl\ Schmidt camera and H a interference filter; diameter of field, 12° (cf. Morgan et al., 1955). 
Prof. Morgan, who kindly provided the plate reproduced here points out that it was made from a 
lantern slide, as the original is missing. The tail is nevertheless visible, especially when the plate is 

held at arm's length. 

Suppose that grains form in the atmosphere of a Orionis at some constant rate and 
that they are driven off by radiation pressure. Inevitably, they must drag some gas 
with it and thus produce a stellar wind. The extensiveness of such a wind is a matter of 
debate (Weymann, 1962; Wickramasinghe et al, 1966) and depends very much on the 
nature of the dust particles. However, that dust particles do exist around a Orionis 
seems strongly indicated by its infrared excess. The dust wind would behave much like 
an ordinary wind and have a sonic transition just as in Parker's theory. We would then 
expect the wind to be arrested in a shock. The shock occurs in the gas which is kept 
cool by the dust, so that the gas comes virtually to a stop. The gas then drags the dust 
to a stop and this gives rise to a dusty shell around the star. This shell probably has a 
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radius larger than R A , so that the theory outlined above is relevant. But it must be 
modified to take account of the fact that material flowing by the star pulls dust into 
it so that the flow is enriched. This dust is then squeezed onto the downstream axis to 
produce the observed tail. 

Of course, only detailed observations can decide the correctness of this picture, but 
at least it provides us with one instance where we may be witnessing an interaction of a 
star with the interstellar medium. 

C. HEATING OF INTERGALACTIC GAS 

The preceding example depended on an understanding of the details of the accretion 
flow. But there are gross considerations which are relevant such as the heating of an 
ambient gas by supersonically moving objects. The rate of working by such an object 
is FD V0, where FD is the drag force. If the radius of the object exceeds R A , this for­
mula must be amended to include the geometrical drag which would result from a bow 
shock. Such corrections for galaxies are not appreciable if V0 is not in excess of 500 
km s e c - 1 . 

The heating of the intergalactic gas is important in setting limits on detectability 
and perhaps the most promising place to look for intergalactic gas is in clusters of 
galaxies. Typical clusters do not seem gravitationally bound and it has been speculated 
that the binding is accomplished by intergalactic matter. This is by no means a reliable 
prediction, but it might be testable if the gas is heated by shock waves generated by 
the galaxies (Ozernoi and Zasov, in preparation). For example, in the Coma cluster 
the number of galaxies N& 10 3 and the dissipation rate by accretion shocks is 

e^NnCAR2

A(nmH)V^ (27) 

where VQ=2GMC/RC and CA is the logarithmic factor in Equation (19). Subscript c 
denotes values of R and M for the whole cluster. With MG = 4x 1 0 4 4 g, MC = NMG, 
Rczz5x 1 0 2 4 cm, we find F o ^ 3 0 0 km s e c - 1 and 

e ^ 5 x 1 0 4 7 « e r g s e c " 1 . (28) 

Now the cluster has a gravitational energy GM 2 / ( 2 i ? c )« 1 0 6 3 erg and this would be 
dissipated in a time of 2 x 10 8 n~1 yr. If, as seems plausible, we assume that the clusters 
are at least 1 0 1 0 yr old we must have n< 10~ 2 c m " 3 , which is not inconsistent with 
the densities required for binding (n < 3 x 10" 3 ) . The gas would be raised to a temper­
ature somewhat less than 

T O = ^ G M ^ I O 8 K 

k RC 

so that temperatures on the order of 1 0 7 K or a little greater would be expected. In 
these circumstances we would expect to see thermal X-rays generated at a rate 1.4 x 
1 0 ~ 2 7 n2T1/2 erg s e c - 1 c m " 3 . The emission comes from the wakes of galaxies which 
occupy a volume which may be estimated from the theory of the accretion shock; but 
crudely it is of the order of a few times N times a galactic volume, so that about 
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1 0 " 5 of the gas radiates the X-rays. We obtain then an X-ray luminosity of « 1 0 4 8 n2 

erg s e c " 1 . If we compare this with Equation (28) we see that the X-ray efficiency is 
fairly low at intergalactic densities. (Of course, the formulae cannot be used at high 
densities where self-absorption enters.) If we take « « 3 x 1 0 " 3 c m " 3 , we can get an 
X-ray luminosity for the Coma cluster of about 1 0 4 3 erg s e c " 1 . This should be readily 
detectable and would seem to militate against the assumption that there is intergalactic 
matter in clusters sufficient to bind them. 

Similar examples can be worked out for other clusters, individual galaxies, clusters 
of galaxies moving through the intergalactic medium, and even star clusters in dense 
galactic nuclei and perhaps quasars. 

Appendix A 

The equations of isentropic motion are 

6 Gi~ + u ' V u) = ~ V p + 6 W(p9 ^ 
d£ + V-(Qu) = -A, (A2) 
ot 

V 2 p * - 4 « G ( < f + e«), (A3) 

d-l-c2^ (A4) 

where is the density of the moving object and A is the rate of accretion, counted 
positive if the object is a sink. If the object is a source of matter, then it would not be 
correct to use (A4) for both the ambient and injected matter since in general c2 will 
differ for the two. If we treat the star as a point mass moving with velocity V 0 , we have 

Q* = M S ( T - V 0 r ) (A5) 
and 

A = XnR2

AVQq (A6) 

where X is not yet specified, but could depend on the solution. Let Q = Q 0 + S Q with 
I $Q \^Qo and let u be small (as in usual acoustics). Because of the self-gravity, Q 0 is not 
a constant, but we make the usual Jeans swindle, and treat it so. Then, on dropping 
nonlinear terms, we obtain 

du 
Q02t=-VSp + QoVS<P, (A7) 

~8Q + Q 0 V - U = - XKR2

AQ0 V08(I- VOO , (A8) 
ot 

V 2 8<p = - 4nG (Q* + 8Q), (A9) 

8P = C28Q, (A10) 
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where k is now a constant. These equations are readily combined into a wave equation 
for Sq (with k) = 4tiGq0/c2) : 

• !P + k2jC2Y = 4nGM S(r - \0t) + knR2

AQ0Vj S(z - V0t)5(x) S(y). 
(Al l ) 

When kj = 0 and 2 = 0, this is Equation (11) of the text. The criterion for neglecting the 
kj term is roughly that k3RA< 1, but even in that case certain long range effects are 
not correctly represented when kj is set equal to zero. It also is clear that if we solve 
Equation (11) with 2 = 0, the correction for k^O is just to add a term kRA dW0/dz to 

where V0 is the solution with 2 = 0. 
We readily verify that Equations (14), (15), and (16) represent solutions of the linear 

equations. 

Appendix B 

In the frame of the star we assume steady fluid motions. If we can neglect gravity in the 
wake, we have the equations 

/ du v du v2\ dp 

® \ dr r d9 r J dr* 

( dv v dv uv\ 1 dp 

\ dr r d9 r ] r 39 

Q 
(du 2u 1 dv v \ ( d v d \ 

d v d\ yp ( dp v d\ 

• S + r M J ' - . K + r * . ) ' - < B 4 > 

With the ansatz of Equations (24) we find 

VU' — V2 = g/f 

VV + UV = g'lf 

U+V' + V cotO + Vf'lf = 0 (B5) 

(if 9' (y - 1 ) U = V , 
J 9 

where prime denotes differentiation with respect to 9. From (B5) we obtain two 
integrals: 

g = Kr(-fVsmey-1 (B6) 
and 

,2 , W2\ , ( ? A 9 _ 1 I J / 2 HU2+V2) + ( ' \z'=iWo, (B7) 
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where W0 and K are arbitrary constants. With these results the expansion of Equations 
(25) is readily obtained, and with this behavior near 0 = 0, we can find the solution of 
(B5) numerically. 
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