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Cavitating flows include vapour structures with a wide range of different length scales,
from micro-bubbles to large cavities. The correct estimation of small-scale cavities can
be as important as that of large-scale structures, because cavitation inception as well as
the resulting noise, erosion and strong vibrations occur at small time and length scales. In
this study, a multi-scale cavitating flow around a sharp-edged bluff body is investigated.
For numerical analysis, while popular homogeneous mixture models are practical options
for large-scale applications, they are normally limited in the representation of small-scale
cavities. Therefore, a hybrid cavitation model is developed by coupling a mixture model
with a Lagrangian bubble model. The Lagrangian model is based on a four-way coupling
approach, which includes new submodels, to consider various small-scale phenomena in
cavitation dynamics. Additionally, the coupling of the mixture and the Lagrangian models
is based on an improved algorithm that is compatible with the flow physics. The numerical
analysis provides a detailed description of the multi-scale dynamics of cavities as well
as the interactions between vapour structures of various scales and the continuous flow.
The results, among others, show that small-scale cavities not only are important at the
inception and collapse steps, but also influence the development of large-scale structures.
Furthermore, a comparison of the results with those from experiment shows considerable
improvements in both predicting the large cavities and capturing the small-scale structures
using the hybrid model. More accurate results (compared with the traditional mixture
model) can be achieved even with a lower mesh resolution.
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1. Introduction

The extensive and growing application field as well as its sophisticated physics have
made cavitation a remarkable multidisciplinary topic in engineering. For decades, the aim
to reduce its undesirable consequences in different industrial applications has been the
subject of numerous studies. Erosion, noise and efficiency loss in hydraulic machineries,
such as pumps, propellers and diesel injectors, are some examples in this regard (Franc &
Michel 2006). However, the recent advances in biomedical engineering have resulted in
significant interest in applying the desirable consequences of cavitation. A non-exhaustive
list of biomedical applications includes cancer cell histotripsy (e.g. Vlaisavljevich et al.
2016), drug and DNA delivery (Ibsen, Schutt & Esener 2013), kidney stone lithotripsy
(e.g. Maeda et al. 2016), Blood–Brain Barrier (BBB) opening and even to providing
contrast with application in medical imaging (e.g. Mulvana et al. 2016). Some of the other
desirable applications are ultrasonic cleaning and mixing two or more dissimilar fluids
such as in marine diesel engines. However, control of this phenomenon is still a challenge
and a theoretical understanding is usually unachievable without significant simplifications.

There are five main cavitation patterns observable in cavitating flows, namely: bubble;
sheet; cloud; vortex and super cavitation. Bubble cavitation consists of the formation
of separated bubbles, their transportation downstream and collapse in higher pressure
regions; a sheet cavity stays attached to the surface with a distinguishable interface
between the liquid and vapour phases; a cloud cavity is composed of a large collection
of small bubbles that can be separated from an initial sheet cavity; a supercavity is a
large cavity that covers either the whole object or most of it; and vortex cavitation can
be defined as the formation of cavitation in the core of vortices. The cavity pattern is
dependant on the operating conditions and fluid properties, and it is common to have more
than one cavitation pattern in a flow, although they will have different characteristics.
For example, a sheet cavity that covers the suction side of a hydrofoil may break-up into
smaller cloud cavities and micro-bubbles which are further transported into regions of
higher pressure, where collapse-like condensation results in the formation of liquid jets
and pressure shocks.

Thanks to recent improvements in numerical models, computational fluid dynamics
(CFD) is now a reliable method to gain a more comprehensive understanding of the
hydrodynamics of cavitation. Nevertheless, as the flow characteristics from one application
to another can be different and lead to different cavitation patterns, there is not yet a
unique CFD method applicable to all problems. The right method is chosen based on
the cavitation regime and the anticipated effective parameters. For instance, the cloud
cavity can be shed from the initial sheet cavity, owing to the occurrence of a re-entrant jet
beneath the sheet cavity or as the result of a condensation shock; the first scenario can be
simulated using an incompressible flow model, while the latter needs to take into account
fluid compressibility. Some of the other varying features among cavitating flows are the
wide ranges of time and length scales, fluid properties and different orders of magnitude of
pressure and interfacial velocity. These features can bring other factors into consideration,
such as flow compressibility, turbulence, shock waves and thermal effects.

Among the stated features, the wide range of temporal and spatial scales is one of the
most common sources of numerical challenges. For instance, the duration of the final stage
of bubble or cavitating vortex collapse is of the order of one microsecond (Franc & Michel
2006), while the erosion process might take place over the lifetime of a propeller. Similarly,
the cavity size ranges from micro-bubbles to supercavities that span over the whole suction
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Figure 1. (a) Top, side and front view of the Twist11 hydrofoil. The black outline indicates the viewing area.
(b) Different cavity topologies and length scales over the hydrofoil (top view). The images are taken from the
paper by Foeth & van Terwisga (2006).

side of a propeller blade. Furthermore, the vapour structures can have different topologies.
As an example, figure 1 shows two types of cavity topologies with different length scales
on the suction side of a hydrofoil. This top-view image is extracted from the study by
Foeth & van Terwisga (2006) on the Twist11 hydrofoil. In this typical flow, a sheet cavity
is well-developed on the leading edge, while further downstream, we observe an earlier
shed cavity that is collapsing. While the sheet cavity is a large mixture of liquid and
vapour, which can be considered as a single continuous pseudo-fluid separated from the
main liquid by an interface, the downstream cavity is in fact a cloud of sparse bubbles
and very small mixture cavities which are dispersed in the liquid. A common issue in
cavitation CFD is to find a suitable method to simultaneously resolve (separated) large
mixture regions and capture (disperse) small-scale vapour structures. It is important to
note that the correct prediction and analysis of small-scale cavities can be as important as
that of large-scale structures, because cavitation initiates from micro-nuclei and usually
the resulting noise, erosion, pressure shocks and strong vibrations occur at the last stages
of cavity collapse at the small time and length scales.

Most of the commonly used numerical models in engineering applications can be
considered as homogeneous mixture models, which includes equilibrium and transport
equation models (TEM). In the homogeneous mixture approach, the mixture of constituent
phases is assumed to be a single fluid with no resolved liquid–vapour interface in each cell.
Earlier studies have shown sufficient estimation of the shape of large vapour structures for
different cavitating flows such as a sheet cavity on a hydrofoil (e.g. Asnaghi, Svennberg
& Bensow 2018b), over a convergent–divergent wedge (e.g. Budich, Schmidt & Adams
2018) and fully cylindrical bluff bodies (e.g. Gnanaskandan & Mahesh 2016). However, the
captured liquid–vapour interface is rather diffuse in these models and high grid resolutions
with very small time steps are needed for adequate prediction of a sharp interface or to
capture small structures. Most often, the cavitation/condensation is estimated based on the
flow pressure, and other parameters, such as dissolved gas pressure, surface tension and
viscous forces, are neglected in these models. In the equilibrium models, the pressure is
related to the density and hence mixture state through an equation of state. In a TEM, a
transport equation is solved for vapour volume/mass fraction and the mass transfer rate is
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usually adjusted through a finite mass transfer source term in this equation. The source
term is usually based on the difference between flow pressure and a threshold value for the
saturated vapour pressure.

The most common mass transfer models in the literature (e.g. Merkle, Feng & Buelow
1998; Kunz et al. 2000; Schnerr & Sauer 2001) can be interpreted as a simplified form
of the Rayleigh–Plesset equation in which the mentioned parameters, as well as the
bubble inertia, are neglected. As a result, these mass transfer models cannot appropriately
resolve the dynamics of small collapsing cavities, especially sparse clouds of bubbles
(figure 1b). As an example, Asnaghi, Feymark & Bensow (2018a) observed that the
rate of phase change from vapour to liquid is over-predicted for a shed cloud on the
suction side of a hydrofoil, which leads to an early collapse of the cloud in numerical
modelling. Ye & Li (2016) showed that the bubble growth rate can be greatly reduced if the
bubble–bubble interaction and second-order derivative in the Rayleigh–Plesset equation
are considered. Moreover, homogeneous models cannot resolve the very small nuclei,
which are fundamentally assumed to be the cavitation starting points. Consequently, these
models are limited in an appropriate prediction of cavitation inception. For example,
in the modelling of bluff body cavitation by Gnanaskandan & Mahesh (2016), the
numerical inception point is upstream of the separation point, because cavitation was
assumed to occur as soon as the pressure drops below the vapour pressure. However,
in corresponding experimental studies (e.g. Arakeri 1975), cavitation does not occur
immediately at the location where the pressure drops below the vapour pressure, but
instead occurs downstream of the separation point. Therefore, it can be stated that while
homogeneous mixture models are suitable options for representing large mixture regions,
cavity structures smaller than the grid size, such as cavitation nuclei and bubbles, or
sparse clouds of bubbles, are not well treated using these approaches. This results from
the simplifications in modelling the phase change rate as well as the spatial and temporal
resolution dependencies. Accurate simulation of sub-grid structures and their violent
collapses and fast rebounds are crucial in the proper prediction of cavitation consequences.
As the governing equations of the homogeneous mixture models are solved in the Eulerian
framework (similar to the continuity and momentum equations), in this paper, we call them
Eulerian models.

Apart from the widely used homogeneous mixture models, Lagrangian models can
address some of the above-mentioned limitations. Here, the continuous liquid properties
are calculated using Eulerian conservation equations, whereas the vapour part is governed
by Newtonian motion of individual spherical bubbles or parcels of bubbles in the
Lagrangian framework. Owing to numerical limitations, these models have been less
popular in cavitation modelling, however, they offer desirable features which make them
the most eligible options for special cases. The Lagrangian bubble models enable the
consideration of a large number effects that are deemed important for high-fidelity
predictions of the smallest scales in cavitation phenomena, such as the effects of dissolved
gas, liquid surface tension and viscous tension, and accounting for bubble–bubble and
bubble–wall interactions and turbulence effects on bubble motion and break-up. Because
different flow forces on cavities are implemented directly in the transport equation and
the bubble size variation is estimated using a more complete form of the Rayleigh–Plesset
equation, Lagrangian models can give a more realistic estimation of cavitation dynamics,
especially for small-scale structures. In fact, cavitation inception studies are often
performed using the discrete Lagrangian approach. Furthermore, using different bubble
number/size spectra for the liquid provides access to the liquid (e.g. water) quality effects,
which is considered another major advantage of Lagrangian cavitation models.
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These models have been extensively used in the literature for simulation of clusters
of bubbles, especially with a dilute suspension. For example, Fuster & Colonius (2011)
proposed a Lagrangian formulation for bubbly flows based on the volume-averaged
approach in which the continuum phase is solved from the averaged equations for the
mixture (similar to the homogeneous mixture models), while the influence of the dispersed
phase is treated as source terms in the continuity, momentum and energy equations.
The Lagrangian models can also be suitable tools for small-scale applications, such as
medical applications, in which the cavity length scale is approximately 1 µm ∼ 1 mm
and the interaction between pressure waves and bubbles are of great importance. As
an example, Maeda et al. (2016) simulated the interactions between bubble clouds and
ultrasound pulses to model burst-wave lithotripsy, a method that uses focused ultrasound
pulses to fragment kidney stones. There are also a few studies in the literature that
apply Lagrangian modelling in real-case industrial problems at larger scales. For instance,
Giannadakis, Gavaises & Arcoumanis (2008) presented a stochastic Lagrangian model
to simulate the onset and development of cavitation inside diesel nozzle holes. However,
the Lagrangian models can be computationally expensive when the number of bubbles
is large. Furthermore, Lagrangian models are limited in the representation of large
and non-spherical vapour pockets, which are not well-represented by the solution of
the Rayleigh–Plesset equation. As explained earlier, Eulerian mixture models are more
suitable options for such structures. Therefore, considering the cavity categorization
based on the length scale (depicted in figure 1), we see that for a group of cavities,
Eulerian mixture models are more suitable and Lagrangian bubble models suffer from
theoretical/computational limitations, while the reverse case applies for the other cavity
group, so finding an appropriate model that efficiently resolves both topologies is
an issue.

A solution to this problem can be a hybrid model in which large cavity structures are
modelled using an Eulerian mixture model, while small sub-grid structures as well as
sparse bubble clusters are tracked as Lagrangian bubbles. Hybrid Eulerian–Lagrangian
solvers have gained more popularity in recent years for simulation of multi-scale
applications such as atomizing gas–liquid flows (e.g. Kim, Herrmann & Moin 2006;
Herrmann 2010; Tomar et al. 2010; Ström et al. 2016). A good example of a hybrid
cavitation model is the work of Hsiao, Ma & Chahine (2017), who coupled a Lagrangian
discrete singularities model with an Eulerian level-set approach using the ghost-fluid
method. In the applied level-set model, the mass transfer between the two phases is
not taken into account. Instead, tracking of the Lagrangian bubble motion and the
resulting concentration field provides the vapour volume fraction and mixture density.
In the hybrid model, natural free field nuclei and solid boundary nucleation are used
in the representation of cavitation inception and enable capture of the sheet and cloud
dynamics. The method is shown to be in good agreement with two-dimensional (2-D)
experimental measurements in terms of sheet cavity lengths and shedding frequency,
however, it has not been validated with a three-dimensional (3-D) case and, according
to the authors, the results do not yet show clear cloud shedding which is assumed
to arise from an inadequate grid resolution. Numerical stability and compatibility
between the two frameworks can be major issues in developing hybrid cavitation
methods. Hence, the earlier hybrid models include simplifications in the Lagrangian
representation and Eulerian–Lagrangian transition algorithm, which can lead to other
numerical issues. Some of these issues, which cause spurious pressure pulses in the
flow field, have been addressed in an earlier study (Ghahramani, Arabnejad & Bensow
2018).
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Based on our earlier experience, the Eulerian mixture model is limited in capturing
the small-scale cavity dynamics, especially during cavitation inception and collapse of
shedding clouds (see e.g. Asnaghi et al. 2018a). In a recent study (Ghahramani et al. 2020),
the Eulerian model simulation could not sufficiently capture the cavity development in a
multi-scale flow around a bluff body. The investigated bluff body is a surface-mounted
semi-circular cylinder, which generates various cavity structures of different length scales.
Based on our experimental tests and the work of Escaler et al. (2003), the cavity structures
around this cylinder can have aggressive collapses, which are highly erosive at high
flow rates, and it is desirable to obtain further understanding and a detailed analysis
of this complex flow from numerical simulation. To overcome the limitations with the
Eulerian model, in the current study, we develop a new hybrid solver by coupling the
Eulerian model with a Lagrangian model. The Lagrangian cavitation model, which has
been developed in a recent study (Ghahramani, Arabnejad & Bensow 2019), is capable of
tracking individual bubbles and resolving their dynamics based on an improved localized
form of the Rayleigh–Plesset equation. The model has been verified with benchmark test
cases including the collapse of a single bubble and a cluster of bubbles. Additionally, the
Eulerian model is a transport equation model based on liquid volume fraction, in which the
mass transfer between the liquid and vapour is taken into account by a finite source term
in the equation. Furthermore, cavitation is initiated in low pressure regions, owing to the
mass transfer, and initial sub-grid cavities are transformed to the Lagrangian framework to
improve the prediction accuracy of the growth of small bubbles. Using the hybrid Eulerian
mixture–Lagrangian bubble solver, we then analyse the multi-scale cavitating flow around
the bluff body by both modelling the large-scale cavities and capturing the sub-grid vapour
structures.

In developing the hybrid solver, our Lagrangian model is further improved in this study
to be applicable in 3-D real test cases at large scales. Additionally, we use an algorithm for
the coupling of the two frameworks and the transition of small-scale Eulerian structures to
the Lagrangian framework and vice versa. The transition algorithm is, in basic principles,
similar to that developed by Vallier (2013), which was followed by Lidtke (2017) for the
prediction of radiated noise and recently by Peters & El Moctar (2020) for an estimation
of cavitation-induced erosion. It can be shown that the algorithm, in its original form that
has been used earlier, does not follow the conservation laws for mass, momentum and
kinetic energy in a cavitating flow. This, in turn, can induce spurious pressure pulses and
vapour generation, and lead to solution instability and numerical errors in the noise and
erosion estimation. In the current model, however, the algorithm is improved to follow the
conservation laws and avoid the numerical issues, as will be discussed in the following
sections. The current hybrid model includes further improvements, compared with earlier
models, such as implementing new submodels to consider bubble–bubble interactions and
break-up, introducing bubble parcels, and revising the bubble–wall boundary condition
and the void handling scheme. The solver is developed in the open source C++ package
OpenFOAM.

From the obtained numerical results, the multi-scale cavity development is discussed in
detail, which gives new insights on the flow physics that have not been otherwise detectable
from high-speed images of the experimental test. Although, from the experimental result,
we can identify cyclic cavity shedding from the wake area behind the bluff body, it is not
possible to explain the cavity development in each cycle using only the high-speed images.
The numerical results clarify various interactions between the large- and small-scale
cavities as well as the continuous flow. It is shown that small-scale cavities not only
are important at the inception and collapse steps, but also influence the development
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of large-scale structures. Furthermore, the effects of various parameters on the cavity
dynamics are explained, which include the flow vorticity, pressure variation rate, bubble
inertia and surface tension effects.

We continue to provide a general description of the hybrid solver in § 2 and explain how
the Eulerian mixture and Lagrangian bubble models are coupled in the solution algorithm.
Then the details of the models, which include the developed and applied submodels,
governing equations and the Eulerian–Lagrangian transition algorithm, are presented in
§ 3. Afterwards, the multi-scale problem of a periodic cavitating flow behind a bluff
body is described, which is followed by validating the hybrid model performance in § 4.
Subsequently, we analyse multi-scale cavitation using the obtained numerical results in
§ 5. The paper is finally concluded with recommendations for future studies in § 6.

2. Methodology

In figure 2, the general solution algorithm is described schematically. In the hybrid model,
the large vapour structures are modelled through the Eulerian mixture approach and
the small-scale structures are represented as discrete parcels of bubbles. The governing
equations of the continuous flow field (i.e. the conservation equations for mass and
momentum) are the same for both and the main difference is in the tracking of the cavity
structures. Here, the cavities are categorized as Eulerian structures and Lagrangian bubbles
to be tracked in the corresponding framework. The categorization into Lagrangian and
Eulerian groups is done based on the relative size of each cavity to the local grid size of
the discretized domain. If a cavity is large enough to be resolved by a sufficient number
of computational cells, then it is tracked in the Eulerian framework, otherwise it is treated
as parcels of Lagrangian bubbles. Furthermore, because the volume of each cavity can
change in the flow, at each time step, the small Eulerian structures or large Lagrangian
cavities may be transformed from one framework to the other.

In the Eulerian modelling, the mixture of vapour and liquid phases is treated as a single
mixture fluid, where the continuity equation and one set of momentum equations for the
mixture are solved. We here consider an incompressible flow and a TEM, motivated by
the balance of computational cost and model accuracy for the large-scale applications, as
will be shown later, but a similar framework can be developed for compressible flows. By
solving the transport equation, we obtain the liquid volume fraction (denoted by α), which
is used to update the mixture properties (e.g. density).

In the Lagrangian modelling, the cavities are treated as discrete parcels of bubbles
in an ambient Eulerian continuous flow. At each time step, the Eulerian continuity and
momentum equations are solved first, then the bubbles are tracked by solving a set of
ordinary differential equations along the trajectory of the bubble. Afterwards, the bubble
dynamics is updated and its interactions with the other cavities are modelled. Then the
Eulerian vapour fraction is updated based on the new positions and radii of the bubbles.
The vapour fraction is used to update the mixture properties (e.g. density) and consider
the bubble effect on the ambient flow.

For updating the mixture properties based on liquid and vapour fractions, it is important
to note that the vapour content of each cell is represented by either Eulerian or Lagrangian
models. Therefore, it is assumed that Eulerian and Lagrangian cavities do not co-exist
in the same cell. To distinguish between the obtained volume fraction from bubble
distribution and that calculated from the Eulerian transport equation model (α), we use
another variable, β, for Lagrangian cavities. In a similar way, β is used to update the
properties of the liquid–vapour mixture in the Eulerian governing equations, as will be
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Figure 2. Schematic description of a time step in the general solution algorithm.
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explained in detail in § 3.2. It should also be noted that because we have both Eulerian and
Lagrangian cavities in the hybrid model, the governing equations of the continuous flow
field should be revised accordingly to include both α and β, and this is described is § 3.3.

Furthermore, the solution algorithm needs a procedure for transition of small Eulerian
cavities to the Lagrangian framework and vice versa. This procedure includes two parts:
a criterion to determine when a cavity should be transformed from one framework to the
other; and an algorithm which specifies how such a transition should be performed. For
the transition criterion, similar to the other hybrid models, we consider two threshold
numbers related to the size of the cavity in relation to the grid: NEL for Eulerian to
Lagrangian transformation; and NLE for Lagrangian to Eulerian transformation (figure 2).
If an Eulerian cavity is represented by a sufficient number of computational cells which
is larger than NEL, then it is kept in the Eulerian framework, otherwise it is determined to
be insufficiently resolved and transformed to a group of Lagrangian bubbles. However, if
a Lagrangian cavity (i.e. a cloud of Lagrangian bubbles) is large enough and occupies
more than NLE cells, then it is transformed to the Eulerian framework, as it can be
resolved by a sufficient number of cells, otherwise it is kept in the Lagrangian framework.
The two threshold numbers are different and NLE > NEL, so that when a small Eulerian
cavity is transformed to a group of Lagrangian bubbles, its (possibly) fast collapse and
rebound process can be modelled using the Lagrangian equations, instead of having a
quick transformation back to the Eulerian framework.

How the Eulerian–Lagrangian transition is performed is similar to the algorithm
developed by Vallier (2013). That algorithm was in turn inspired by the model of Tomar
et al. (2010) for atomizing flows and therefore it should be improved for cavitation
modelling. There are important distinctions between the flow characteristics in cavitation
and atomization. In atomized liquids, it is possible to replace each liquid fragment with one
Lagrangian droplet with equal volume (as done by Tomar et al. 2010), while in cavitating
flows, each Eulerian structure is actually a cloud of bubbles and its properties (e.g. density)
are not equal to the pure vapour properties. Therefore, each Eulerian cavity should be
replaced by a group of smaller bubbles (instead of one larger bubble) in such a way that
the properties of the combined bubble group are equal to the corresponding values of the
Eulerian structure. Furthermore, the bubble effect should be considered in the mixture
properties as well mass transfer rate between the two phases. Otherwise the physical
conservation laws are not followed and we may have numerical instabilities and spurious
pressure pulses in the solution. These issues have been explained in detail and addressed
in an earlier study (Ghahramani et al. 2018). In the revised algorithm, each Eulerian cavity
is replaced by a group of smaller bubbles and the bubble effect in the mixture properties,
and mass transfer rate is considered through the introduction of the β parameter and the
revision of the governing equations, as will be described in § 3.

In the current study, the algorithm is improved further to be applicable to real-case
3-D flows. As will be explained in § 3, the improved transition process is compatible
with the flow physics and the mass, momentum and kinetic energy of the cavities are
conserved during the process, contrary to the previously mentioned studies. Another new
improvement is the correction of the bubble wall boundary condition, which is important
in the transport of large bubbles. Furthermore, in the hybrid model, the bubble size
is updated by solving a new localized form of the Rayleigh–Plesset equation, which
takes into account the local pressure effect on bubble dynamics. The bubble–bubble
interaction is also improved in this study both to follow the physical conservation laws
and to considerably increase the computational efficiency. The other new contributions
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are revising the void handling scheme and implementing another submodel to consider
the bubble break-up arising from the flow turbulence and velocity fluctuations. Detailed
description of the stated features is given in § 3.

3. Numerical models

In §§ 3.1 and 3.2, we describe the Eulerian and Lagrangian models and their governing
equations. Then, in § 3.3, we explain how these two models are coupled with each other in
the hybrid model and how the governing equations are revised accordingly.

3.1. Homogeneous mixture model
In the transport equation model, the liquid–vapour mixture is represented by solving a
scalar transport equation for the liquid volume fraction, where the mass transfer between
the phases is defined as an explicit source term in the equation and surface tension effects
are assumed to be small and are neglected. The governing equations are Favre-averaged
and then spatially filtered to perform large eddy simulation (LES). Turbulence is modelled
using an implicit large eddy simulation (ILES) approach. The unfiltered continuity and
momentum equations are

∂ui

∂xi
=
(

1
ρl

− 1
ρv

)
ṁ, (3.1)

∂(ρmui)

∂t
+ ∂(ρmuiuj)

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ ρmgi. (3.2)

The right-hand side term of the continuity equation describes the effect of vaporization
and condensation, where ρl is the liquid density, ρv is the vapour density and ṁ is the rate
of mass transfer between phases, and is obtained from a finite mass transfer (FMT) model.
In the ILES approach, the numerical dissipation is considered as sufficient to mimic the
sub-grid terms (Drikakis et al. 2009; Bensow & Bark 2010). Additionally, ρm and τij are
the mixture density and the viscous stress tensor, respectively, which are defined as

ρm = αρl + (1 − α)ρv, (3.3)

τij = μm

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (3.4)

where the pure phase densities are assumed to be constant in the incompressible modelling,
and μm is the mixture dynamic viscosity given by

μm = αμl + (1 − α)μv. (3.5)

Here, α is the liquid volume fraction, which specifies the relative amount of liquid in a
given volume, e.g. a computational cell. In this model, the evolution of the volume fraction
is calculated by solving a scalar transport equation given as

∂α

∂t
+ ∂(αui)

∂xi
= ṁ

ρl
. (3.6)

To close the above set of equations, the mass transfer rate, ṁ, should be specified using
an FMT model. There are many numerical models in the literature that can be used to
estimate this term and most of them are based on a simplified form of the well-known
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Rayleigh–Plesset equation. In this study, the Schnerr–Sauer model (Schnerr & Sauer 2001)
is used, which has been proven in earlier studies to give satisfactory results with reasonable
computational cost (see e.g. Asnaghi et al. 2018b). The vaporization and condensation
rates are then given by

ṁc = Ccα(1 − α)
3ρlρv

ρmRB

√
2

3ρl|p − pthreshold| max( p − pthreshold, 0),

ṁv = Cvα(1 + αNuc − α)
3ρlρv

ρmRB

√
2

3ρl|p − pthreshold| min( p − pthreshold, 0),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.7)

where ṁc and ṁv are the rates of condensation and vaporization, respectively, and ṁ =
ṁc + ṁv . In the above equations, RB and αNuc are the generic radius and volume fraction
of bubble nuclei in the liquid, which are obtained from

αNuc =
πn0d3

Nuc
6

1 + πn0d3
Nuc

6

, (3.8)

RB = 3

√
3

4πn0

1 + αNuc − α

α
, (3.9)

where n0 and dNuc are user-defined parameters corresponding to the number of nuclei per
liquid cubic meter and the nucleation site diameter, respectively, and they are assumed to
be 1010 m−3 and 10−5 m. Here, Cc and Cv are the condensation and vaporization rate
coefficients in OpenFOAM (OpenFoam 2018). It should be mentioned that the overall
effect of the empirical parameters, n0, dNuc, Cc and Cv , are two constant numbers in the
condensation and vaporization source terms, and they can be set to different reasonable
values. Based on our earlier experience, using larger empirical constants leads to more
satisfactory results (Ghahramani et al. 2019) and sufficiently large mass flow rates can
mimic a barotropic equation of state (Schenke & van Terwisga 2017). Furthermore, it
has been observed that in simulating cavitating flows, the vaporization coefficient should
be large, in principle as high as possible without compromising numerical stability, to
satisfy near instantaneous evaporation, while the smaller condensation coefficient allows
for some retardation in the condensation (Wikstrom, Bark & Fureby 2003). Accordingly,
the vaporization constant is modified as

Cv = Cv′

(
1 + t∞

∣∣∣∣12
(

∂ui

∂xj
+ ∂uj

∂xi

)∣∣∣∣
)

, (3.10)

where t∞ = L/U∞ is the time scale of the mean flow used to normalize the velocity
strain rate value (Asnaghi et al. 2018a). In this study, Cc and Cv′ are set to 10. In (3.7),
pthreshold is a threshold pressure at which the phase change is assumed to happen, usually
considered as the vapour pressure of the fluid, which is 2320 Pa in the current simulations.
Finally, the liquid and vapour densities are assumed to be ρl = 998.85 kg m−3 and
ρv = 0.02 kg m−3, and the corresponding dynamic viscosity values are set as μl =
0.00109 kg m−1 s−1 and μv = 1.39 × 10−5 kg m−1 s−1.

From the equations, it is seen that the mass transfer rate model neglects the effects of
dissolved gas pressure, surface tension and viscous force.
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3.2. Lagrangian bubble model
As stated before for this model, at each time step, the Eulerian equations are solved first,
then the bubbles are tracked by solving a set of ordinary differential equations along the
trajectory of the bubble, after which the Eulerian vapour fraction is updated based on
the new positions and radii of the bubbles. The Eulerian governing equations are the
continuity and Navier–Stokes equations, as described for the Eulerian mixture model ((3.1)
and (3.2)). To avoid high computational costs, instead of modelling all of the bubbles,
parcels of them are tracked. Each parcel represents a number of identical non-interacting
bubbles, which are assumed to be spherical. There are a few other inherent assumptions
that will be described in the following sections.

In Lagrangian modelling, various flow effects are modelled through different models
and the main aim of this section is to introduce the submodels in bubble modelling.
However, for the interested reader, further details and assumptions about some of following
submodels are given in Appendix A. This appendix also includes the rationale behind
developing or choosing the following submodels and brief comparisons with other
available models in the literature.

3.2.1. Bubble effect on the Eulerian flow field
Because the dispersed (bubble) phase in the cavitating flow is locally dense and has
properties quite different from liquid properties, the bubbles have a considerable effect
on the ambient flow field (similar to Eulerian cavities) as well as other bubbles. Thus,
both the bubble–bubble and bubble–flow interactions should be considered in the model.
The bubble–flow interaction can be implemented in the Eulerian equations in different
ways which, to a large extent, define the characteristics of the Lagrangian/hybrid model
(Ghahramani et al. 2018). In this study, the bubble effect is considered by implementing
its volume fraction contribution in the calculation of mixture properties and phase change
rate ((3.3), (3.5) and (3.7)), similar to the described finite mass transfer model (§ 3.1). In
this approach, the flow is considered as a single fluid mixture of continuous liquid and
disperse bubbles, and the Eulerian governing equations are similar to the homogeneous
mixture model. However, the liquid volume fraction of each cell is obtained from bubble
cell occupancy instead of solving the scalar transport equation (3.6). Therefore, for the
Lagrangian model the mixture properties are given as

ρm = βρl + (1 − β)ρv, μm = βμl + (1 − β)μv, (3.11a,b)

where β is the liquid volume fraction and simply 1 − β is the bubble volume fraction in the
computational cell. A comparison of (3.3), (3.5) and (3.11a,b) shows that for Lagrangian
modelling, β just replaces α, and it is important to remember that there is no Eulerian
cavity in this model. In the Lagrangian model of Fuster & Colonius (2011), as well as
the hybrid model of Hsiao et al. (2017), the effect of the bubbles on the ambient flow
field is considered in the same way. It should be mentioned that the continuity equation
source term is obtained using the Schnerr–Sauer model (3.7), similar to the mixture
model. It is possible to calculate the phase change source term from the bubble size and
distribution variation directly; however, as the main intention is to use the Lagrangian
approach coupled to an FMT-based model, the Schnerr–Sauer model is preferred here.

The remaining part is to calculate the vapour volume fraction from the instantaneous
bubble sizes and locations. In the general case, a cavitating bubble may grow and occupy
more than one grid cell. If we assume that a bubble parcel i is occupying Ncell cells, then
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the void fraction of the parcel in cell j can be estimated as

vi,j = 1
Vcell,j

(
4
3
πniR3

i

)
f
( |xi,j|

Ri

)
, (3.12)

in which Ri is the radius of the bubble, ni is the number of bubbles that the parcel
represents, f (|xi,j|/Ri) is the Gaussian distribution function, and |xi,j| is the distance
between the cell and parcel centre. The cells that are included in the formula are located
around the host cell of the bubble and they are partially or fully occupied by the parcel,
and the volume of the parcel is not distributed over the unoccupied neighbouring cells. The
standard deviation of the distribution function is calibrated so that 99.7 % of the bubble
volume is distributed within the |xi,j| < Ri range. Because (3.12) does not necessarily
guarantee that the volume of the parcel is conserved, the void fraction should be corrected
as

vc
i,j = vi,j

4
3
πniR3

i

Ncell∑
k=1

vi,kVcell,k

. (3.13)

Finally, as a cell can be occupied by Nb > 1 parcels, the vapour void fraction of cell j is
the summation of all the void fractions of the bubbles, given as

1 − βj =
Nb∑
i=1

vc
i,j =

Nb∑
i=1

vi,j

4
3πniR3

i
Ncell∑
k=1

vi,kVcell,k

. (3.14)

In cavitating flows, bubbles may experience a significant pressure drop within a short
distance, which can result in a substantial growth. Therefore, it is possible that some
parcels become larger than the fine hosting cells. One of the inherent assumptions in
Lagrangian modelling is that the dispersed-phase volume fraction should not be too high.
Theoretical problems arise at the limit of very low values of β. Another situation with
high Lagrangian vapour fraction is in the locally dense regions, where a cell hosts a large
number of bubbles. When the presence of Lagrangian bubbles approaches the packing
limit, overpacking should be prevented, otherwise it can lead to unphysical results and the
risk of crashing the solver. In this study, the maximum value of bubble volume fraction
was limited to 0.64 (or βmin = 0.36), which is a relevant number corresponding to a
random close packing limit of monodispersed spheres. Therefore, the bubble volume
fraction in each computational cell is calculated using (3.14), and for the overpacked
cells, it is distributed to the neighbouring cells. It should be mentioned that this case
does not happen frequently in the hybrid solver, because dense Lagrangian cavities are
usually transformed to the Eulerian framework, as will be shown later. In the extreme case
when a bubble is larger than the surrounding cells, it is enough to spread its volume over
an approximate radial distance of 1.16R = ( 1

0.64)
1/3

R. Distribution of the bubble volume
over only the neighbouring cells that are occupied by the cavitating bubbles gives a more
precise estimation of the real concentration field compared with some of the earlier studies
(e.g. Fuster & Colonius 2011; Vallier 2013; Hsiao et al. 2017) in which the bubble volume
is spread within a larger radial distance, e.g. 3R.

922 A22-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.424


E. Ghahramani, H. Ström and R.E. Bensow

3.2.2. Bubble equations of motion
The Lagrangian equations for tracing bubbles are given by

dxb

dt
= ub,

mb
dub

dt
= F d + F l + F a + F p + F b + F g,

⎫⎪⎪⎬
⎪⎪⎭ (3.15)

where xb and ub denote the position and velocity vectors of the bubble, and mb is the
mass of the bubble. The right-hand side of the second equation includes various force
components exerted on the bubbles. Explicit implementation of flow forces is an advantage
of the Lagrangian model, which gives the opportunity to consider different flow effects on
cavity behaviour, but it also means that the representation is dependent on the accuracy
of available models for these effects. The listed forces in the equation are, from left to
right, sphere drag force, lift force, added mass, pressure gradient force, buoyancy force
and gravity. These forces are given as

F d = 3
4

CDρ
mb

ρbdb
(u − ub)|u − ub|,

F l = 6.46Clρ
mb

ρb
(u − ub) × (∇ × u),

F a = 1
2
ρ

mb

ρb

(
Du
Dt

− dub

dt

)
,

F p = −mb

ρb
∇p,

F b = −mb
ρ

ρb
g,

F g = mbg.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.16)

In these relations, ρb and db are the density and diameter of the bubble, and ρ is the
density of the surrounding fluid. Additionally, CD is the drag coefficient, which is defined
as (Amsden, O’Rourke & Butler 1989)

CD =

⎧⎪⎨
⎪⎩

24
Reb

(
1 + 1

6
Re2/3

b

)
Reb < 1000,

0.424 Reb > 1000,

(3.17)

where Reb is the bubble Reynolds number, defined as

Reb = ρdb|u − ub|
μ

. (3.18)

Additionally, in the lift force, Cl is given as (Mei, 1992)

Cl =

⎧⎪⎪⎨
⎪⎪⎩

(
3.0

2π
√

Rew

)((
1 − 0.3314

√
0.5Rew

Reb

)
e−0.1Reb + 0.3314

√
0.5Rew

Reb

)
Reb < 40

0.1112
2π

Reb > 40,

(3.19)
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and Rew is the vorticity Reynolds number, defined as

Rew = ρdb
2|∇ × u|

μ
. (3.20)

Another fundamental assumption in classical Lagrangian methodologies is that the
dimensions of the particles (or bubbles) under consideration should be smaller than the
characteristic size of the Eulerian mesh. In fact, the maximum particle size should be
such that 5 ∼ 10 dmax < L, where L is the characteristic cell size. This assumption can be
violated in cavitating flows, owing to the combination of dense grids and the growth of
bubbles in low pressure regions. To circumvent this limitation, in (3.16)–(3.20), instead of
interpolating the Eulerian values at the centre of the bubble, the corresponding values are
averaged along the surface of a larger and concentric imaginary sphere. This sphere has a
diameter of 5db.

In bubble transport, the wall boundaries are considered to be rigid and it is assumed
that a bubble collides with a wall when the distance between its centre to the nearest
wall face becomes equal or less than its radius. The applied boundary conditions are
explained further in Appendix B. The other important issue in the tracking of Lagrangian
bubbles that should be considered in numerical modelling is the relative sizes of bubbles
and grid cells near the walls. As mentioned, sometimes a bubble may grow and occupy
several cells. In OpenFOAM, and some other widely used numerical codes, when a bubble
approaches a wall, the wall boundary condition is applied correctly only if the bubble
size is smaller than the cell edge in the wall normal direction. If a bubble is larger than
this limit, the bubble–wall collision is not detected. In the current study, the bubble wall
boundary condition in OpenFOAM is improved to model the large bubble–wall collision
appropriately.

The forces typically depend on the bubble size, and hence a correct estimation of bubble
dynamics is of great importance.

3.2.3. Bubble dynamics
The classical Rayleigh–Plesset equation can estimate the collapse and growth rate of a
single bubble in an infinite domain reasonably well (Franc & Michel 2006). However,
owing to inherent assumptions of the equation, it cannot be applied, in its original form,
to complex and real problems in which bubbles are surrounded by other cavity structures
and flow boundaries. In an earlier study (Ghahramani et al. 2019) a localized form of the
Rayleigh–Plesset equation was derived as

ρl

(
1
2

RR̈ + 17
32

Ṙ2
)

= pv + pg0

(
R0

R

)3k

− p2R − 4μl
Ṙ
R

− 2σ

R
, (3.21)

where R is the radius of the bubble with Ṙ and R̈ denoting its first and second temporal
derivatives, respectively. The summation of the first two terms on the right-hand side is
the bubble pressure, where pv is the vapour pressure and pg0(R0/R)3k is the dissolved
gas pressure, with pg0 and R0 representing the initial equilibrium gas pressure and radius,
respectively. The exponent, k, is set to 1 if the bubble content behaves isothermally and
to γ (gas polytropic constant) if the radius of the bubble varies adiabatically. Here, p2R is
the surface-average pressure of the mixture over a concentric sphere with radius 2R, which
represents the local pressure around the bubble. To obtain the local pressure, other radial
distances (e.g. 5R) could also be used with similar accuracy. In such a case, one only needs
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to modify the constant coefficients on the left-hand side of the equation accordingly. Here,
we assumed that a distance of 2R from the centre of the bubble can give a more accurate
representation of the bubble local pressure when it is surrounded by other Lagrangian
bubbles. Finally, the last two terms represent the viscous stress and surface tension stress
on the interface, with σ denoting the surface tension coefficient. Equation (3.21) can be
conveniently implemented in different control volume-based solution algorithms.

The time-step adaptive second-order Rosenbrock method is implemented to solve
the Rayleigh–Plesset equation numerically (see e.g. Shampine & Reichelt 1997 for a
description of this approach). In the solution algorithm, all of the equation parameters
should be specified. The surrounding fluid properties (σ , μ, γ and ρ) are either constant
values or surface-average interpolated at 5R, as explained in the previous section.
Additionally, the vapour pressure, pv , is considered as the liquid–vapour saturation
pressure at the flow temperature. Then, the only unknown term is the dissolved gas
pressure, which is a function of the initial (or reference) radius, R0, and gas pressure,
pg0, of the bubble. These parameters should be specified when a bubble is injected. For
the Lagrangian solver, where new cavity structures are introduced as (parcels of) bubbles,
at the injection time, a bubble is assumed to originate from a nucleus, which has been in
an equilibrium condition far away from the cavitation zone, and it has been transformed by
the flow and has grown in size owing to the pressure drop. In the equilibrium condition, the
original form of the Rayleigh–Plesset equation can be simplified and leads to the following
relation between the initial gas pressure and bubble radius:

pg0 = p∞ − pv + 2σ

R0
, (3.22)

where p∞ is the far-field pressure, assumed to be 101 325 Pa. In this study, it is assumed
that the radius of the assumed nuclei is 1 µm, which corresponds to pg0 = 242 kPa.
However, it is possible in the solver to adjust these parameters based on the experimental
data of water quality, if available. Additionally, in the hybrid model, when an Eulerian
cavity is transformed to a Lagrangian bubble, initial values of Ṙ and R̈ are obtained based
on the volume variation rate of the old Eulerian vapour, as will be described later. It was
shown previously that (3.21) can adequately describe the collapse of a single bubble as
well as a cluster of bubbles with random distribution and significant bubble interactions
over a wall compared with the thermodynamic equilibrium model of Schmidt et al. (2011)
as a reference solution (Ghahramani et al. 2019). It was also shown that the localized
Rayleigh–Plesset equation provides a considerably more accurate estimation of the bubble
collapse rate compared with the original equation with correction terms suggested by
Hsiao et al. (2017) and Giannadakis et al. (2008). Further comparison with other earlier
models is given in Appendix A.

3.2.4. Bubble–bubble collision
For the four-way coupling, the method for how bubble–bubble collisions are handled is
a critical issue. There are two fundamental parts to the calculation of bubble collisions,
the incidence of collisions and the outcome of collisions. The incidence of collisions is
predicted using a deterministic algorithm similar to the work of Breuer & Alletto (2012)
and only binary collisions are considered here. We first explain the algorithm for colliding
bubbles and later this is extended for parcel collisions. To find the collision possibility
between each bubble and other bubbles, instead of having a loop over all of the other
bubbles, which is computationally expensive, we use a more efficient method and detect
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the bubble–bubble collision by a faster algorithm based on the ‘cell occupancy’ concept.
The cell occupancy concept and the detection of possible collisions between the bubbles
close to each other are described in detail in Appendix C. Using the cell occupancy
property, it is possible to detect the collisions between the bubbles that are located at two
sides of a processor boundary in a parallel computation, while in the previous approach,
in which one needs to loop over all bubbles, it can be sophisticated and computationally
expensive to send Lagrangian bubble information to a neighbouring processor.

After a collision, a pair of bubbles may coalesce to form a larger bubble or they may
bounce back from each other, and this is specified based on the relative velocity and
the interaction time of the bubbles. It is known that there is a limited time available for
bubble–bubble interactions, and when two bubbles approach each other, a liquid film is
trapped between them, which tends to resist any further movement that could bring the
bubbles closer (Chesters 1991). If the interaction time is long enough that the liquid film
can drain to a sufficiently small thickness and rupture, the bubbles may coalesce, otherwise
they bounce back from each other. The outcome of the collision is therefore assumed to
be a function of two time scales, the interaction time of the bubbles, ti, and the liquid film
drainage time, td. According to Kamp et al. (2001), these time scales are given by

ti = π

4

(
ρDeq

3

6σ

)1/2

,

td = k
ρVrelDeq

2

8σ
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.23)

where, Vrel is the relative velocity between the two bubbles in the normal direction, and
Deq = 4R1R2/(R1 + R2) is the equivalent diameter of the bubbles with radii R1 and R2.
Additionally, k is a correction factor which accounts for various approximations made in
deriving the expressions for ti and td, and is set to 2.5 (Kamp et al. 2001). The theoretical
coalescence probability for a head-on collision is Pcoal = 0 if ti < td and Pcoal = 1 if ti ≥
td. However, to account for the the fact that the collision may not be frontal, the coalescence
probability is expressed as

Pcoal = e−td/ti . (3.24)

Then a random number is sampled from a uniform distribution function. If this number is
larger than the coalescence probability, then the bubbles are assumed to bounce back after
collision; otherwise, they are considered to coalesce. For the first scenario, the normal
velocities of the bubbles after collision are calculated as

u+
1n = m1u−

1n + m2u−
2n − εm2(u−

1n − u−
2n)

m1 + m2
,

u+
2n = m1u−

1n + m2u−
2n + εm1(u−

1n − u−
2n)

m1 + m2
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.25)

where m1 and m2 denote the mass of the bubbles, u−
1n and u−

2n are the corresponding
normal velocities before collision (Appendix C), and ε is the restitution coefficient, which
is set to 0.8 following Vallier (2013). Here, it is assumed that the tangential velocity of
the bubble does not change, which implies no friction between the colliding pair. If the
bubbles coalesce after collision, then we need to estimate the properties of the new bubble.
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Following the work of Ilinskii et al. (2006), this process is assumed to satisfy the following
conservation relations:

V1 + V2 = V3, (3.26)

V̇1 + V̇2 = V̇3, (3.27)

pB1V1 + pB2V2 = pB3V3, (3.28)

x1V1 + x2V2 = x3V3, (3.29)

u1V1 + u2V2 = u3V3, (3.30)

where index 3 identifies the properties of the third bubble and Vi is the volume of the
bubble, whose temporal variation rate is represented by V̇i = 4πR2

i Ṙi. Equations (3.26)
and (3.27) conserve the vapour volume and kinetic energy, respectively. From these
equations, R3 and Ṙ3 are obtained. Equation (3.28) conserves the internal energy of the
vapour inside the bubble. From this relation, the new bubble pressure, pB3, is calculated,
which in turn is used to estimate the dissolved gas pressure (pg3), while pv is constant.
Finally, (3.29) and (3.30) maintain a constant centre of mass and momentum, respectively,
and, from them, we estimate the centre (x3) and velocity (u3) vectors of the new bubble.

As stated earlier, (3.23)–(3.30) describe the interactions between a pair of bubbles. For
two bubbles, a collision occurs if the bubbles pass within the collision locus, a circle of the
collision cross-section. For bubble parcels, we assume that the collision cylinder formed
by the displacement and collision cross-section has a larger diameter. To take into account
this larger collision locus, we assign an equivalent radius to each bubble group that is
represented by a parcel. The equivalent radius is simply given as

Reqv,i =
(

3
4π

Vtot,i

)1/3

= ni
1/3Ri, (3.31)

where Vtot,i and ni are the total volume vapour and number of bubbles that are
represented by a specific parcel i. Hence, the equivalent diameter of the bubble pair
in (3.23) should be calculated based on the equivalent radii of the parcels (i.e. Deq =
4Reqv,1Reqv,2/(Reqv,1 + Reqv,2)). It should be noticed that the properties of each parcel
(Ri, xi, ui, mi, etc) are the same as the properties of the other bubbles that the parcel
represents and the equivalent radii in the equations above are used to take into account
the larger collision locus and hence collision probability between bubble groups, assuming
that during the collision process each bubble group can be approximated by a larger bubble
that has a similar vapour volume. If the parcels do not coalesce after collision, then (3.25)
is used to update the normal velocities. However, because the total momentum of the
bubble group should be considered in the collision, in this equation, the bubble mass (mi)
should be replaced by the total vapour mass (i.e., mtot,i = nimi). Additionally, if the parcels
coalesce, in the conservation relations (3.26)–(3.30), the bubble volume and its temporal
rate should be replaced by the corresponding values of the bubble group, i.e. Vtot,i and
V̇tot,i.

3.2.5. Bubble break-up
The non-uniform pressure distribution and hydrodynamic forces in the surrounding fluid
cause bubble deformation, which can lead to break-up. The break-up process can have
different mechanisms regarding the governing physical process. The main mechanisms
that have been studied extensively in the literature are: turbulent fluctuation and collision;
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viscous shear stress; shearing-off process; and interfacial instability (Lau et al. 2014).
From these mechanisms, bubble break-up because of turbulent fluctuation along the
surface or by collision with eddies have been investigated most extensively. Giannadakis
et al. (2008) included break-up arising from both the turbulence and hydrodynamic forces
(caused by the velocity difference between a bubble and surrounding fluid) in their
Lagrangian cavitation model and concluded that most bubbles break because of turbulent
break-up. Lau et al. (2014) also found the turbulent fluctuation mechanism to be the
dominant break-up mechanism in a turbulent bubble column.

Regarding the break-up criterion for a bubble, four different criteria have been reported
in the literature. The associated critical values involve bubble turbulent kinetic energy, the
surrounding velocity fluctuation, turbulent kinetic energy of the impacting eddy and the
inertial force of the eddy. However, Lau et al. (2014) showed that various reported models
can be written in terms of a critical Weber number, We. The We can be regarded as a
dimensionless ratio between the inertial force (which causes deformation) and the surface
tension (which tends to restore the bubble sphericity). For turbulent flow around a bubble,
We can be defined as

We = ρ(u′
iu

′
i)dpdp

σ
, (3.32)

where (u′
iu

′
i)dp is the mean square velocity difference over a distance equal to the diameter

of the bubble. Because the deforming fluctuations are assumed to be of the same size as
the diameter dp of the parent bubble, the characteristic length in (3.32) is the diameter of
the bubble and the velocity difference is estimated over the same distance. The criterion
for bubble break-up is usually defined as a critical value for We. For instance, Giannadakis
et al. (2008) used a critical value of 12, which is similar to what Lau et al. (2014) have
derived for spherical bubbles.

Similar to most break-up models reported in the literature, we assume a binary
break-up in the current study. The size of daughter bubbles is determined by the
break-up volume fraction, fbv . Here, fbv is a random variable and can be either based on
empirical observations or acquired from a statistical distribution. Various daughter bubble
size distributions (uniform, normal, U-shape and M-shape) have been presented in the
literature. In a recent study, Hoppe & Breuer (2020) derived a relation for the critical We
based on the break-up volume fraction, given as

Wecrit = 12
dp

ds
= 12f −1/3

bv , (3.33)

where ds denotes the diameter of the small daughter bubble. The ratio f −1/3
bv has a

minimum value of 0.5−1/3 = 1.26 for a break-up into two equally-sized daughter bubbles.
In this case, the critical We has a minimum value of 15.12, which is the closest one to the
corresponding value mentioned above. Other daughter size distributions would correspond
to larger values of critical We, which means a larger turbulent kinetic energy to break the
deformed bubbles. In this study, the bubbles are assumed to break-up into equally-sized
daughter bubbles and the We is considered to be 15.12. This makes the implementation
simpler as well, as there is no need to define a new parcel, but only the number of bubbles
that the parcel is representing is doubled.

To calculate the properties of the daughter bubbles, it is assumed that the break-up
process follows similar conservation relations that were used for the description of the
bubble coalescence process. It is obvious that during break-up of each bubble into two
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bubbles with dp/ds = 1.26, the vapour volume is conserved and the number of bubbles
represented by each parcel (ni) is doubled. Having Ri and ni, the growth rate of daughter
bubbles can be obtained from the conservation of kinetic energy (identical to (3.27)).
Then, the internal energy conservation relation (similar to (3.28)) is used to calculate the
dissolved gas pressure of the bubble. Because the daughter parcels are equal and the vapour
volume is conserved during this process, the position and velocity vectors of the parcel do
not vary during the break-up process.

The Lagrangian model is a four-way coupling model as both bubble–flow
interactions and bubble–bubble interactions are considered. Additionally, the discreti-
zations and solution algorithm for the Eulerian equations of this model are exactly the
same as those of the homogeneous mixture model. At each time step, the continuity and
Navier–Stokes equations ((3.1) and (3.2)) are solved first and the updated pressure and
velocity field are used to solve the Lagrangian transport equation (3.15), bubble dynamics
equation (3.21), and bubble interactions with each other and with flow boundaries. The
updated bubble size and distribution are then used to update the volume fraction value
(β) to obtain the new mixture properties for the next time step. The Lagrangian model
performance was verified earlier against benchmark test cases for the collapse of a single
bubble and a cluster of bubbles (Ghahramani et al. 2019).

3.3. The multi-scale hybrid model
In the hybrid model, the large vapour structures are modelled through the Eulerian
mixture approach and the small-scale structures are represented as discrete bubbles. The
governing equations of the continuous flow field are similar to the previous models (i.e.
(3.2)–(3.7)) and the main difference is in the tracking of the cavity structures. Here, the
cavities are categorized as Eulerian structures and Lagrangian bubbles to be tracked in the
corresponding framework.

As mentioned in § 2, the categorization of the structures into Lagrangian and Eulerian
groups is done based on the size of each cavity relative to the local grid size of the
discretized domain. If a cavity is large enough to be resolved by a sufficient number of
computational cells, then it is tracked in the Eulerian framework, otherwise it is treated
as parcels of Lagrangian bubbles. Furthermore, as the volume of each cavity can change
in the flow, at each time step, the small Eulerian structures or large Lagrangian cavities
may be transformed from one framework to the other. In the previous sections, the cavity
volume fraction is specified by either the α or β parameters, but here, the governing
equations should be revised to consider both Lagrangian bubbles (β) and Eulerian cavities
(α) together in the solution algorithm. Furthermore, another algorithm needs to be defined
for the transformation of Eulerian cavities to Lagrangian bubbles and vice versa. In the
earlier study by Ghahramani et al. (2018), this algorithm and the necessary revisions in the
governing equations were explained in detail, and in the following paragraphs, a summary
of them with some new details of the transition process are presented.

3.3.1. Eulerian–Lagrangian transition
In the current transition algorithm, cavities are transformed directly from one framework
to the other. At each time step, small Eulerian cavity structures that are not resolved by a
sufficient number of computational cells are transformed to Lagrangian bubbles. Eulerian
cavity structures are recognized in the flow domain by the hosting cells liquid volume
fraction, which is less than 1. Thus, to remove an Eulerian structure, the corresponding
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liquid volume fraction of the respective cells (α) needs to be set equal to 1. This transition
is shown schematically in figure 3 for a simple 2-D grid. The grid cells that have Eulerian
cavities are coloured blue with α < 1. Two of the cavities are resolved only by four cells
and they are replaced by Lagrangian bubbles. Additionally, if a Lagrangian cavity later
becomes large enough, it is transformed back to a Eulerian structure by deleting the
corresponding bubbles and setting a new α value in the occupied cells. Furthermore, if
each Lagrangian bubble approaches a large Eulerian structure, it is transformed to the
Eulerian framework and becomes a part of that large cavity. As explained by Ghahramani
et al. (2018), when bubbles replace a cavity cloud by setting the α value to 1 without
considering the effect of new bubbles in the mixture properties (as described in § 3.2.1),
the sudden change in the α value will cause a jump in the values of the mixture properties,
ρm and μm, (based on (3.3) and (3.5)) as well as the mass transfer source term (3.7).
Such significant changes can cause spurious numerical pressure pulses, which may have
considerable unrealistic effects on the flow field and the resulting erosion/noise prediction.
The same scenario can occur when a Lagrangian cavity is transferred to an Eulerian
cloud (see (3.11a,b)). Therefore, the governing equations of the continuous flow should
be written based on a new parameter that is conserved during the transition process. As
explained in an earlier study (Ghahramani et al. 2018), the improved relations for mixture
properties and mass transfer rate are given as

ρm = αβρl + (1 − αβ)ρv,

μm = αβμl + (1 − αβ)μv,

}
(3.34)

ṁc = Ccαβ(1 − αβ)
3ρlρv

ρmRB

√
2

3ρl|p − pthreshold| max( p − pthreshold, 0),

ṁv = Cvαβ(1 + αNuc − αβ)
3ρlρv

ρmRB

√
2

3ρl|p − pthreshold| min( p − pthreshold, 0).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.35)

Here, the earlier α (or β) terms are replaced by their product αβ. It is obvious that in
cells containing an Eulerian cavity, α is less 1, while it is equal to 1 everywhere else.
Similarly, in cells containing bubbles, β is less than 1, while it is equal to 1 everywhere
else. During the Eulerian to Lagrangian transition, the new value of β in the cavity hosting
cells is the same as the old value of α and vice versa. Therefore, both α and β have similar
sudden changes while their product αβ does not change during the Eulerian–Lagrangian
transition. In the cells containing bubbles, where α = 1, αβ has the same value as β and
in Eulerian cavity zones, where β = 1, αβ is equal to α. It is important to note that in
each computational cell, the vapour structure should be represented in either a Eulerian or
Lagrangian framework. Therefore, in the cells containing bubbles, the generation of the
Eulerian cavities should be avoided by revising the α transport equation source term as
(Ghahramani et al. 2018)

∂α

∂t
+ ∂(αui)

∂xi
= ṁ

ρl
∗ pos(β − 1). (3.36)

The pos(x) function returns 1 when x ≥ 0, otherwise it returns 0. When there is a bubble
in a cell, β is less than 1; therefore, the pos(β − 1) equals zero and no cavity is generated
in the cell. To the best of the authors’ knowledge, the revision of governing equations
((3.34)–(3.36)) is missing in the earlier hybrid models of this type. An exception is the
recent study by Peters & El Moctar (2020), in which the Lagrangian bubbles contribution
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1

0

α

1

0

β

Figure 3. Transition of small Eulerian cavities to Lagrangian bubbles.

to the mixture properties is taken into account. Here, we have developed the modelling
one step further by considering the bubble effects in the mass transfer rate and α transport
equations (Ghahramani et al. 2018).

Another important point in the transition process is the specification of new bubble
properties. The small Eulerian cavities, which are transformed to the Lagrangian
framework, are usually sparse clouds with a low vapour concentration. Therefore, it is
not realistic to replace the whole structure with one single bubble of pure vapour but one
should use a cloud of smaller bubbles. The small bubbles can have different distributions
in size and position, and to decrease the computational expenses, it is suggested to keep
the number of bubbles as low as possible. Furthermore, to ensure local conservation of
vapour volume in each computational cell, the vapour content of each individual cell is
replaced by relative individual parcels whose diameter is less than the minimum edge of
the cell (Ghahramani et al. 2018), figure 3. Then the vapour volume of each cell is replaced
by at least one parcel and the number of bubbles for that parcel is defined based on the
vapour volume conservation. If the size of the new parcel (≤ minimum cell edge) is larger
than a realistic physical value, it breaks-up into smaller parcels following the described
break-up model. When the bubble radius and the number of bubbles for each parcel
are determined, other Lagrangian properties can be specified based on the conservation
relations and equilibrium equations. The growth rate of the bubble, Ṙ, and its temporal
rate, R̈, are obtained from the corresponding values for the Eulerian cavity as

Ṙi = V̇v,j

niqj4πR2
i
,

R̈i = V̈v,j − niqj8πRiṘ2
i

niqj4πR2
i

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.37)

where qj is the number of parcels in cell j, V̇v,j denotes the growth rate of Eulerian vapour
volume in the cell and V̈v,j is its temporal rate. A correct initialization of Ṙ and R̈ is
an important point, which is not taken into consideration in the earlier hybrid cavitation
models. This is depicted in figure 4 for the collapse of a single isolated bubble exposed
to the atmospheric pressure at infinity. Here, the effects of viscosity, dissolved gas and
surface tension are ignored. This problem is known as Rayleigh bubble collapse and can
be solved analytically up to the collapse time. The liquid is assumed to be incompressible
and because the dissolved gas effect is ignored, the bubble has a full collapse. In an
earlier study (Ghahramani et al. 2019), it was shown that both Eulerian mixture and
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1.0
Analytical

Ṙ0 = ṘEulerian

Ṙ0 = 00.8

0.6

0.4

R/R0

0.2

0 0.2 0.4 0.6

t/τR
0.8 1.0 1.2 1.4

Figure 4. Effect of initial growth rate on the bubble collapse.

Lagrangian bubble models can accurately predict the temporal variation of the bubble
radius. In figure 4, the hybrid model result is compared with the exact analytical solution.
The horizontal axis is the time, non-dimensionalized by the final collapse time, and the
vertical axis is the dimensionless radius. In the simulation, the 0.4 mm bubble is initially
modelled using the mixture model, and when R/R0 = 0.6, the cavity is transformed to
the Lagrangian framework. We can see that using (3.37), the numerical result follows the
theoretical pattern, while the collapse time will have a significant delay if the initial value
of Ṙ is set to 0.

Regarding the initialization of the remaining parameters, the initial density and velocity
of the parcel are set equal to the vapour density and cell velocity, respectively. Finally, the
initial radius of the bubble, R0 is set to 1 µm and the corresponding initial dissolved gas
pressure (pg0) is estimated from (3.22), as stated earlier.

Another point regarding the compatibility of the two frameworks is the mass transfer at
the interface. In the derivation of the Rayleigh–Plesset equation, the mass transfer through
the interface is neglected (Franc & Michel 2006) and the bubble size varies based mainly
on the difference between the bubble pressure and its surrounding pressure, as well as
surface tension and viscosity effects. For the Eulerian model, there is a source term in the
vapour transport equation (3.6), based on which the vapour volume and the mixture density
varies. However, this source term is also mainly a function of the pressure difference.
As stated previously, the finite mass transfer models, such as the applied Schnerr–Sauer
model, can be interpreted as a simplified form of the Rayleigh–Plesset equation, in which
the dissolved gas pressure, surface tension and viscous forces are neglected and the bubble
inertia is simplified by neglecting the second temporal derivative of the bubble radius.

After explaining different aspects of the Eulerian to Lagrangian transition, the overall
algorithm of this process can be summarized now. In the first step, all of the cavity
structures in the flow domain are detected. Next, the number of computational cells
that represent each structure are counted. To measure the size of an Eulerian cavity,
the computational cells with α ≤ αlim are counted as vapour cells. If the number of
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Algorithm 1 Eulerian to Lagrangian transition algorithm

1: Create a list of cell labels {cell j, j = 1 : J} that are hosting the cavity structure.

2: for j=1:J do

3: Evaluate the cavity volume Vv,j and its temporal derivatives, V̇v,j and V̈v,j.

4: Find the minimum edge length of the cell, �min,j

5: Specify the number of parcels in the cell, qj. Then the number of bubbles for each
parcel and their radii are calculated as
niqj

4
3πRi

3 = Vvapour,j,

Ri ≤ �min,j.

6: for i=1:qj do

7: Find the parcel’s position vector xi in the cell j: The positions vectors
are qj points in the cell volume with uniform distribution.

8: Set the bubble’s velocity, ui, equal to the Eulerian mixture velocity
in the cell, uj and its density, ρi equal to ρv

9: Find Ṙi, R̈i and pg0 from (3.37) and (3.22).

10: Inject the bubble parcel

11: end for

12: Remove the Eulerian cavity of the cell by setting αj = 1.

13: end for

cells is less than a threshold value, denoted as NEL, it is decided that the relative
structure is not represented by a sufficient number of grid cells. Then, for each cavity
that is not well resolved, Algorithm 1 is followed. Because the liquid–vapour interface is
diffuse in mixture modelling, in addition to the cell group with α ≤ αlim, there are other
neighbouring cells with αlim < α < 1. In the transition algorithm, the vapour content of
these cells are also transferred to small Lagrangian bubbles.

Additionally, if a Lagrangian bubble collides with a large Eulerian cavity or it becomes
large enough to be resolved by sufficient number of cells, it will be transformed to an
Eulerian structure by deleting the bubble, while in the host cell, β is set to 1 and α =
βold. In this study, the transition criterion is based on a threshold number of grid cells. In
the solver implementation, the user can set two parameters, NEL and NLE, which are the
threshold numbers of cells, based on which an Eulerian structure is transformed to a group
of Lagrangian bubbles and vice versa, respectively. Such a criterion can be dependent on
the grid resolution as the numbers should be specified based on the sufficiency of a grid
in resolving an Eulerian cavity. In the following section, the effect of these numbers in
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the solver performance is investigated. Applying more suitable criteria for the transition
algorithm can be the subject of a future study.

As mentioned earlier, the hybrid solver is developed based on the coupling of the
presented Lagrangian model with the the solver interPhaseChangeFoam in OpenFOAM.
In this solver, the pressure (continuity) and velocity (momentum) equations are coupled
using a PIMPLE algorithm (OpenFoam 2018). This algorithm is a merge of the SIMPLE
(Patankar & Spalding 1983) and PISO algorithms, where the PISO loop is complemented
by an outer iteration loop, see e.g. Barton (1998) for different ways to merge the PISO and
SIMPLE procedures. In the current study, at each time step, four outer SIMPLE loops are
performed, and in each SIMPLE loop, four PISO pressure-correction loops are performed.
The final solution algorithm of the hybrid solver is depicted in figure 5.

4. Cavitating flow around a sharp-edge bluff body

The multi-scale problem is a periodic cavitating flow around a bluff body. We use this
case to both validate the numerical model and investigate some of the flow characteristics
at different scales of a cavitation problem. Based on our experience and earlier studies
in the literature, this set-up can generate various cavity structures with different length
scales that have aggressive collapses, which are highly erosive at low cavitation numbers.
For example, Escaler, Avellan & Egusquiza (2001) compared four different bluff bodies
and found the flat-front semi-circular cylinder to be an adequate geometry for generating
reproducible pitting on the specimen within a short period of time. However, a reliable
numerical study of the cavitating flow around this geometry, which can provide detailed
information of the flow physics, has not been done yet. Additionally, as will be seen later,
the cavitation development in this test case includes various structures with different length
scales.

The bluff body is a flat-front semi-circular cylinder that is mounted on a surface in the
throat of a convergent–divergent channel. The mounted cylinder and a simple sketch of
the test section are depicted in figure 6. The channel has a rectangular cross-section with
dimensions of 74 × 54 mm2 which contracts to a section of 25 × 54 mm2 through a curved
profile upper wall and a simple 45 ◦ slope on the lower wall, while the channel width is
constant everywhere. The bluff body is put at the end of the lower slope and after that,
there is a flat plate with dimensions of 106 × 54 mm2. The flat side of the cylinder is
facing upstream and at the attachment of the flat plate and the sloped wall, there is a small
backward facing step with a height of 0.5 mm. The cylinder has a diameter of 5 mm and a
length of 9.65 mm. The cavitation number is defined as

σ = pd − pv

1
2ρu2

th

, (4.1)

where pd is the downstream pressure, pv is the vapour pressure and uth is the area-averaged
velocity of the flow at the throat of the converging–diverging section without the cylinder.
The downstream pressure is measured at a distance of 500.5 mm after the bluff body.
The pressure probe location can be seen in figure 6(b). The experimental data have been
captured using high-speed imaging in an earlier study (Ghahramani et al. 2020) for a
vast range of cavity patterns. Further details about the set-up as well as the experimental
procedure can be found in the same paper. Here, we choose a periodic cavity pattern which
corresponds to a cavitation number of 0.893, volumetric flow rate of 0.0257 m3 s−1 and
downstream pressure of 164 kPa. This case includes various structures at different length
scales.
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Figure 5. Hybrid solver algorithm.
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Upper wall

(a)

(b)

Y
X

Cylinder Flat plate

Flow

Pressure probe

Z

Figure 6. Test case: (a) lower wall and bluff body; (b) test section (dimensions not to scale). The images are
taken from the paper by Ghahramani et al. (2020).

Inlet Outlet

14w16w

pd

Figure 7. Computational domain; w denotes the channel width. The image is taken from the paper by
Ghahramani et al. (2020).

4.1. Simulation set-up
The created numerical domain is depicted in figure 7, which includes the domain inlet
and outlet boundaries, as well as the pressure probe location and the small cylinder in
the converging–diverging section of the channel. To avoid the influence of the inlet and
outlet boundaries on the flow field in the converging–diverging part of the channel and
the measured pressure at the probe location, these boundaries are located sufficiently far
from the test section. In the figure, w denotes the channel width normal to the plane,
which is constant in the whole domain. At the inlet, a constant volume flow rate of
0.0257 m3 s−1 is applied for the velocity field while the pressure gradient is set to zero. At
the outlet, a constant pressure is set such that the probe pressure pd is equal to 164 kPa,
while a zero gradient condition is set for the velocity. These values correspond to test case
3 in the experimental work with a cavitation number of 0.893 (Ghahramani et al. 2020).
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Furthermore, a no-slip condition is applied on all solid boundaries including the bluff
body.

To discretize the flow domain, a structured mesh consisting of 4.8 million cells is created
using ANSYS/ICEM. The top and side views of the generated grid are shown in figure 8
with zoomed views around the body and lower wall. The 0.5 mm height backward facing
can be seen in the zoomed views. The mesh is non-uniform with finer cells around the
cylinder and near the walls. If we consider the area from the start of the sloped wall to
the end of the flat plate behind the cylinder as the critical area, 2.5 million cells of the
generated grid are located in this zone. Additionally, the length of the wake flow behind
the cylinder and in the axial direction (the flat-plate length) is discretized by approximately
150 grid nodes, while the number of nodes used for the cavity height and width are
approximately 65 and 45, respectively.

To study the influence of the grid resolution on the predicted results, in a previous study
(Ghahramani et al. 2020), the cavitating flow (by the Eulerian model) was calculated using
a finer grid with 10.8 million cells as well. From the predicted values for the pressure drop
in the channel, as well as the drag coefficient on the bluff body, it was found that using
a finer grid does not alter the averaged flow parameters significantly and therefore the
4.8 million cell grid is used in this study. In addition to the main grid results, the flow is
simulated with a coarser grid to investigate the hybrid model performance with a lower
grid resolution. The coarser grid is composed of 1.6 million cells with 0.6 million cells in
the critical area.

Regarding the discretization of the governing equations, a second-order implicit time
scheme is used for time discretization and the time step is set to 1.5 × 10−7 s, which
yields a maximum Courant number of 0.3. As turbulence is modelled using the ILES
approach, the momentum equation convection terms are discretized using a total variation
diminishing limited linear interpolation scheme with a limiter value of 0.5. All of the
gradients have been corrected to consider non-orthogonality of the computational cells.
For the volume fraction transport equation, a first-order upwind scheme is employed,
and to improve the coupling between the volume fraction equation and velocity–pressure
equations, the transport equation of the liquid volume fraction is solved inside the PIMPLE
loop (figure 5). A detailed explanation of the discretization of the Eulerian governing
equations can be found in the work by Asnaghi (2015).

4.2. Cavitation regime
We start by briefly describing the features of the cavitating flow around the bluff body
using the experimental results. All of the experimental results that are shown below are
from an earlier study (Ghahramani et al. 2020) and in all figures, the flow is from left to
right. Additionally, in all of the time series of the flow that are illustrated in this paper,
�T = 4 × 10−5 s. The cavitation pattern of the described test case is shown in figure 9.
After separation of the flow from the cylinder edges, different vortices are generated in
the streamwise, spanwise and transverse directions. Here, by streamwise we mean the
main flow direction, while spanwise is the direction along the cylinder span and normal
to the flat plate behind it, and transverse is the other cross-stream direction normal to
the spanwise direction. The low pressure vortices are first generated in the spanwise
and transverse directions, and from their interactions with each other and the main flow,
secondary streamwise vortices are created afterwards. The cavities have a cyclic pattern,
which means that they shed periodically from the cylinder wake region.
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(a)

(b)

Figure 8. Domain discretization: (a) top view; (b) side view. The images are taken from the paper by
Ghahramani et al. (2020).
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C31
T0

(a) (b)

(c) (d )

(e) ( f )

C31 C32

C32 Horseshoe cavityC31

T0 + 5�T

T0 + 34�TT0 + 22�T

T0 + 51�T

Figure 9. Instantaneous cavity structures from an inclined-top view. (a–e) represent a time series. C31 and
C32 represent two spanwise cavitating vortices. The images are taken from the paper by Ghahramani et al.
(2020).

In figure 9(a–e), a time series of cyclic cavity development is depicted. The streamwise
and spanwise cavities are visible from the inclined-top view in this figure; however, the
less cavitating transverse vortices are more detectable as large dots in the 2-D side view
in figure 10 (e.g. cavities TC1 and TC2). At time T0, a spanwise cavitating vortex, C31,
is created on the cylinder surface. As this vortex detaches from the cylinder, its vapour
content increases and the cavity grows (T0 + 5�T). Meanwhile, a second larger spanwise
cavity, C32, is seen downstream of C31. While the first cavity is developing behind the
cylinder, the second one is shed from the body and its vapour content is decreasing, as
shown in figure 9(c,d). Finally, at time T0 + 51�T , the second cavity is detaching in
the form of a horseshoe vortex, while C31 is completely developed and has a similar
shape as of the second cavity in the beginning of the time series (figure 9a). It should
be mentioned that the revolving spanwise cavitating vortices are not always distinct from
each other, and sometimes a spanwise cavity may grow and interact with a subsequent
spanwise cavity as well as other vapour structures and evolve to a larger vapour pocket,
similar to that in figure 9( f ). Horseshoe vortices are not developed from spanwise cavities
alone, but a combination of spanwise and transverse cavities that started at the top edge
of the cylinder. The horseshoe vortices cannot last long as cavitating and they often lose
most of their vapour content before reaching the half length of the flat plate; however, at
specific times, a vortex may survive until approximately two-thirds of the plate length,
as shown in figure 9( f ). Sometimes a horseshoe vortex is not developed, but because of
the interactions between cross-streamwise vortices with each other and the main flow, a
streamwise vortex is created and stretched, which leads to streamwise cavities, as can be
seen in figure 9( f ) as well.

In figure 10, the cavity pattern is shown from the side view. Here, another time series of
the flow is demonstrated in figure 10(a–d) to show the shedding of horseshoe vortices.
We see that while the vortices HSC31, HSC33 and HSC34 are cavitating, the vortex
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T1

HSC31
TC1

T1 + 30�T

HSC31

HSC31
HS32

HSC33

HSC31HSC33
HSC34

TC2
SC1

T1 + 95�T T1 + 125�T

(a) (b)

(c) (d)

(e) ( f )

Figure 10. Instantaneous cavity structures from the side view. (a–d) represent a time series. TC, HSC and SC
stand for transverse cavity, horseshoe cavity and streamwise cavity, respectively. The images are taken from the
paper by Ghahramani et al. (2020).

HS32 is almost non-cavitating. It can be inferred from the time series that the streamwise
and horseshoe vortices are not always cavitating and while a horseshoe vortex has a
considerable vapour content (e.g. figure 10b), its subsequent vortex might be almost
non-cavitating. The non-cavitating vortex is not as visible as the other structures; however,
its presence can be further confirmed by the distance between HSC31 and HSC33, which
is approximately twice the distance between HSC33 and HSC34. From figures 9 and 10,
it can also be inferred that the near-wake transverse vortices are less cavitating compared
with their spanwise correspondents. This can be seen from the lower vapour content in the
core of the transverse vortices in the side-view images. Furthermore, from the side-view
images, we can see the dispersed vapour bubbles and the horseshoe vortices with small
vapour contents far downstream of the flow field. It is also worth mentioning that while at
some instances, dense cavities with high vapour content can be seen behind the cylinder
(e.g. figure 10e), there are other instances at which the near-wake cavities are fully or
partially transparent, similar to what is shown in figure 10( f ), and this reveals the very
unsteady nature of the flow field around the bluff body.

4.3. Eulerian mixture model
In this section, the Eulerian mixture model performance (without any Lagrangian
modelling of small scales) is investigated. Figure 11 shows the obtained cavity pattern from
the Eulerian model based on the liquid fraction iso-surfaces. Here, the light grey colour
represents the iso-surface of α = 0.9, and the black colour represents the iso-surface
of α = 0.5. Comparing the iso-surfaces with the experimental results (figures 9 and
10), it is evident that the cavity volume is underestimated using the Eulerian model.
The underestimation is so considerable that some of the main features, explained in the
previous section, are not captured in the results. While the cavitation should start on the
cylinder surface, in the numerical results, we see that the inception is postponed and
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ES1

EC1 EC2

ES1

EC1 EC2

ES1

EC1 EC2 EC2

T1 T1 + 5�T

T1 + 10�T

T1 + 22.5�T

T1 + 15�T

(a) (b)

(c) (d)

(e) ( f )

Figure 11. Contours of liquid volume fractions of 0.9 (light grey) and 0.5 (black) obtained by the Eulerian
mixture model. Panels (a–e) represent a time series. Panel ( f ) shows an instance with more vapour volume.
Here, EC1 and EC2 represent two spanwise cavitating vortices and ES1 is a streamwise cavitating vortex.

small vapour structures appear at a distance from the body. To be more precise, while
in experiment, the first spanwise cavitating vortices starts to cavitate from the sharp edges
of the cylinder, here, the first spanwise cavities, which partially cavitate, appear after the
backward step behind the cylinder. In fact, at most times, we see a no-cavity zone close to
the cylinder.

To further understand the model performance, figure 11 includes a time series of
cavitation development. At time T0, we see a small (partially) cavitating spanwise vortex,
EC1, in the wake area and immediately after the small backward step. At the same
time, there is a streamwise caviting vortex at the end of the cavitation zone, ES1, and
between these two, there is a second larger spanwise vortex, EC2. At time T0 + 5�T , the
cavity EC1 moves downstream and the streamwise vortex has less vapour content. Just a
few time steps later, T0 + 10�T , the cavity EC1 starts to collapse, which is in contrast
to the real case where the spanwise cavity keeps growing (as shown in figure 9b,c).
At this time, we see that the streamwise cavity has also partially collapsed. At a later
time, T0 + 15�T , the cavity EC1 has almost collapsed and afterwards, at T0 + 22.5�T ,
a new spanwise vortex starts cavitating. In the time series, the shedding of the other
spanwise cavity, EC2, is not well resolved and, furthermore, we do not see any small
and disperse vapour structure after the wake area, which is seen in the experimental
results, especially from the side-view images (figure 10). It should be mentioned that the
Eulerian mixture model captures more cavity volumes at some exceptional instances, such
as that showed in figure 11(f ); however, most of the time, the cavities are considerably
underestimated and they have a fast collapse, such as ES1 in figure 11. Another important
point is that the Eulerian mixture model does not capture transverse cavitating vortices.
The stated features of the Eulerian model results, as well as some of the possible
sources of the limitations of the model, will be further clarified in the following
sections.
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Case NEL NLE Grid size (M cells)

N1 7 14 4.8
N2 15 30 4.8
N3 50 100 4.8
N4 15 30 1.6

Table 1. Simulation cases of the hybrid model.

4.4. Hybrid mixture–bubble model
In this section, the numerical results of the hybrid model are compared with the
experimental data and the Eulerian model results. In addition to a validation purpose, we
want to investigate the model performance in further detail to understand its capabilities
and limitations for future improvement of the method. As stated earlier, in the hybrid
model, a cavity type (Lagrangian or Eulerian) is determined based on its relative size to
the local grid cells. Therefore, the cavity type is a function of the threshold numbers, NEL
and NLE, as well as the size of grid cells. To investigate this influence, the flow has been
simulated in four different cases by changing these parameters, as listed in table 1. In the
first three cases, the simulation is performed using the main grid with 4.8 M cells, and the
threshold numbers are varied. In these cases, NEL, the Eulerian to Lagrangian criterion, is
set to 7, 15 and 50, respectively. The corresponding value for NLE is set to be twice that of
NEL, so that when a small Eulerian cavity is transformed to a group of Lagrangian bubbles,
its (possible) subsequent growth can be modelled in the Lagrangian framework instead of
having a quick transformation back to the Eulerian framework. The large numbers in case 3
(especially with NLE = 100) are chosen to evaluate the model behaviour when rather large
cavities are tracked in the Lagrangian framework. In the last case, we simulate the flow
using a coarse grid, in which the Eulerian field is less resolved compared with the earlier
cases. Here, the values of 15 and 30 for the threshold numbers are chosen to be comparable
with case 2. At the same time, the numbers are approximately three-times smaller than
case 3, which is approximately the same as the corresponding grid size ratio (4.8 M cells/
1.6 M cells). As the goal is to model sub-grid structures at various steps from cavitation
inception to collapse, αlim in the transition algorithm should not be very large, otherwise
we may capture only collapsing cavities with low vapour content. In a recent study, Peters
& El Moctar (2020) set αlim to 0.95 in their main simulations as the purpose was to
investigate the erosiveness of collapsing structures. In this study, we set αlim = 0.9 so that
we can capture sub-grid cavities with more vapour content. It is also possible to choose
a larger value for αlim and increase the threshold numbers accordingly. As stated earlier,
in the transition of Eulerian cavities to Lagrangian bubbles, in addition to the cell group
with α ≤ αlim, the vapour content of other neighbouring cells with αlim < α < 1 are also
transformed to small Lagrangian bubbles. Therefore, the number of Eulerian cells is in
fact larger than NEL.

In figure 12, the predicted cavitation regime of case N1 is shown with 12(a–e)
representing a time series. In the time series, it is seen that the model can predict
cavitation inception on the cylinder surface. At time T2, the cavity HC1 starts to grow
from the sharp edge of the cylinder, while a second spanwise cavity, HC2, is already
developed downstream. Meanwhile, we have a shedding cavity HS1 further downstream.
At time T2 + 5�T , HC1 is growing while HS1 is almost a stretched streamwise vortex.
At T2 + 15�T , HS1 is still resolved as cavitating, without a fast collapse (as seen with
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HS1

HC1 HC2

HS1

HC1 HC2

HS1

HC1 HC2

HS1

HC1 HC2

HS1

HC1

T2
T2 + 5�T

T2 + 15�TT2 + 10�T

T2 + 30�T

(a) (b)

(c) (d)

(e) ( f )

Figure 12. Contours of liquid volume fractions of 0.9 (light gray) and 0.5 (black) obtained by the hybrid
model. Panels (a–e) represent a time series. Panel ( f ) shows an instance with more vapour volume. Here, HC1
and HC2 represent two spanwise cavitating vortices and HS1 is a streamwise cavitating vortex.

the Eulerian model, figure 11), and the cavity HC2 is shedding. Finally at T2 + 30�T ,
HC1 is a developed spanwise cavity similar to HC2 at time T2. Figure 12( f ) represents
a different instance with a dense cavity in the wake area, similar to figure 10(e). Apart
from the cyclic shedding pattern, in figure 12, we can see transverse cavities (as the flow
separates on top of the cylinder) as well as dispersed vapour structures further downstream,
which were found in the experimental results but were not captured by the Eulerian
model.

For further comparison between the Eulerian and hybrid models results, in figure 13
the side-view average cavity pattern of all numerical simulations are compared with the
experimental result. As it is not possible to measure the liquid volume fraction from the
diffuse black and white averaged image of the experiment, for a qualitative comparison,
we plot two iso-surfaces of the numerical results. In the figure, the black colour is the
iso-surface of a liquid volume fraction of 0.6, while the transparent grey colour represents
the volume fraction of 0.9. The experimental image is averaged over a time period of 0.25 s
while the numerical results are averaged over a period of 0.025 s, which corresponds to
approximately 2 × 105 time steps for each case. Therefore, we do not expect the numerical
figures to fully represent the average flow, although 0.025 s is approximately 10 times
larger than the flow characteristic time. However, considering that we cannot extract
a quantitative volume fraction from the experiment, the numerical figures can be used
for a qualitative comparison. From the averaged figure, the Eulerian model limitation in
resolving the cavities in transverse vortices (in the near-wake area) as well as the shedding
structures is now more obvious. The height and length of the cavity are smaller than the
real results, and even in the average cavity, the liquid volume fraction is considerably
lower, as no volume fraction of 0.6 is seen from the Eulerian model. In fact, from the
averaged numerical results, we did not see any cavity structure with a liquid volume
fraction lower than 0.75 for the Eulerian model.
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Experiment

Eulerian

N1

N2

N3

N4

Figure 13. Comparison of the averaged cavity pattern of different numerical simulations (Eulerian and hybrid
N1–N4) with experiment. Numerical cavities are shown by contours of liquid volume fractions of 0.9 (light
grey) and 0.6 (black).

With the hybrid model, however, we can see considerably more cavities including
transverse cavities, higher spanwise cavities starting on the body surface, shedding
structures and more vapour content in the core of the averaged cavity (figure 13, rows
3–6). As will be explained later in the discussion of the flow field, such an improvement
is not only a result of capturing the sub-grid structures by the Lagrangian model but also
the interactions between vapour structures and the continuous flow at different scales. It is
important to note that the hybrid model results in a considerable improvement even with a
lower mesh resolution (Case N4). This can significantly reduce the computational cost. It
is worth mentioning that the number of computational processors used for the coarse grid
was 1/3 that used for the main grid while the required time for calculating each time step
was reduced to 2/3. Furthermore, the computational time required for each usual time step
of the hybrid simulation with the main grid was approximately 20–30 % more than the
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Figure 14. Overestimation of cavitation inception on the lower wall by the Eulerian model (on the left of the
cylinder) compared with the hybrid model prediction with no spurious cavity (on the right of the cylinder).

corresponding one for the Eulerian model, and changing the threshold numbers (NEL and
NLE) between the hybrid cases did not lead to considerable variations in the computational
costs.

Apart from the underestimated cavitation inception on the body surface, the Eulerian
mixture model can have an issue with inception prediction in another region as well, which
is the lower wall on the left and right sides of the bluff body. In the earlier simulations
for a lower cavitation number of 0.64 (Ghahramani et al. 2020), we found that when the
cavity volume in the wake area increases, the numerical simulation predicts some spurious
cavities on the lower wall that are not observed in the experiments. In figure 11(f ) also,
we see that at an instance of the Eulerian result with more vapour volume in the cylinder
wake, some spurious vapour is overestimated on the left and right corners of the lower
wall upstream of the bluff body. For further evaluation with a higher vapour volume in
the wake, figure 14 shows an instance of a hybrid model simulation which has a slight
difference with the earlier results. This simulation has the same parameters as case N3;
however, the Eulerian to Lagrangian transition algorithm is deactivated on a part of the
lower wall which is on left side of the cylinder. Therefore, in the area enclosed by the red
square, the cavities were modelled by the Eulerian model and everywhere else the hybrid
model was used. The figure also shows the small Lagrangian bubbles whose sizes are
scaled by 400 R0 for visualization purposes (R0 is the radius of the equilibrium nucleus for
each bubble). As seen in the figure, at such a moment, the Eulerian model predicts spurious
vapour on the lower wall, while on the opposite side, the initial cavities are transformed
to very small Lagrangian bubbles which do not grow spuriously. The source of spurious
vapour generation of the Eulerian model will be explained in § 5.

The results of cases N1–N4 share a lot of similarities and, with the average cavity
pattern in figure 13, they predict almost similar cavity length and size with a higher vapour
density at the core. However, it is not possible to make an accurate comparison between
the cases from this figure as we do not have numerical values of the experimental vapour
distribution and the numerical results are averaged over a shorter time range. In figure 15,
instantaneous results of different cases are shown for comparison. It should be mentioned
that the performances of the model are very similar in the estimation of the cyclic cavity
pattern that is explained for case N1 in figure 12 and more results from case N2 will be
shown later. However, the examples of each case in figure 15 are specific instances, which
better represent the characteristics of the corresponding case. For case N1, it is seen that
the shed cavities downstream are less resolved and smaller compared with cases N2 and
N3. This arises from the lower resolution of Eulerian cavities before their transformation to
the Lagrangian bubbles in case N1. When an Eulerian cavity is less resolved, its inertia and
collapse rate might not be well estimated, which leads to a less accurate initialization of
Lagrangian bubbles. In fact, sometimes the shed cavities at the end of the wake area might
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N1

N2

N3

N4

Figure 15. Instantaneous cavities predicted by different cases of the hybrid simulation.

be very small and almost collapsed before transformation to the Lagrangian framework.
Therefore, there is not a sufficient opportunity to improve the estimation of cavity inertia
or avoid its complete collapse by taking into account other effective parameters from the
Rayleigh–Plesset equation.

Comparing the second and third cases, we see that case N3 predicts larger cavities
downstream and sometimes with better resolution. However, the issue with case N3 is
that by using large threshold numbers, sometimes we may end up with dense cavities
in the Lagrangian framework, which may exceed the near packing limit. In such a case,
the inherent assumptions for the applied models for calculation of bubble transport and
dynamics might be violated, which leads to less accurate results. During the initialization
of our simulations, this case was less stable and it seemed that the transport of some
of the detached cavities at the end of the wake were not calculated appropriately. By
comparing the cases N1–N3, it seems that while the model has satisfactory performance in
the wake area and the cavity development, the prediction of shedding cavities downstream
can vary by changing the threshold numbers of the Eulerian–Lagrangian transition.
Additionally, considering the non-uniform mesh in typical cavitation problems, for further
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improvements of the solver, it is suggested to use a more robust transition criteria rather
than only the relative size of the cavity. This will be a topic of future study.

In case N4 of figure 15, it is seen that while the cavitation starts from the body
surface and the cavities in the wake region do not have an unrealistic fast collapse, the
larger cavities have less vapour content compared with the corresponding structures in
the earlier cases with a fine grid. It is obvious that this resolution is not sufficient for
a pure Eulerian simulation, and when a Lagrangian cavity grows and is transformed to
the Eulerian framework, it will not be sufficiently resolved afterwards. Case 4 shows that
to obtain sufficiently accurate results, both Eulerian and Lagrangian parts of the solver
should model the corresponding structures with good accuracy.

In summary, by comparing the different cases, it can be concluded that the hybrid model
can improve the cavitation inception and the modelling of the sub-grid structures in the
wake area and the unrealistic fast collapses of small cavities are avoided by taking into
account the cavity inertia more appropriately. For a more satisfactory prediction, it is
important that the cavities are well represented in both frameworks. Especially during an
Eulerian to Lagrangian transition, it is important that the earlier Eulerian cavities are well
modelled with reasonable estimation of the cavity collapse rate for a correct initialization
of the Lagrangian bubbles. In the next section, the multi-scale cavitation development
around the bluff body is investigated in further detail using the results of case N2, which
have a better estimation of shedding cavities compared with cases N1 and N3, as explained
above.

5. Multi-scale cavitation development

In § 4.2, the cavitation regime was described based on the high-speed images of the
experimental test (Ghahramani et al. 2020). Although we can identify cyclic cavity
shedding from the wake area and the growth of spanwise cavities from the experimental
results, it is not possible to explain the cavity development in each cycle from the
high-speed images. In particular, it is not clear how the cavities evolve in each cycle and
why, at some instances, we have a low vapour volume behind the cylinder (figure 10f ),
while at other times, the wake area is filled with vapour (10e). Therefore, in this section,
we investigate further details of the flow field behind the sharp-edge bluff body using the
hybrid model results.

To investigate the flow field, we start with a simulation of a non-cavitating single
phase flow at the same condition. Such a simulation can be performed by deactivating
the cavitation model and because only the pressure differences matter in non-cavitating
incompressible flow, there is no need to modify the pressure values at the boundaries or in
the initial condition. In figure 16, the vortices at two instances of the non-cavitating flow
are depicted based on the iso-surfaces of the Q-criterion. The Q-function calculates the
second invariant of the velocity gradient tensor and the Q-criterion defines a vortex as a
connected fluid region with a positive second invariant of velocity gradient; therefore,
to represent the vortices, we need to plot the regions with Q ≥ 0. As there are many
vortex structures in the wake region, only higher strength vortices with Q ≥ 107 s−2

are depicted in the figure. The iso-surfaces are coloured based on the local pressure
values on a logarithmic scale. In figure 16, the colour scale is adjusted in such a way
that the pressure values below pv = 2320 Pa (potentially cavitating regions) are coloured
as the vapour pressure; as stated, for incompressible flows, only the relative pressure
matters. From the distinct vortices behind the cylinder in figure 16, two points can be
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2.320 × 103 2.000 × 1051 × 104 1 × 1052 × 104

p p
5 × 1045000 2.320 × 103 2.000 × 1051 × 104 1 × 1052 × 104 5 × 1045000

(a) (b)

Figure 16. Vortex structures of non-cavitating flow with Q ≥ 107 s−2, coloured by pressure values. Panel (a)
shows a distance between the cylinder and the first low-pressure vortices, while (b) shows a pressure drop in a
streamwise vortex.

concluded: first, in the near-wake area, immediately after the cylinder, the pressure is still
above the saturation vapour pressure. It can drop to the vapour pressure in the spanwise
vortices, which have moved a certain distance downstream. Second, the pressure drop
starts from the bottom of the spanwise vortices on the lower wall, and for some of the
vortices, we see that only the lower part has a pressure below 2320 Pa. The vortex pressure
may continue to decrease as it moves downstream. In addition, sometimes the head of
a spanwise vortex is stretched through its interaction with transverse vortices and other
spanwise structures. As a result, the core pressure of the vortex may decrease further while
its head is tilted in the streamwise direction.

When the flow cavitates, at instances when the vapour volume in the wake is low, we
see that some of the spanwise vortices, similar to those in figure 16, start to cavitate
and their vapour content increases with time. At such times, the vapour volume at the
near-wake region immediately after the body is negligible and the spanwise vortices
cavitate gradually after travelling a distance from the body. Figure 10( f ) from the
experimental results is a good example of such an instance. In this figure, we see a low
vapour volume behind the cylinder and a spanwise vortex (SC1) is cavitating from the
bottom, while its upper part is stretched in the streamwise direction. When a vortex is
stretched, its core pressure drops, which can cause cavitation. From a simulation point of
view, the Eulerian model can capture such instances to some extent. In figure 11, we can
see spanwise vortices that partially cavitate in the lower part. However, the issue with this
model is that the numerical cavities collapse too early, which can either be owing to the
spatial resolution or the model incapability in representing the cavity inertia. Therefore,
the Eulerian model cannot capture further increase of the vapour volume.

As the vapour volume increases, the vortex pattern of the two-phase flow as well as the
wake pressure field change. This increases the vapour content of spanwise vortices in the
near-wake area. At first, only the lower parts of the vortices cavitate, but after a while, we
see that as the flow separates from the sharp edges of the body, the entire evolving vortex is
filled with vapour. A good example of such an instance is the vortex C31 in figure 9(a,b).
The evolving vortex then moves downstream with its increasing vapour content. If two
subsequent spanwise cavities do not grow so much that the earlier cavity is shed before
the second one arrives, we can see distinct spanwise cavities similar to the depicted time
series in figures 9 and 12.

However, sometimes two (or more) subsequent vapour structures grow and merge to a
larger cavity. The large cavity in figure 10(e) represents such a structure. To understand
this process, in figure 17, a time series of the flow at such an instance is depicted. In
the figure, we have various interacting structures and the colours are adjusted to increase
the contrast. We see Lagrangian bubbles (coloured in purple and scaled based on their
diameters), iso-surfaces of Q = 107 s−2 (coloured in transparent cyan) and iso-surfaces
of Eulerian cavities with α = 0.9 (coloured in lime green). Additionally, for visualization
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V3
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T3 T3 + 2.5�T

T3 + 5�T T3 + 10�T

(a) (b)

(c) (d )

Figure 17. Cavitation development in two subsequent spanwise vortices between a large cavity and the bluff
body. Panels (a–d) represent a time series. The vortices are plotted with Q ≥ 107 s−2 (coloured in cyan); the
vapour structures include Eulerian cavities (coloured in lime green) and small Lagrangian bubbles (in purple).

purposes, the vortices on the lower wall and the opposite side of the cylinder are excluded
in the figure. At this time, we have a large cavity downstream and, between this cavity and
the cylinder, there are three spanwise vortices, V1, V2 and V3. At time T3, a large part
of V1 cavitates, while inside V2, we see only Lagrangian bubbles. As the vortices move
downstream, at T3 + 2.5�T , the cavity in the core of V1, called C1, is growing and we
see that the lower part of V2 starts to cavitate, C2; by this, we mean that the Lagragian
bubbles grow so much that they are transformed to Eulerian cavities. At time T3 + 5�T , it
is seen that the vorticity of V3 is reduced as it has more vapour content; at the same time,
C2 is growing. Finally, at T3 + 10�T , C2 has expanded so much that the vorticity of V2
is reduced such that Q < 107 s−2. From this time series, we see that similar to the earlier
depicted instances, cavitation starts at the lower part of the spanwise vortex and then it is
expanded to the upper part. It is worth mentioning that the vorticity reduction in the vapour
zone arises from the mass transfer between the phases as well as the density variation in
the two-phase flow, as explained by the vorticity equation in the paper by Gnanaskandan
& Mahesh (2016).

By comparing figures 16 and 17, we see that for the non-cavitating flow, the pressure
drops and stays at the vapour saturation value in some of the spanwise vortices but not all
of them. The same scenario applies to the earlier depicted instances of the cavitating flow
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Flow

Cylinder
Axial velocity

–3.0 × 100 3.0 × 100–1.5 1.50

Figure 18. Instantaneous axial velocity contour in a 2-D plane at z = 0.5H during partial collapse of a large
cavity (coloured in grey). The velocity colour legend range is limited to increase contrast.

with low vapour volume in the wake region. However, in the depicted current time series
of figure 17, it is seen that two subsequent spanwise vortices cavitate and their vapour
contents keep growing from the cylinder surface until they coalesce with each other and
with the larger downstream cavity. Therefore, the expansion of cavities in the wake region
is not only from the growing of large-scale structures but also from the inception of other
small-scale vapours and their coalescence with the earlier cavities. This does not include
only the spanwise cavities but also other vapour fragments around the large cavities, as we
see in figure 17. Such small-scale structures can be generated in the core of other vortices
or be detached from a big cavity.

The other important point is that when the vapour volume is large, the flow vorticity
decreases significantly in the wake area, and the vortices and pressure field have substantial
differences with a non-cavitating flow. The pressure value in (almost) the entire wake area
is equal to the vapour pressure (see figure 19d, which will be discussed later). In general,
it can be stated that the energy head is substantially lower in this region compared with
the surrounding. In figure 18, an axial velocity contour corresponding to such an instance
is plotted over a section normal to the cylinder. The 2-D plane crosses the cylinder at its
half-height and the range of the colour legend is reduced to increase the contrast. We can
see that because of the pressure (or energy head) difference with the surrounding as well
as the interaction with the shedding vortices, a jet flow moves toward the bluff body. This
jet mainly comes from the end of the cavity and partially condenses the vapour structures.
A few time steps later, the vapour volume decreases substantially, the cavitation occurs
mainly in the spanwise vortices and the cycle repeats. In an earlier study, it was shown that
at lower cavitation numbers (σ ≤ 0.64), a fixed cavity attached to the cylinder is formed
in the wake area (see figure 17 in the paper by Ghahramani et al. 2020). For that case, the
attached cavity is so long that the jet flow can be seen as a clear reverse flow inside the
vapour zone that can cause temporary detachment of the fixed cavity from the cylinder.
For the current case, we see more frequent but smaller reverse jets, which cause partial
collapses of the vapour.

Using numerical results at σ = 0.64, it was shown by Ghahramani et al. (2020) that
inside the large fixed cavities in the wake area, the axial velocity is often negative and the
reverse jet usually increases the absolute value of this negative velocity. The exact physical
reason for the reverse jet is not completely clear, but it seems that this flow occurs because
of pressure fluctuations at the trailing edge of the large cavity. More simply, we know that
in a single phase flow around a bluff body, the pressure field around the body fluctuates
due to the detachment and shedding of vortices, which leads to a temporal variation of the
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drag force on the body. For the current case, at the instances with a low vapour volume
in the wake, the vortices are shed from the cylinder edges. By increasing the vapour
volume, the flow vorticity decreases substantially inside the cavity (as will be explained
later in figure 19d) and vortex shedding occurs mainly at the trailing edge of the large
cavity, instead of the cylinder edges. This, in turn, shifts the location of the corresponding
pressure fluctuations (responsible for temporal load variations in single phase flows). Such
fluctuations at the trailing edge and the lower pressure inside the cavity can be the source
of the reverse jet. Further details in this regard can be found in the paper by Ghahramani
et al. (2020). In summary, it can be stated that despite the general periodicity of the flow in
average, in each cycle, the flow is very unsteady with continuous variations in the length
scale of the cavities. Furthermore, the vapour structure is not only a function of generated
vortices from upstream flow separation, but also dependant on the flow history and the
downstream cavity pattern.

In the previous study of Ghahramani et al. (2020), it was also shown from numerical
results that for a lower cavitation number (σ = 0.64), the large fixed cavity that is
developed in the wake area affects the vorticity and modifies the flow pattern downstream
of the cylinder. Their simulation was performed using an Eulerian model and, as stated, it
overestimated the cavities on both sides of the lower wall upstream of the cylinder, which
prevents a correct investigation of the cavitation effect on the upstream flow. Using the
hybrid model in this study, we show that the vapour structures can change the main flow
pattern at a higher cavitation number with a cyclic cavity pattern as well, but this effect is
more considerable when the cavity volume is higher. Furthermore, as the overestimation
of cavitation inception is avoided with the hybrid model, it is now possible to analyse the
cavity effect on the flow at upstream locations.

In this regard, figure 19 shows two different instances of the flow at which the vapour
volume is low (left column) and high (right column). Figure 19(a,b) shows the cavity
pattern for each case. Figure 19(c,d) shows the flow vortices via the iso-surfaces of Q =
107 s−2. As explained, with the higher vapour volume, the flow vorticity in the wake area
decreases. The iso-surfaces are coloured with the local pressure value on a logarithmic
scale. By comparing the two instances, we find that with larger cavities, the pressure in
front of the cylinder is lower. This can be specifically seen in the pressures of the ring
vortices just in front of the cylinder base. In the earlier experimental investigation, it was
seen that at low cavitation numbers (σ ≤ 0.64), a ring vortex cavitates periodically in
front of the cylinder (see figure 16 in the paper by Ghahramani et al. 2020) and from the
numerical results, we now have a more clear understanding of the process. In addition,
on the left and right sides of the lower wall, we see considerable variations between the
two instances in pressure values and vorticity. In fact, for the higher cavity volume, the
pressure falls below the saturation value at some area. To further our understanding, the
streamlines and pressure contours in a surface at point A are plotted in figure 19(e, f ).
Point A is depicted in figure 19(b) and the 2-D surface is parallel to the flow direction.
From the streamlines, it can be seen that for the higher cavity volume, the flow separates
at the end of the sloped wall, while it stays attached to the wall for the other case. The flow
separation leads to a local pressure drop on the wall and induces more vorticity. However,
as the pressure increases when the cavity volume changes later, no cavitation occurs on
the lower wall. From our earlier experience, at lower cavitation numbers (e.g. σ = 0.56),
when the cavity volume in the wake area is considerably larger, temporary and unstable
cavities are seen on the lower wall.

From a simulation point of view, it is now possible to explain the issue with the Eulerian
model in cavitation prediction on the lower wall. The mass transfer source term in this
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Figure 19. A comparison between the flow field at two instances with low and high vapour volumes in the
wake area. (a,b) Cavity structures; (c,d) vortical structures coloured by pressure; (e, f ) 2-D streamlines and
pressure contours on a plane parallel to the flow direction; (g) temporal pressure variation at point A.

model is mainly a function of the difference between flow pressure and vapour saturation
pressure (3.7). As the local pressure drops below the vapour pressure on the lower wall, the
liquid cavitates. By decreasing the liquid volume fraction, the mass transfer source term
becomes bigger, which leads to an increase in the vapour volume and a further decrease in
the surrounding pressure. Therefore, after a short period of time, a sheet cavity develops on
the wall. However, we know that, in reality, the size of a bubble (nucleus) does not change
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4.189 × 10–15 1.401 × 1000.47 0.93 4.126 × 10–16 1.094 × 10236.5 72.9

(17/32)Ṙ2

–6.000 × 100 6.000 × 100–2 2

(1/2)RR̈

8.064 × 103 1.387 × 10551617 95171

Surface tension
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Surface tension
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Figure 20. A comparison between inertia and surface tension of bubbles at two instances with low and high
vapour volume in the wake area. (a,b) 17

32 Ṙ2; (c,d) 1
2 RR̈; (e, f ) 2σ/R. Panels (a), (c) and (e) correspond to

figure 19(a); (b), (d) and ( f ) correspond to figure 19(b). The size of the bubbles are scaled by 40R.

rapidly after a pressure drop, because of its inertia. Furthermore, the bubble surface tension
is another parameter which has an opposite effect, especially at small scales. These two
parameters are taken into account in the Rayleigh–Plesset equation, via the first and the
last terms (3.21). When we use the hybrid model, after the pressure drop on the lower wall,
the initially small Eulerian cavity is transformed to Lagrangian bubbles as it is not resolved
by a sufficient number of cells. Then, in the Lagrangian framework, the mentioned effects
are taken into account, which leads to a more accurate estimation of the bubble growth
rate. Figure 19(g) shows the temporal variation of the pressure at point A on the lower
wall. As we see, the pressure varies over time and it does not stay below the saturation
value for a continuous long period. Therefore, when there is a small bubble at point A,
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for example, before it can grow substantially, either the pressure increases or the bubble
moves downstream and leaves the small low-pressure region.

To further analyse the effect of the inertia and surface tension of the bubbles at the
inception phase, in figure 20, these effects are plotted for the corresponding instances.
The left and right columns of this figure correspond to the left and right columns of
figure 19, respectively. In figure 20, only the bubbles on the right hand side of the cylinder
are depicted, and their size is scaled by 40R for visualization purposes. By comparing
figures 20(a) and 20(b), it is seen that when the flow pressure decreases during separation,
more Lagrangian bubbles are created from small Eulerian cavities. Figure 20(a–d) show
the bubble inertia terms on the left hand side of (3.21). The growth rates (Ṙ) of some
of the small bubbles are clearly larger when the pressure drops during separation. These
bubbles are marked by an enclosing red box. However, the second temporal derivatives
of the radius for the same bubbles have large negative values (figure 20d). Figure 20(e, f )
clearly shows the order of surface tension of small bubbles, compared with the other two
terms, which can considerably counteract a sudden local pressure drop around the bubbles
(see (3.21)). As stated previously, most of the common finite mass transfer models in
the literature (including the current Eulerian model) ignore the surface tension (2σ/R)
and second derivative (RR̈) terms, and the mass transfer rate is a rough simplification
of the Rayleigh–Plesset equation. As a result, after a pressure drop, the mass transfer
rate increases (similar to bubble growth rate shown in figure 20b), while neither the
vaporization rate is correctly resolved nor the effective force balance on the cavity interface
is accurately modelled.

6. Conclusions and outlook

In this study, a multi-scale cavitation problem is investigated using a newly developed
hybrid model. The model is developed by coupling an Eulerian mixture with a Lagrangian
bubble model. Compared with the earlier hybrid models, the coupling algorithm is
more compatible with the flow physics, and the mass, momentum and kinetic energy
of the cavities are conserved during the Eulerian–Lagrangian transition. Furthermore,
new submodels were introduced in the Lagrangian model to consider bubble–bubble
interactions and break-up, the bubble–wall boundary condition, void handling scheme
and taking into account the local pressure effect on bubble dynamics. The new
implementations lead to further enrichment of the Lagrangian tracking, which makes the
model applicable to densely 3-D cavitating flows in real scales. For the Eulerian cavities,
we considered an incompressible flow and a transport equation model, motivated by the
lower computational cost for the large-scale application; however, the coupling algorithm
can be used for compressible models to take into account the relevant flow effects in
other applications. The obtained results show considerable improvements in the numerical
simulation of multi-scale cavitation compared with the commonly used Eulerian mixture
model.

The improvements include capturing the cavitation inception on the surface of the
bluff body, avoiding spurious cavities on the lower wall and modelling the sub-grid
vapour structures, not only in the wake area around the larger cavities but also the
shedding vortices and disperse clouds downstream. Our results show that the improved
performance can be achieved even with noticeably lower mesh resolution, which can
reduce the computational costs. The model comparison further clarifies the numerical
issues with the Eulerian models. In addition to the well-known higher dependency on the
grid resolution, the common Eulerian models do not give an appropriate estimation of
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the cavity inertia, and as cavitation is modelled only based on the pressure variations,
the cavity dynamics is highly dependant on temporal variations of the pressure. As a
consequence, fast temporal pressure variation causes spurious cavitation on the lower wall
and a higher condensation rate in the wake area. For future improvements of the Eulerian
models, one suggestion is to include the flow history effect or pressure variation rate in
cavitation modelling. Another suggestion is to implement the cavity inertia effect (e.g. V̇
or V̈) in the condensation/vaporization rates.

The numerical results also show that the cyclic cavity development and shedding in
the wake area is a very unsteady process with various interactions between the large-
and small-scale cavities as well as the continuous flow. The larger cavities are not only
developed from growing of a spanwise cavitating vortex, but also the vaporization of
other vortices and the smaller vapour structures at sub-grid scales and the coalescence of
these structures. Such vaporization and the coalescence probability are dependent on the
flow vorticity and pressure fields in the near-wake area which are, in turn, influenced by
the downstream cavities. With lower vapour volume, only a fraction of spanwise vortices
cavitate from their lower part and after travelling a minimum distance from the body. With
increasing vapour volume, the cavitation starts from the bluff body surface with more
frequent vaporization of spanwise and transverse vortices. At larger volumes, the generated
cavity can considerably influence the flow upstream of the cylinder, which explains the
periodic cavities on the lower wall and ring-shaped vortices in front of the body that have
been reported for lower cavitation numbers.

Finally, a comparison between different cases of the hybrid simulation further clarifies
the model characteristics. From this comparison, we conclude that for satisfactory
simulations, both Eulerian and Lagrangian parts should model the corresponding
structures with sufficient accuracy. In general, the current hybrid framework can be
applied to a wide range of cavitating flows with extensive range scales. While the
primary intention has been to improve the representation of multi-scale problems, it is
possible to apply the same framework to smaller scales (in which the cavities are mainly
represented by the Lagrangian formulation), as well as large-scale developed cavities
(where the Eulerian equations are mainly solved). However, before choosing any model,
the considered hypothesis in the model formulation should be taken into account. In this
study, we used a common Eulerian model and the improvements were more focused on the
Lagrangian modelling and the transition algorithm. To increase the model accuracy, the
Eulerian model can be improved based on the above-mentioned suggestions. Additionally,
a hypothesis considered in the model is that thermodynamic effects are neglected and the
energy equation is not solved, as the intended application has been large-scale industrial
cases, such as the current problem, and hydraulic systems. It is worth emphasizing that this
hypothesis is related to the selected Eulerian model in the current study, and the hybrid
framework can be extended to consider thermodynamic effects with suitable Eulerian
models. Furthermore, for a more numerically robust transition between the Eulerian and
Lagrangian frameworks, the transition criterion can be defined based on a more suitable
parameter that considers non-uniformity of domain discretization. Another feature of the
current hybrid model is that the cavitation inception is first estimated at low-pressure
regions, which limits the predictions to the capabilities of the Eulerian mass transfer
models. The vapour inception can be based on free nuclei in the liquid and on solid walls.
Although the inception is well represented in the current problem, introducing nuclei can
make the inception process more independent from the Eulerian simulation and adds
the possibility to consider liquid quality, and this is the subject of ongoing research. In
addition, the hybrid model can be used in erosion/noise estimation of cavitating flows.
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This can be achieved by either incorporation of the radiated acoustic pressure wave arising
from bubble collapse and rebound (see e.g. Eskilsson & Bensow 2015) or through coupling
of the Lagrangian model with a compressible model. Accounting for the compressibility
effect (both in the mixture model and the Rayleigh–Plesset equation) is also needed in the
investigation of the flow field in micro-scale applications.
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Appendix A. A brief explanation about Lagrangian submodels

In this appendix, more details of the Lagrangian submodels are provided for the interested
reader. It also includes an overview on some of the other available models in the literature
and gives the rationale behind developing or choosing the submodels that are introduced
in the paper.

A.1. Rayleigh–Plesset equation
As stated before, the inherent assumptions of the original form of the Rayleigh–Plesset
equation mean that it cannot sufficiently estimate bubble dynamics in complex and real
problems, in which bubbles are surrounded by other cavity structures and flow boundaries.
Therefore, various improved versions of this equation have been introduced in the literature
to address such limitations. In some cases, consideration of local flow effects on bubble
dynamics has been attempted by replacing the infinity pressure in the Rayleigh–Plesset
equation with the local flow pressure on the bubble interface or near it and, to compensate
for such a simplification, some correction terms have been added to the equation. For
example, Hsiao et al. (2017) suggested a slip velocity correction term based on the
bubble–flow velocity difference and Giannadakis et al. (2008) proposed another correction
term based on local turbulence quantities. Fuster & Colonius (2011) developed an extended
Rayleigh–Plesset equation, which accounts for the presence of other bubbles and liquid
compressibility effects. This method is able to capture the pressure field generated around
the bubble using local information in the vicinity of the bubble and has been tested for
the collapse of a bubble cluster. However, the model is too sophisticated for application
to real-case complex problems because Ncell equations need to be solved to calculate the
potential derivatives of each bubble, where Ncell is the number of surrounding bubbles
in the cell. For incompressible flows, this equation can be simplified considerably to the
traditional form of the Rayleigh–Plesset equation with a simple source term to account for
the bubble–bubble interaction effect. For the limiting case of a single bubble, this source
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term is zero and we still have the limitations with the classical form of Rayleigh–Plesset
equation that does not apply to non-isolated single bubbles (e.g. near a solid boundary).
Therefore, in this study, (3.21) was used, which can consider the local pressure effect and
does not have the mentioned limitations, and it has been validated for benchmark test cases
(Ghahramani et al. 2019).

It is worth mentioning that the introduced localized form of the Rayleigh–Plesset
equation (3.21) is similar to the LVARP equation (locally volume-averaged Rayleigh–
Plesset equation) developed by Seo, Lele & Tryggvason (2010) but with different
coefficients for RR̈ and Ṙ. The LVARP equation has been developed in a different way, by
considering a local volume around the bubble based on the effective interbubble distance.
However, the computation of the control volume radius can be computationally expensive
in general non-homogeneous bubble distribution or the equation needs some empirical
constants.

A.2. Bubble–bubble collision algorithm
The incidence of collision between bubbles can be determined using deterministic,
stochastic or hybrid algorithms. Deterministic algorithms check the trajectories of every
two particles, i and j, to investigate their possible collision along their path line. Here, the
calculation of the trajectories of bubbles/parcels is split into two steps: at first, bubbles are
moved based on their equation of motion, and then the occurrence of collisions during
the first step is examined for all bubbles/parcels. If a collision is found, the properties
of the collision pair are updated based on the collision outcome. When the number of
particles is considerably high and the deterministic approach can be computationally
expensive, stochastic models can be an alternative. Additionally, when parcels with
varying statistical weights are used, the collisions are calculated stochastically. Stochastic
models can considerably reduce the computational cost and they are quite common when
dealing with a large number of particles. In a given computational volume, the collisions
are determined based on the estimated collision frequency of parcels. One of the most
commonly used stochastic models is that developed by O’Rourke (1981), in which the
collision probability is estimated based on the diameters of the parcels, their relative
velocity and the number of bubbles represented by each parcel. Hybrid algorithms are
other options, which are a combination of deterministic and stochastic models (e.g. Nordin
2001). However, this algorithm may suffer from serious mathematical inconsistencies
(Pischke, Kneer & Schmidt 2015). Both the O’Rourke and the Nordin models are available
in OpenFOAM.

In the current Lagrangian model, we track parcels directly, rather than using
representative distribution functions, and an efficient algorithm based on bubble
cell occupancy is used for parcel collision detection, which sufficiently reduces the
computational cost. Therefore, the bubble collisions are handled using a deterministic
algorithm similar to the work of Breuer & Alletto (2012).

A.3. Other assumptions and simplifications
It is worth mentioning that in addition to the previously stated assumptions in the
model development, the Lagrangian method includes some other simplifications as well.
For instance, the daughter bubbles after break-up might have different diameters, and
bubble–bubble interactions during a time step might sometimes be of other types rather
than simple binary interactions. Furthermore, the effect of turbulence fluctuations on
small bubble dispersion is not considered in Lagrangian tracking. For this purpose, a
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fluctuating velocity, u′, should be added to the filtered/averaged velocity in the drag force
formula (3.16). To estimate the fluctuating velocity, we need a stochastic model. In some
earlier studies, a traditional discrete random walk model has been used. Using this model,
which is available in OpenFOAM, can lead to significant errors in anisotropic turbulent
flows and it is suggested to use the more appropriate continuous random walk models (see
e.g. Dehbi 2008; Ghahramani et al. 2014). Because, in this study, we are using an LES
model with fine spatial and temporal resolutions, it is acceptable to use the instantaneous
filtered velocity in bubble tracking, as followed in similar studies (e.g. Ghahramani et al.
2017). Implementing a stochastic model can be the subject of a future study. Nevertheless,
considering the main numerical assumptions in cavitation modelling and the sophisticated
physics of the flow, such simplifications are expected to have minor influence on the final
results.

Appendix B. Bubble–wall boundary condition

In this study, the wall boundaries are considered to be rigid and it is assumed that a bubble
collides with a wall when the distance between its centre to the nearest wall face becomes
equal or less than its radius. When a spherical particle collides with a wall boundary, it
may bounce from the wall, stick to the wall or slide over the wall surface. Experiments
show that during a bubble–wall collision, a liquid film is present between the bubble and
the wall (Podvin et al. 2008). Zenit & Legendre (2009) showed that the behaviour of a
bubble colliding with a wall is different from that of a solid sphere, owing to the liquid
film and the bubble deformation. In this study, it is assumed that a bubble bounces from a
wall.

The velocity of the bubble after collision depends on the direction of the wall normal
vector. If the tangential and normal unit vectors of the colliding wall face are denoted by
tw and nw, then the velocity of the bubble before collision can be decomposed as

u0
b = u0n

b nw + u0t
b tw. (B 1)

Using this decomposition, the after-collision velocity is decomposed as

ub = −εwu0n
b nw + (1 − μw)u0t

b tw, (B 2)

where εw and μw are the coefficient of restitution and wall friction coefficient, respectively.
Here, εw is given by

εw = e−30
√

Ca/St∗, (B 3)

where Ca and St∗ are the capillary and modified Stokes numbers, defined as

Ca = μu0n

σ
,

St∗ = 4(ρb + 0.5ρl)Ru0n

9μ
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B 4)

Appendix C. Detecting collision between a pair of bubbles

To find the collision possibility between each bubble and other bubbles, one method is to
loop over all of the other bubbles and examine their trajectories relative to the specified
bubble; however, this is a computationally expensive algorithm for dense disperse flows as
the number of particles can be quite large. As a more efficient method, in this study, the

922 A22-49

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.424


E. Ghahramani, H. Ström and R.E. Bensow

Figure 21. Bubble–bubble collision detection based on cell occupancy.

bubble–bubble collision is detected in a faster algorithm based on the ‘cell occupancy’
concept, see figure 21. Cell occupancy is a property of the grid cells that contains a
label list of the bubbles that occupy a cell. Using the cell occupancy, it is possible to
examine only the bubbles that are in a reachable distance. Here, we need to define an
interaction distance, and the cell occupancy list of the grid cells are transformed between
every couple of cells that are within the interaction distance to each other. Consider the
red bubble in figure 21, for example. The interaction area is specified by a dashed circle.
Having the host cell index of the bubble and the cell occupancies of the other cells in the
interaction distance (i.e. within the circle), we can find the index of other bubbles that are
within a reachable distance. Then, the collision possibility between this red bubble and the
surrounding blue bubbles is examined. In the developed solver, the interaction distance is
a user-defined parameter that can be tuned to an appropriate value. This parameter, which
is actually the radius of the dashed circle in figure 21, should only be large enough that,
for each bubble, the corresponding circle encloses the bubble and its path line within the
next time step.

Following a suggestion found in several earlier studies (see e.g. Chen, Kontomaris &
McLaughlin 1999; Yamamoto et al. 2001), the current algorithm relies on the assumption
of a constant velocity of the bubble within a time step, which is reasonable for the small
time step sizes applied in LES. When potentially colliding bubbles are selected using cell
occupancy, based on their relative trajectory, it is first specified if they collide or not.
Consider bubbles 1 and 2 with respective initial velocities u0

1 and u0
2, and respective radius

R1 and R2, as depicted in figure 22. The initial relative position between the bubbles is
x0

12 = x0
1 − x0

2. The figure also shows the angle θ between the relative velocity (u0
12 =

u0
1 − u0

2) and line (1,2) between the centres. The relative travelled distance during the time
step �t is given as

d = |u0
12| cos θ�t. (C 1)
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u0
12

θ

d

1

1

2

|x12|

|x0
12|

Figure 22. Relative motion between potentially colliding bubbles.

It can be shown that a collision occurs within the time �t if θ < θc and d ≥ dc, where
θc and dc are the critical angle and distance given by Vallier (2013)

θc = arctan

⎛
⎝ R1 + R2√

|x0
12|

2 − (R1 + R2)
2

⎞
⎠ , (C 2)

dc = |x0
12| −

√
|x0

12|
2 − (1 + (tan θ)2)(|x0

12|
2 − (R1 + R2)

2)

1 + (tan θ)2 . (C 3)

If a collision is found between a pair of bubbles, then further calculations should
be performed to find the relative velocity and contact angle at the collision instance.
According to Breuer & Alletto (2012), the instance within the time step �t at which
collision occurs is estimated as

�tcol = �tmin(1 −
√

1 − K1K2), K1 = |x0
12|

2|u0
12|2

(x0
12 · u0

12)
2 , K2 = 1 − (R1 + R2)

2

|x0
12|

2 ,

(C4a–c)

where �tmin is the time at which the bubbles separation is at its minimum value during the
time step. This parameter is given as

�tmin = −x0
12 · u0

12

|u0
12|2

. (C5)

At the collision instance, the relative position and normal components of the velocities
of the bubbles are calculated as

xcol
12 = x0

12 + u0
12�tcol, u−

1n = u0
1 · xcol

12

|xcol
12 | , u−

2n = u0
2 · xcol

12

|xcol
12 | . (C6a–c)

As stated earlier, the above equations describe the interactions between a pair of bubbles.
As explained in § 3.2.4, for two bubble parcels, we assign an equivalent radius to each
bubble group (3.31) and (C2)–(C4) should be written based on the equivalent radii (Reqv,1
and Reqv,2).
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