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EXPLICIT F O R M U L A S F O R T H E C O E F F I C I E N T S O F 
« C O N V E X F U N C T I O N S , a ^ 0 

PAVEL G. TODOROV 

1. Introduction. Let the function 

oo 

(1) f(z) = z + 2 a„z" 
n = 2 

be analytic in the unit disk A = {z\ \z\ < 1), with 

f(z)f'(z)/z * 0 

there, and let a be a real number. Then/(z) is said to be «-convex in A if 
and only if the inequality 

holds in A. The class Jfia) of «-convex functions was introduced in [8] 
and was studied in detail in the series [5]-[10], where in particular it 
is shown that «-convex functions are univalent and starlike for all « 
( —oo^i « ^ +00), that is, the inequality 

R e ^ > 0 

holds in A. Moreover, in [8] for 0 < « ^ 1, and in [6] for « > 0, it is 
proved that each function f(z) «-convex in A is a univalent Bazilevic 
function of the form 

<2> /M-[;/>>]""f]" 
where o(z) e S* = Jt(0) [1]. In [3], [4], and [5] it is noted that the best 
upper bounds on the coefficients of f(z) e Jt(a), « > 0, might be given 
by the coefficients of the "«-convex Koebe function" 

(3) K(z) = [ 1 jZ
Q £<»«>->(l - 0'2/ad^]a. 

In [3] and [4] explicit cumbersome formulas for the coefficients of the 
extremal function (3) are given; these are based on a technique used in [2]. 
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770 PAVEL G. TODOROV 

(We remark that the formulas (19-20) in [4] are incorrect unless n is 
replaced by k\ and formula (21) in [4] must be studied for k < n, but not 
for k ^ n, thus perpetuating an oversight in formula (22) in [2] ). If we use 
the technique used in [14], we can obtain what is possibly the simplest 
combinatorial form yet for the Taylor coefficients in problems of this 
kind. We do just that to obtain formulas for the coefficients of «-convex 
functions, a > 0. Hence we are able to obtain sharp upper bounds of the 
moduli |<2// + 1| of the coefficients of the functions (1) for n = 1, . . . , 
[a] 4- 1, if a > 0 is not a positive integer, ( [a] denotes the greatest integer 
less than a) and for all n = 1, 2, . . . , if a is a positive integer. Thus we 
verify "the coefficient conjecture" for some n. En route we obtain 
additional results that include earlier ones due to Pinchuk [11], Robertson 
[12] and Schild [13]. 

All our results are sharp with all extremal functions explicitly given. 

2. Explicit formulas for the coefficients of the powers of the "nucleus" 
of the Bazilevic functions. If f(z) e Jf(a) and if we put 

(4) (1 — a) ) 4- a\ 1 -f I = p(z), 

then p(z) G C, where C is the class of Carathéodory analytic functions 

oo 

(5) p(z) = 1 + 2 Pnzn 

which satisfy the inequality Re p(z) > 0 in A. From (4) we obtain 

f(z)(zf\z)\a 

z v / 0 O ! 

where 

(7) ^ ) = exp{/;)^7=-i^}. 

By using the identity 

(*\ Zf,(Z) 1 4- d 1 f { Z ) 

(o) — = 1 + z— In , 
j(z) dz z 

and the substitution 

(9) - ^ = [„(*)]«, 

in (6), we obtain for a ^ 0, 
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(10) 
du u [P(z)]]/a 

z + . . . 

dz az az 

From (9) and (10) we obtain, for a > 0, 

(11) / (* )= \^ fZ
Q?Va)-\P(S)\Uad$\ 

If we set 

(12) o(z) = zP(z) 

then (6) yields the relation 

(13) — Y =p(z), p(z) G C, 

which expresses the starlikeness of o(z) in A. Hence it follows that 
the representations (2) and (11) are equivalent. 

Definition. We call the function P(z) = a(z)/z the nucleus of the 
corresponding Bazilevic function defined by (2) or (11). 

For a ¥* 0, the function 

oo 

(14) [P(z)]]/a = 1 + 2 / > » z " , 

is analytic near z = 0. Hence, in order to find the coefficients of the 
function (11) we must first find the coefficients of (14) in terms of 
the coefficients of p(z) in (5). 

THEOREM 1. The coefficients Pn{a), n = 1, 2, . . . , (a ¥= 0) of the function 
(14) have the explicit representation 

05) W = 2 V , * (T . - - - . - J *T ± TT) ' 
k = \ a W n — k + \ ' 

where 

(>6) c,„(ei _ i = f ± ^ ) _ 2 " n ' ! ( « ) ' 
V 1 H — & + 1 ' l V = l *y- ^ ' 

where the sum is taken over all solutions in non-negative integers 
*>, , . . . , %_* +1 of the system 

n 7 x "i + "2 + ••• + %-* + i = ^ 
1 ; vx + 2^2 + . . . + (* - k + 1>W_A + 1 = «. 

Proof It follows from (5) and (7) that the function (15) can be 
represented by the composite function 
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772 PAVEL G. TODOROV 

[P(z)]Ua = euo 2 ^ z ' 7 , 
n = \ an 

where o denotes the substitution 

oo 

u = 2 (pn/an)zn. 
n = \ 

By a more precise version of a Faà di Bruno formula for derivatives of 
composite functions [14, Theorem 1], applied to the n{ derivative of 
the composite function above, at the point z = 0, we obtain the 
representation 

(18) D'UPiz)^ - ni ± 2 " n + , l ( £ ) \ 

where the interior sum is taken over all solutions in non-negative integers 
vv . . . , vn_k + x of the system (17). From (18) we obtain the representation 
(15), (16) for P » . 

This completes the proof of Theorem 1. 

For an arbitrary x, let (x)k denote the factorial polynomial 

(x)k = x(x + 1) . . . (x + k - 1) (A: = 1, 2, . . . ; (x)0 = 1). 

From Theorem 1 we obtain the following result. 

THEOREM 2. For a > 0, the coefficients Pn(a), n = 1, 2, . . . , of the 
function (14) satisfy the sharp inequalities 

(19) \P„(a)\ ^ 

2 

a I n 

n\ 

where equality holds only for the function 

oo 

(20) [P*(z)]1 / a = (1 - ezy2/« = 1 + 2 - e V , (|c| = 1). 

Proof. From (15) and (16) we obtain the estimate 

(2D IWI^^T—^TTT)-
k = \ a v 1 n — k + \ ' 

Sincep(z) e C, we can use the known inequalities \ps\ ti 2, s = 1, . . . , n, 
in (21) to obtain 
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(22) \Pn(a)\ ^ 2 \ c j l ? - — ) , 
k = \ a w « — Ac + 1 / 

where by (15)-(17) equality holds in (22), if and only if ps = 2es, \e\ = 1, 
5" = 1, . . . , n. But if p] = 2e holds for the Carathéodory function (5), 
then 

ps = 2es for J = 1 , 2 , . . . . 

Therefore equality holds in (22) only if the function (5) has the form 

1 -I- °° 
(23) p*(z) = = 1 + 2 2 e"2" ( |c| = 1), 

1 — €Z n=\ 

or, by (7), only if the function (14) has the form (20). If we use the 
combinatorial identity 

A- = i a M « — Ac + 1 / «! 

then the inequality (22) becomes (19). 
This completes the proof of Theorem 2. 

We note two important consequences of Theorems 1 and 2. 
i) For finite a, a = 1, if we set 

0 = 1 - 1 (0 =: 0 < 1) 
a 

in (14) and if we use (12), we conclude that 

(24) oft) = z[P(z)]*-fi = z + 2 ^(-T3^V' + I 

is starlike of order /?, that is, it satisfies the inequality 

(25) R e ^ > / ? 

in A. This also follows from the relation 

(26) z^l = (1 - 0jp(z) + & />(*) e C 
°/?(z) 

which is easily obtained from (7) and (24). Hence, for 

a = 1/(1 - 0), 0 =- |8 < 1, 
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774 PAVEL G. TODOROV 

Theorem 1 yields the coefficients of the function (24) in terms of the 
coefficients of the associated function p (z ) in (26), and Theorem 2 gives us 
the known estimates [11]-[13] 

m | , . (_y a£^M. ,.-,.2...., 
for the class S% of functions op(z) starlike of order /?; here equality holds 
only for the Koebe functions 

„ /„x f , i V (2 - 2/?), + 1 

°^(Z) = ( l - e z) 2 <'-« = Z + „f, ~ • ^ ' Z ( W = 1X 

For /? = 0 the results reduce to the results for the class S* = SQ of starlike 
univalent functions. 

ii) For 0 S /} < 1, it follows from (24) and (25) that the function 

z"+ 1 

(28) #z) s / ; [P(0]>-^ = z + 1 ^ 1 ^ ) - + 1 

is convex of order ft, that is, it satisfies the inequality 

V f'fkz) I 

in A. This also follows from the relation 

(29) 1 + ^ ^ = (1 - P)p(z) + 0, p(z) e C, 

which can be obtained from (24), (26), and (28). Hence, the coefficients of 
fp(z) can be expressed in terms of the coefficients of the associated 
functionp(z), using (29), and Theorem 1 for a = 1/(1 — /?), 0 â /? < 1. 
From (27) and (28) we obtain the known inequalities [11, 12, 13] 

J_.( ' )|a<L^>. („ = ,,2,...,, 
1 "M - 0 / 1 (fl+1)! 

for the class C^ of functions ^ ( ^ ) convex of order /?; here equality holds 
only for the functions 

£(1 - 2j8)L(l - c z ) 1 " 2 ^ 

<2 ~ 2 j8 ) v _„ + 

( / i+l)! 

for /3 ¥= 1/2, and only for the function 

+ 2 ^—f^ £ » z » + 1 (ki = i) 
„=i (n+l)! 
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1 e" 
fy(z) = — ln(l -tz)=z+ 2 — — z" + 1 ( |C| = 1) 

for ft = 1/2. For /? = 0, the results reduce to those for the class 
C° = C° of convex univalent functions. 

3. Explicit formulas for the coefficients of Bazilevic functions. Let (x)A, 
for an arbitrary number x, denote the factorial polynomial 

(x)k = x(x - 1) . . . (x - k + 1), (k = 1, 2, . . . ; (JC)0 = 1), 

and let the function in (11) have the expansion 

oo 

(30) f(z) = z + 2 flw + 1(a)zw + 1 (a > 0) 
« = i 

in A. Now we shall determine the coefficients in (30) in terms of the 
coefficients of the function given in (14). 

THEOREM 3. The Taylor coefficients an + x(a), n = 1 ,2 , . . . of the function 
(11) for an arbitrary a > 0 have the explicit representation 

(31) an + x(a) = Z (oL)kCnk\—— 1, 
& = 1 \<x 4- 1 (A? — k + l)a -f 1 / 

where 

,™ r (1M. Pn-k + \(«) \ 
v« 4- 1 (n — k + \)a H- 1 ' 

-swn+ l ]( p>) V 
,= l vs\\(sa + 1)/ ' 

where the sum is taken over all solutions in non-negative integers 
vx, . . . , vn_k + x of the system (17). 7/*a is a positive integer (a = 1 ,2 , . . . ) , 
//ze« we a/so /z#ve the explicit representation 

(33) a„ + 1(a) = a\C„+aJp0(a), ^ - ,..., - ^ ~ ) , W = L 
V a + 1 «a + 1 / 

/or « = 1 , 2 , . . . , w/zere 

(34) C„+ ( i > 0 ( a ) , ^ ^ , . . . , ^ ^ J 
\ a + 1 «a + 1 / 

= 2n_L(_w_y+' 
5=0 *j + ,! W + 1 
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where the sum is taken over all non-negative integers vx, . . . ,vn±x 

satisfying 

(35) vx + v2 + . . . + vn + ] = a, 

p] + 2 ^ + • • • + (n 4- 1 )^ + 1 = w + a. 

Remark. For a positive integer « (a = 1, 2, . . . ), (31) and (33) are 
identical. 

Proof. From (11), (14), and (30), we obtain 

oo 

(36) f(z) = z[F(z)]a = z + 2 Û/| + I(a)z', + 1, a > 0, 

where 

0 0 P ( \ 
(37) F(z) = 1 + 2 z", z e A, a > 0. 

/ 7 = 1 CW + 1 

Again the (more precise) Faà di Bruno formula for the n{ derivative of 
composite functions [14, Theorem 1], applied to the nx derivative of 
the composite function 

[F(z)]a = foF{z) 

at the point z = 0 (see the proof of Theorem 2 in [14] ), yields the 
representation (31) immediately. 

If a: is a positive integer (a = 1 , 2 , . . . ) , then from (36) and (37) we 
obtain 

oo 

(38) f(z) = zl-«[zF(z)]a = z + 2 a,I + 1(a)z" + 1, z e A. 

The same Faà di Bruno formula for the nth derivative of composite 
functions (used above), now applied to the composite function 

[zF(z)]a = tao[zF(z)} 

at the point z = 0, yields 

(39) [zF(z) ]« = 2 «!C„ J/>()(«), ^ , • • • . T - ^ - T U 
/7 = a v a H- 1 (« — a)a + 1 7 

^o(«) = L 

in A, where 

(40) c J P o C » ) , ^ , . . . , ^ - ( a ) ) 
\ a 4- 1 (AÏ — a)a + 1 / 
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s=o p.A \sa 4- 1 / 

where the sum is taken over all non-negative integers ^ , . . . , ^ _ a + 1 

satisfying 

(41) vx + v2 + . . . + fw_a+1 - a 

p, + 2 ^ + . . . + ( « - a + l> w _ a + i = «. 

Now from (38)-(41) we obtain (33)-(35). 
This completes the proof of Theorem 3. 

From Theorem 3 and (20) we obtain the coefficients of the most general 
"a-convex Koebe function" 

(42) K(z; e; a) = [I fQ ^ " ' ( l - 4y2/adÇ 

for arbitrary a > 0. We find 

(|e| = 1 ; « > 0 ) , 

OO 

(43) K(z; c; a) = z[F(z; e; a)]a = z + 2 tfw + 1(€; «)z" + 1 

n = \ 

in A, where 

OO 

(44) F(z; c; a) = 1 + 2 e"c„(a)z" 
n = l 

with 

'2 

(45) c„(a) = ' " " (« = 1, 2, . . . )• 
m («a + 1) 

It is clear that the substitution f = zf in (42) yields the identity 

(46) K(z; e; a) = z [ f - - , 1 + - ; ez) \ (\e\ = 1; a > 0), 

where J^ is the Gauss hypergeometric function 

J \ I, i + i; £Z) = I /"' p"»-'(i - £ Z / ) - 2 / ^ 
V« a: a / a ^ ° 

that is, the analytic continuation of the series (44) into the z-plane cut 
along the ray 

z = pe" /a rgc, p a l . 

In particular, if a is a positive integer (a = 1 ,2 , . . . ) , then from (43) we 
obtain 
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(47) K{z\ 6; a) = z1 a[zF(z; e; a) ]" 

oo 

= z + 2 #„ + i(c; a)zw + 1, z G A. 
« = i 

As a corollary to the preceding, we have the following result concerning 
the coefficients of the function (42) (or (46) ) and the function (47), 
respectively. 

THEOREM 4. The coefficients A^+1(e; a) of the general "a-convex Koebe 
functions" (42) for an arbitrary a > 0 have the explicit representation 

(48) K„ + ](c a) = « „ + ,(«) (n = 1, 2 , . . . ), 

n 

(49) *„ + ,(«) = 2 (a)kCnk{cx{a\ . . . , cw H t + 1(a) ), 
* = i 

where 

(50) C l f , ( c 1 ( a ) , . . . , c n _ , + 1(a)) = 2' , î l ^ ^ \ 
5 = 1 Vs\ 

where the Cj(a), . . . , cn_k + x{a) are defined in (45) and where the sum 
is taken over all solutions in non-negative integers vx, . . . , vn_k + ] of the 
system (17). 

If a is a positive integer (a = 1, 2, . . . ), then we also have the 
representation (48) but with the simpler expression 

( 5 1 ) ^ / , + l (« ) = a-Cn + a,«(C0(a)> c l(«)> • • • > cn(<*) )> Co(«) = 1 

for n = 1 , 2 , . . . , where 

(52) Cw+a,a(c0(a), c,(a), . . . , c » ) = 2 I I ^ ^ 

a/7d the sum is taken over all solutions in non-negative integers vx, . . . , vn + ] 

oj the system (35). 

Remark. For a positive integer a (a = 1, 2, . . . ), (49) reduces to (51). 

In [3], [4], and [5], as we have noted in the introduction, it is indicated 
that the coefficients of the function (3) might yield the sharp upper bounds 
on the modulus of the coefficients of the a-convex functions for a > 0. 
Theorem 4 yields the simplest combinatorial form yet of that conjecture. 

CONJECTURE. The coefficients an + x(a) of the a-convex functions (30) 
satisfy the sharp inequalities 
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(53) |a„ + 1(o) | ^ #„ + ,(«). ( « = 1 , 2 , . . . ) 

where the KflJrX(a) are given by (49) for arbitrary a > 0, and by (5\)for a 
positive integer a (a = 1, 2, . . . ), respectively, with equality only for the 
"a-convex Koebe functions" (42). 

Our Theorems 2, 3 and 4 verify that conjecture in the following cases. 

THEOREM 5. The coefficients an + x(a) of the a-convex functions (30) 
satisfy the sharp inequalities (53) for n = 1, . . . , [a] + 1 if a > 0 is not a 
positive integer ([a] denotes the greatest integer less than a), and for all 
n = 1, 2, . . . if a is a positive integer (a = 1, 2, . . . ) where Kn + X(a) are 
given by (49) and (51), respectively, with equality only for the "a-convex 
Koebe functions" (42). 

Proof If a > 0 is not a positive integer, then from (31) and (32) we 
obtain, for n = 1, . . . , [a] + 1, the estimates 

(54) K+,<«, I S 2 M . c J ^ i ... . . " - " 'M ' )• 
" + 1 * t i ^ « + 1 (« - k + l)a 4- 1/ 

Now we can use the inequalities (19) in (54) to obtain 

n 

(55) \an + x(a) | ^ 2 (a)AC„,(q(a), . . . , c„_* + 1(a) ) = tfn + 1(a), 
A - l 

with (45) and (49) in mind. Equality holds in (55), according to Theorems 
2 and 3, only if the function (11) has the form (42). 

If a is a positive integer (a = 1 ,2 , . . . ) , the above proof is valid for all 
« = 1 , 2 , . . . . Indeed, then (a)k = 0 for k > a, and hence, the summation 
in (54) and (55) is taken over k = \, . . . , n if \ = n ^ a, and over 
k = 1, . . . , a if n > a. 

If a is a positive integer (a = 1 ,2 , . . . ) , another proof can be obtained 
from (33) and (34). Indeed, from (33) and (34) for n = 1, 2, . . . we 
obtain 

(56) |aw + 1(o) I ^ «!Cw + a J |P0(a) |, — — , . . . , — - I. 
v a + 1 na + \ ' 

Again we use (19), (45), (51) and (56) to obtain 

K + i(a) I = oc\Cn+aa(c0(al c,(a), . . . , cn(a) ) = ^M + 1(a) 

where equality holds, according to Theorems 2 and 3 only if the function 
(11) has the form (42). 

This completes the proof of Theorem 5. 

4. Explicit formulas for the coefficients of the Carathéodory functions in 
terms of the coefficients of their associated «-convex functions. A solution 
to this "inverse problem" follows from the following general result. 
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THEOREM 6. If the function 

oo 

(57) f\z) = 2 anz
n (ax = 1) 

« = i 

w analytic in A, J/ze/7 the following statements are valid. 

(58) 5Ù£) s l + 2 A*", 

f/œ/2/?, = A7g,? (rt = 1, 2, . . . ) , 

n 

(59) g„ = 2 ( - l ) * - ! ( * - \)lCnk(a2,...,an_k+2l 
A = l 

n~k+\ 

(60) c,7 A(^2 , . . . ,^_A + 2) = 2 n 
s=\ 

(«,+.)* 

where the summation is taken over all solutions in non-negative 
? ! , . . . , vn-k + \ of the system (17). The series (58) is valid for \z\ < rx where 
rx is the distance from z = 0 to the nearest zero of the function f(z)/ z in A; 
iff(z)/z ¥* 0 in A, then the series (58) is valid in all of A. 

(ii) / / 

zf"(z) S „ 
(61) — — - = 2 - A* , 

J(z) « = i 

//ze«, />H = »/i„ (« = 1 , 2 , . . . ) , where 

t! 

K = 2 ( - l / " 1 ^ ~ l)!CwA.(2fl2, . . . , (/i - * + 2)a„_*+2), 
k = \ 

and 

(62) C „ , ( 2 a 2 , . . . , ( * - k + 2 K _ A + 2 ) = 2 " i f [ (* + ^ ' ^ 

where the summation is that for (60). 77z£ series (61) w vfl/zd /or 
|z| < r2 where r2 is the distance from z = 0 to the nearest zero of the 
derivative f\z) in A; if f'(z) ¥= 0 in A, then the expansion (61) is valid 
in A. 
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(iii) For every number a, we have 

(63) (1 - a)—— + al 1 + — — I = 1 + Z Pnz , 

/00 v / 00 7 «= i 
vv/zere 

A = n[(\ - a)gn + a/zj (« = 1 ,2 , . . . ) , 

w/zere z7ze gw a«d /z„ are given in (i) tf«d (ii) above. Moreover, the series (63) 
converges for \z\ < r3 where 

r3 = min(r]5 r2); 

iff(z)f'(z)/z ¥= 0 /« A, then the series in (63) is convergent there. 

Proof, (i) From the identity (8) it follows that it is sufficient to obtain an 
expansion for ln(/(z)/z) . If we use the (improved) Faà di Bruno formula 
for the n derivative of composite functions [14, Theorem 1], applied to 
the nl derivative of the composite function 

ln(/(z)/z) = In t o (f(z)/z) 

at the point z = 0, we obtain the formula 

Z £ _ 0 l n ^ = n\g„ ( « = 1 , 2 , . . . ) , 
Z 

where the gn are given by (59). Hence 

- H -f «/ 
v z / „=i 

holds; and this with (8) yields (58). The remarks concerning convergence 
follow at once. 

(ii) From the identity 

= z— ln / ' ( z ) , 

with 

/ ' (*) ^ 

In/» = 2 V". 
w = l 

we again use the (improved) Faà di Bruno formula to prove (ii). Again the 
remarks concerning convergence are immediate. 

(iii) This follows from (i) and (ii). 
This completes the proof of Theorem 6. 
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In particular, when the function (57) is (i) starlike, (ii) convex or (iii) 
«-convex, (a real), yield the result indicated in the title of this section. 

5. Conclusion. If in (50) we put cs = cs(a), s = 1, . . . , « — /c + 1, and 
we consider q , . . . , ctl_k + x as arbitrary variables, then the expressions 
(50) are isobaric homogeneous polynomials, of weight n and of degree /c, 
in those variables [14]. Those polynomials may be obtained by using the 
recursion formula introduced in [14]: 

, n-k+\ 

(1 â k ^ n\n ^ 1; Cw0 = 0; C00 = 1), 

where Cnk = Cnk(cx, . . . , cn_k + ]). The first and last polynomials are 

cn. = c„, c„„ = -U' (» g i). 

The short table of the polynomials Cnk for 1 ^ « ^ 5, given below, is 
taken from [14]. 

_ 1 2 
Cn — C\\ C2\ — c2, C22 — -C\\ 

_ 1 3 
Ql = c 3 ' Q 2 = c\c2> Q 3 = 7 C 1 ' 

C41 = c4, C42 = c,c3 + - c 2 , 

_ 1 2 1 2 
C 5 2 — CjC4 -f c2c3, C 5 3 = -C1C3 + -CJC2, 

^ _ 1 3 ^ _ 1 5 
C54 - -c,c2 , C55 - i 2 Q c 1 . 

It is clear that sums (16), (32), (34), (40), (50), (52), (60) and (62) are 
corresponding values of the polynomials Cnk. 
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