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ABSTRACT

This is the second in a sequence of papers on the geometry of spaces of rational curves
of degree e on a general hypersurface X C P" of degree d. In Part I (J. reine angew.
Math. 571 (2004), 73-106) it is proved that, if d < (n 4 1)/2, then for each e the space of
rational curves is irreducible, reduced and has the expected dimension. In this paper it is
proved that, if d?> + d 4+ 1 < n, then for each e the space of rational curves is a rationally
connected variety; in particular it has negative Kodaira dimension.
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1. Statement of results

Consider a general hypersurface X C P". Let d = deg(X). In [HRS04] it is proved that, if d <
(n+1)/2, then for each e the space of rational curves of degree e is irreducible, reduced and has
the expected dimension. The main result of this paper is the following theorem.

THEOREM 1.1. If X C P" is a general hypersurface of degree d and if n > d? +d + 1 then for each
integer e > 1 the stack My 0(X, e) is rationally connected. More precisely, there exists a morphism
[ PP — (Mo,0(X,€))fine)sm such that f*T; 0.0(X,e) 1s ample.

Remark 1.2.

i) The scheme Mgo(X,e) is the coarse moduli space of Mgo(X,e), the open subset (Mg
(X, €))fine is the fine moduli locus, and the open subset ((Mgo(X,€))fine)sm is the smooth
locus of the fine moduli locus.

ii) For the cases d = 1,2, a related and stronger theorem is proved in [KP01, Theorem 3]; namely
the coarse moduli space Mo,O(X ,€) is rational. The proof relies on the fact that X is a homo-
geneous space and does not extend to the case d > 3. Moreover, it is not clear from [KPO01]
that there exists a very free rational curve in the smooth locus of the fine moduli locus of the
coarse moduli space.
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The space ﬂop (X, e) is the Kontsevich moduli stack of stable maps, which will be recalled below;
it is a Deligne—Mumford stack containing the parameter space of smooth rational curves in X of
degree e as an open substack. A variety is rationally connected if any two closed points are contained
in the image of a morphism from P! to the variety. Rationally connected varieties have negative
Kodaira dimension; hence the schemes Mg (X, e) have negative Kodaira dimension.

The motivation behind Theorem 1.1 is a conjectural relationship between rational connectedness
of Mpo(X,e) and a theorem of Lang about rational points of varieties defined over the function
field of a surface.

THEOREM 1.3 (Lang [Lan52]). Let K be the function field of a surface over C and let X C P}, be
a hypersurface of degree d. If d*> < n, then X (K) # 0.

There is a naive parameter count that suggests that if d*> < n then for e > 0 the stack Mg o(X, €)
is rationally connected, and if d> > n + 2 then for e > 0 the stack HO,O(X, e) is of general
type; i.e. the Kodaira dimension of HO7O(X ,e) is determined by the same inequality as in Lang’s
theorem. This suggests that Lang’s theorem is related to rational connectedness of spaces of rational
curves. In a personal communication, A. J. de Jong has outlined an approach for proving that a
K-variety X has a K-point if the stacks M0,0(X ®y K,e) are rationally connected, and a certain
Brauer obstruction vanishes. Of course Lang’s original proof is simple and direct. But de Jong’s
approach could apply to classes of varieties where Lang’s proof does not apply, i.e. to varieties that
are not hypersurfaces in projective space.

The naive parameter count is not rigorous. As it seems impossible to make it rigorous, it is not
recalled here. In this paper a different strategy is developed for proving that the stacks mo,o(X ,€) are
rationally connected, and this strategy is applied to hypersurfaces in projective space. This strategy
should also apply to other varieties; hence it is formulated in greater generality than strictly needed
for the case of hypersurfaces.

1.1 The Kontsevich moduli space

The most natural parameter space for rational curves of degree e on X is the open subscheme
of the Hilbert scheme parametrizing smooth rational curves of degree e on X, RS C Hilb%H.
For e > 1, R is not proper. To study the global geometry of RS, e.g. to determine its Kodaira
dimension, it is necessary to embed it as an open subset of a proper scheme. The simplest choice
is to take the closure E inside Hilbif-“. This is a poor choice for two reasons: First, there is no
simple characterization of the closed subschemes of X that correspond to points in E Second, the

deformation theory of a closed subscheme of X is difficult to work with.

There is a better choice, one where the points of the closure have a simple geometric meaning,
and where the deformation theory is easier to work with. This choice is My o(X, e), or more generally
Mo,r (X, e), the Kontsevich moduli space of degree e, r-pointed, genus-0 stable maps to X. This space
has one disadvantage over E; namely MO,T(X ,e) is a Deligne—Mumford stack rather than a scheme.
However, the coarse moduli space MOW(X@) is a projective scheme; cf. [Ale96]. For the reader
unfamiliar with stacks, most occurrences of My, (X, e) can safely be replaced by (Mg, (X, e))fne,
the fine moduli locus of Mg, (X,e).

To be precise, ﬂom (X, e) is the stack whose objects are triples
CZ ((p:E—>B,01,...,JT),9:2—>X),

consisting of a flat, proper family of curves p : ¥ — B, a collection of r disjoint sections o; : B — 3,
i =1,...,r, with image in the smooth locus of p, and a morphism ¢ : ¥ — X such that for each
geometric point b € B, the fiber ¥, is a connected, at-worst-nodal curve of arithmetic genus 0, the
morphism ¢, : ¥ — X ®c k(b) has no infinitesimal automorphism fixing the marked points o;(b),
and the degree of (g,)*Ox(1) is e (cf. [FP95, BM96]).
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A refinement of this stack used in this paper is the Behrend-Manin stack, M(X,T), associated
to a genus-0 stable A-graph 7; cf. [BM96]. A genus-0 stable A-graph is a tree with tails with a degree
associated to each vertex that satisfies a certain stability condition. A tree is a graph that contains no
cycles. A tail, or a half-edge, is an edge that originates on a vertex but does not terminate on a vertex
(e.g. what one would get if one were to ‘cut in half’ an edge of a usual graph). A degree function is
an assignment of a nonnegative integer to each vertex of the graph. The stability condition is that
no vertex has both degree 0 and valence less than 3 (tails count toward the valence of a vertex).

Given an at-worst-nodal curve of genus 0, 3, a collection of marked points on X, o1,...,0,, and
a morphism ¢ : ¥ — X, there is an associated A-graph defined as follows. The tree is the dual
graph of ¥; there is one vertex for each irreducible component of > and one edge for each node of ¥..
For each marked point o; of 3 there is a tail attached to the obvious vertex. The degree of a vertex
is simply the degree of g*O(1) on the corresponding irreducible component. The Behrend—Manin
stack M(X, ) (essentially) parametrizes the closure of the locally closed substack of My (X, e) of
stable maps whose associated A-graph equals 7. For the precise definition, see [BM96].

The boundary of the stack M(X,7) is a union of stacks M(X, o) where o ranges over stable
A-graphs such that there is a contraction from o to 7, i.e. the graph o is ‘more degenerate’ than
the graph 7; cf. [BM96]. Hence the boundary of every Behrend-Manin stack can be understood
inductively starting from the ‘most degenerate’ graphs 7, for which M(X,7) is a fiber product
over X of the space of pointed lines on X. So questions about M(X,7) that can be studied by
specializing to points in the boundary eventually reduce to questions about the space of pointed
lines on X. Moreover, the deformation theory of a point in M(X,7) is straightforward; it will be
recalled in § 3.

1.2 Sketch of the proof
The proof of Theorem 1.1 uses a theorem of Kollar.

THEOREM 1.4 (Kolldr, Theorem IV.3.7 [Kol96]). Let V' be an irreducible, projective variety, and
let Vgn C V denote the smooth locus of V. If there exists a very free morphism f : P! — Vi,
i.e. a morphism such that f*Ty is an ample vector bundle, then V is rationally connected.

The reader is warned that ‘very free’ is the first of a multitude of definitions with ‘very’ sim-
ilar names: free, very free, deformation ample, very stable, unobstructed, twisting, very twisting,
twistable, very twistable, positive, very positive, inducting pair, inductable, modification, typical,
and c-generating linear system. A morphism f : P! — V is free if f*Ty is a vector bundle that
is generated by global sections. The goal is to prove that there exists a very free morphism to
M0,0(X ,e) for all e. It is difficult to construct a very free morphism directly. However, existence of
a very free morphism can be studied by specializing to the boundary of MO7O(X ,e), and, using an
induction argument, can ultimately be reduced to a question about pointed lines on X. The induc-
tion argument does not produce a very free morphism to the boundary of H0,0(X ,€), but rather a
reducible rational curve B in the boundary such that the restriction of Tﬂo,o (X.e) to B is deforma-
tion ample: for a deformation of B to an irreducible rational curve B’, the restriction of Tmo,o (X.e)
to B’ is ample; cf. § 2 (a curve B’ is called a deformation of B if both B and B’ have a common
generization). The rational curve B’ is a very free rational curve which proves that Mg o(X,e) is
rationally connected.

The induction argument constructs a reducible rational curve B which itself parametrizes stable
maps from reducible rational curves to X. Each of these stable maps is the union of a map of
degree e — 1, g : ¥ — X, and a line L C X that intersect in a node ¢ € ¥ N L. Since the union
is stable, the 1-pointed map (X, 0, g) is stable. To simplify the deformation theory, it is assumed
that (3, 0,¢) is very stable: the unmarked map (3, g) is stable (this assumption must be justified!).
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To guarantee that B is in the smooth locus of Mg o(X, e), it is assumed that (3, g) is unobstructed:
ExtéE(Lg, Os) = {0}.

The condition that Tmo,o( X.e) | is deformation ample can be translated into a condition on the
family of pointed lines, (L, o), together with a condition on the family of pointed maps of degree e—1,
(X,0,9); these conditions are defined in § 4. The condition on the family of pointed lines is that
it is very twisting. The family is twisting (respectively very twisting) if the associated morphism
(: B — ﬂo,l(X, 1) pulls back the vertical tangent bundle of the projection pr : MO,I(X, 1) —
My (X, 1) to a bundle which is generated by global sections, and pulls back the vertical tangent
bundle of the ‘evaluation at the marked point’ morphism ev : Mo,l(X ,1) — X to a bundle which
is generated by global sections (respectively deformation ample). Composing ¢ with ev gives a map
h : B — X. Such a map which arises from a twisting (respectively very twisting) family is called
twistable (respectively very twistable). The property of being twistable (respectively very twistable)
is an open condition on the family of all maps.

The condition on the family of pointed maps of degree e—1 is that it is very positive. The family is
positive (respectively very positive) if the associated morphism ¢ : B — HOJ(X ,e — 1) pulls back
the vertical tangent bundle of the projection pr : Mo (X,1) — Mgo(X,1) to a bundle which
is generated by global sections (respectively ample) and the pullback by pr o ¢ of TWO,O(X,l) is
deformation ample. The main observation is this: For a positive (respectively very positive) family
over a smooth rational curve, the morphism ¢ : B — My 1(X,e — 1) is free (respectively very free).

An inducting pair consists of a very twisting family of pointed lines over B and a very positive
family of pointed maps of degree e—1 over B which intersect along the marked points. The induction
step proves that, if an inducting pair exists for degree e, then an inducting pair exists for degree e+1.
It is sometimes useful to ‘forget’ the very twisting family of pointed lines, and only ‘remember’ that
the family of marked points is a very twistable map. A very positive family of pointed maps of
degree e — 1 such that the family of marked points is a very twistable map is an inductable family.

The induction step begins with an inducting pair for degree e and produces an inductable family
for degree e+ 1. In particular, the inductable family is very positive and there is a deformation to a
very free morphism from an irreducible curve to My 1 (X, €) whose projection to Mo (X, e) is a very
free morphism. The family of unmarked maps over B is obtained by gluing the very twisting family
of lines and the very positive family of maps of degree e — 1 along the curve of marked points o.
To get a family of marked maps, let o’ be an irreducible curve in the total space ¥ of the very
positive family which is linearly equivalent to o. The curve ¢’ fails to be a family of marked points
precisely at the finitely many points in B over which the curve ¢’ intersects the curve o. The solution
is to blow up each of these finitely many points on ¥; this produces a family of marked stable maps
of degree e. Unfortunately blowing-up destroys the ‘very positivity’ of the family. Very positivity is
restored by making a modification at each of the finitely many points of B over which ¥ is blown
up. The modification attaches a P' to B at the specified point and extends the family over this P! so
that the stabilized family of unmarked maps is a constant family, but such that the marked points
in this constant family vary. After modification, the family of marked stable maps is inductable.
Incidentally, it is the process of modification that requires using reducible curves in Mg (X, e) and
working with the property of deformation ample bundles.

The last section establishes the base case of the induction argument: existence of a family of
pointed lines that is both very twisting and very positive. The total space of a very positive
family of lines is a scroll X. The whole argument reduces to producing a pair of a scroll ¥ and a
hypersurface X containing ¥ such that ¥ corresponds to a very positive family of lines on X.
This reduces to a computation of the dimension of certain linear systems on the scroll 3, c-generating
linear systems. This is a straightforward computation in the Cox homogeneous coordinate ring of
the scroll. The hypothesis that d? 4+ d + 1 < n is used in this last computation.
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1.3 Technical hypotheses
In the proof of the induction step, some technical hypotheses are used.
HypoTHESIS 1.5. For each contraction of genus-0 stable A-graphs, ¢ : ¢ — 7, the image of the
morphism of Behrend-Manin stacks M(X,0) — M(X,7) has codimension dim(X,7) — dim(X, o)
in M(X, 7).

By [HRS04, Proposition 7.4], if d < (n +1)/2 and if X C P" is a general hypersurface of degree d,
each stack M(X, o) has the expected dimension; thus Hypothesis 1.5 holds for X.

HYPOTHESIS 1.6. A general fiber of the evaluation map ev : My 1(X,1) — X is irreducible.

For a pair (X,p) consisting of a hypersurface X C P" of degree d and a point p € X, the
associated fiber of ev is a subvariety Z C P"~! which is a complete intersection of a sequence
of hypersurfaces Y7,...,Y; in P" with deg(Y;) = i: the defining equation of Y; is the degree-i
homogeneous part of the Taylor expansion of the defining equation of X about the point p. If the pair
(X, p) is general, the sequence of hypersurfaces Y7, ..., Yy is general. By the Bertini theorem [Jou83,
Theorems 4.10, 6.10] the intersection Y3 N --- N Yy is smooth and connected if d < n — 2.

HypoTHESIS 1.7. For each integer e > 0, the locus in HOJ(X ,€) parametrizing stable maps with
nontrivial automorphism group has codimension at least 2.

Of course any stable map with nontrivial automorphism group has an irreducible component
which is a multiple cover of its image. In light of [HRS04, Proposition 7.4], a simple parameter count
shows that if d < (n 4+ 1)/2 and if X C P"™ is a general hypersurface of degree d, then Hypothesis 1.7
is satisfied.

1.4 Conventions

Unless stated otherwise, schemes are of finite type and separated over Spec C. Absolute fiber prod-
ucts of schemes will be fiber products over Spec C. Absolute fiber products of stacks will be 2-fibered
products over SpecC.

2. Deformation ampleness

Let T be a scheme.

DEFINITION 2.1. A family of prestable curves of genus g over T is a proper, flat morphism 7 : B — T
such that every geometric fiber of 7 is a connected, at-worst-nodal curve of arithmetic genus g.

Notation 2.2. Let w: B — T be a morphism of schemes and let F/ be a quasi-coherent sheaf on B.
Denote by ug : #*n.E — FE the morphism left adjoint to the identity morphism m.F — 7. F.
The sheaf F is w-relatively generated by global sections if pg is surjective.

Let m : B — T be a family of prestable curves of genus 0 and let £ be a coherent sheaf on B.
Let o : T'— B be a section of 7 and let Z C Op be the ideal sheaf of o(T).
LEMMA 2.3.
i) If E is m-relatively generated by global sections, then R'm,E = {0}.
ii) If E is m-relatively generated by global sections, then Riw,(Z - E) = {0}.
iii) Let E' and E” be coherent sheaves on B and let
0 E’ E E” 0
be a short exact sequence of coherent sheaves. If E' and E" are m-relatively generated by global
sections, then E is mw-relatively generated by global sections.
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Proof. All three statements can be proved locally over T'. Hence it suffices to consider the case that
T is affine.

i) Since F is w-relatively generated by global sections and T is affine, F is generated by global
sections, i.e. there is a short exact sequence of coherent sheaves,

0 K oY E 0.

Since 7 is of relative dimension 1, R*m,K = {0}. Since the fibers of B are connected of arithmetic
genus 0, R'7,0Op = {0}. In the long exact sequence of higher direct images associated to the short
exact sequence above, R'm, E fits between RIW*O%N and R?7.K; hence R'7,.E = {0}.

ii) There is a short exact sequence of coherent sheaves,

0 IT-F FE E®oy, Oa(T)—>0,

giving rise to a long exact sequence of cohomology groups,
B —— m(E @05 Op(1y) — R'7(T, - E) — R'w,E.
By the last paragraph, R'm,E = {0}. Since E is generated by global sections,
7B —— m(E ®05; Oy(1))

is surjective. Therefore Rlm.(Z - E) = {0}.

iii) By part i, h'(B,E’) = 0; therefore every global section of E” is the image of a global
section of E. So the global sections of E generate E”, and the global sections of E’ generate E'.
Therefore E is generated by global sections. ]

Let B be a prestable curve of genus 0, and let E be a locally free sheaf of positive rank on B.
A smoothing of the pair (B, E) over a discrete valuation ring R is a pair (B, &) consisting of a family
B — Spec R of prestable curves of genus 0 and a locally free sheaf £ such that the generic fiber of B
is a smooth curve, such that the closed fiber of B is isomorphic to B, and such that the restriction
of £ to the closed fiber is isomorphic to E. What conditions on (B, F) guarantee that, for every
smoothing (B, £), the restriction of £ to the generic fiber is an ample locally free sheaf? Certainly if
FE is ample, this is true. But E need not be ample for this condition to hold: e.g. if E' is an invertible
sheaf such that the total degree of E is positive, then for every smoothing the restriction of £ to
the generic fiber is ample. Although it is not the most general criterion, the following criterion is
used in the rest of this paper.

DEFINITION 2.4. Let B be a connected, proper, at-worst-nodal curve of arithmetic genus 0. A locally
free sheaf E on B with positive rank is deformation ample if

i) E is generated by global sections, and

ii) h'(B,E(Kp)) =0, where Og(Kp) is the dualizing sheaf of B.

Remark 2.5.
i) Conditions i and ii in Definition 2.4 are independent.

ii) If F is invertible, then E is deformation ample if and only if the restriction of E to every
irreducible component has nonnegative degree and the restriction to at least one irreducible
component has positive degree; cf. Lemma 2.11.

iii) One can determine whether E is deformation ample in terms of the splitting type of the
restriction of E to each irreducible component together with the patching isomorphisms at
the nodes of B.
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Let T be a scheme, let 7 : B — T be a family of prestable curves of genus 0, and let £ be a
locally free sheaf of positive rank on B.

DEFINITION 2.6. The sheaf E is w-relatively deformation ample (or simply deformation ample if
is understood) if

i) E is m-relatively generated by global sections, and

ii) R'm,(E(K;)) = {0}, where Op(K;) is the relative dualizing sheaf of 7.

Let w : B — T be a proper, flat family of connected, at-worst-nodal curves of arithmetic genus 0,
let E/ be a locally free sheaf on B of positive rank, and let f : 7" — T be a morphism of schemes.
Denote the fiber product as in the following diagram.

B—1-B

T"——T
Denote by E’ the pullback ¢g*FE.

LEMMA 2.7. If E is w-relatively deformation ample, then E’ is '-relatively deformation ample.
If f is surjective, the converse also holds.

Proof. (=) For the main direction, by [GD64, § 8.5.2, Proposition 8.9.1], it suffices to consider the
case when T and 7" are Noetherian affine schemes.

There is a canonical map of Op-modules, v : f*m,E — (7').g* E, which fits into the following
commutative diagram.

(7" f*r B —— g*1* 1. E

(W’)*Vl lg*uE

(') (n) B! —E— B
Since pp is surjective, g* g is surjective. Hence also p g is surjective, i.e. E' is n’-relatively generated
by global sections.

Since 7 has relative dimension 1, R?*m.E(K,) = {0}. By [Har77, Theorem III.12.11(b)], for
every closed point t € T, h'(B;, E(K,)|g,) = 0. By [Har77, Proposition I11.9.3], for every closed
point ¢’ € T, h'(Bj,, E’(KW/)|B£,) = 0. So by [Har77, Theorem I11.12.11(a)] and Nakayama’s lemma,
R (E'(K,)) = {0}. Hence E' is 7'-relatively deformation ample.

(<) Now suppose that f is surjective and that E’ is 7’-relatively deformation ample. As above, it
suffices to consider the case when T and T” are Noetherian affine schemes. As above, for every closed
point ¢ € T, hl(Bé,,E’(K,r/)|B£,) = 0. Since T" — T is surjective, by [Har77, Proposition II1.9.3]
for every closed point t € T, h'(By, E(K;)|g,) = 0. So by [Har77, Theorem III.12.11(a)] and
Nakayama’s lemma, Rz, (E(K,)) = {0}.

It remains to prove that FE is w-relatively generated by global sections. For every closed
point ¢ € T, there is a closed point ¢ € T’ mapping to t. Since F/| B, i generated by global

sections, also E|p, is generated by global sections. By Lemma 2.3, h'(B;, E|g,) = 0. By [Har77,
Theorem I11.12.11(a)] and Nakayama’s lemma, R, (E) = {0}.

The claim is that for any coherent Op-module F, Rlm,(7*F @ E) = {0}. This is local on T.
Locally on T, F is the cokernel of OS‘?N for some N, so 7*F @ E is the cokernel of E®N.

Since 7 has relative dimension 1, R'm, is right exact on the category of coherent Op-modules.
Since R'm,(E®N) = {0}, also R'm,(7*F ® E) = {0}, which proves the claim.
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In particular, applying the long exact sequence of higher direct images to the short exact
sequence,

0——71"1L;QF E E|p, 0,

m.(E) — H°(By, E|p,) is surjective. Since E|p, is generated by global sections for every closed point
t € T, E is w-relatively generated by global sections. So E is m-relatively deformation ample. ]

LEMMA 2.8. Let w : B — T be a proper, flat family of connected, smooth curves of genus 0 and let
E be a locally free sheaf of positive rank. Then F is w-relatively deformation ample if and only if E
is w-relatively ample.

Proof. Both properties are local on T" and can be checked after étale, surjective base change of T
So it suffices to consider the case when 7 : B — T is isomorphic to mp : T x P! — T.

(=) Denote F' = (77)«(E @ 71 Op1(—1)). Tensoring the map HE@R?, Op (~1) with the identity
map on 7 Op1(—1) gives a map v : 7 F @ m5,Op1(1) — E. Assume that F is deformation ample.
The claim is that v is surjective. To prove this, it suffices to prove the following:

i) for every geometric point ¢ of T', h! (PP () ,Elp, ® Op1(—1)) =0,

i) F®o, k()= HO(]P’l ,E|p, ® Opi1(—1)), and
iii) the map H°(P: () E\Bt ® Op1(—1)) @ Op1 (1) — E|p, is surjective.

By Grothendieck’s lemma [Har??, Exercise V.2.6], E|p, splits as a direct sum Opi(a1) @ -+ &
Op1 (a,) for some integers a1 < - -+ < a,. By Lemma 2.7, F|p, is deformation ample, and in particular
' (P!, E|g,(—2)) = 0. Hence a; > 1, and h'(P!, E|p, ® O]pl( )) =0, i.e. part i holds. By [Har77,

Theorem I11.12.11(b)], also part ii holds. Finally, for a; > 1, HY(PL, Op1(a; —1)) @ Op1 (1) — Op1 (a;)
is surjective. Thus part iii holds and the claim is proved.

Now 77 F @ 75, Opa (1) is wp-relatively ample. Since E is a quotient of 77 F @ 75, Opi (1), also E
is mp-relatively ample; cf. Lemma 2.10, part i.

(«=) The converse direction follows in the same way. O

LEMMA 2.9. There exists an open subscheme i : U — T with the following property: for every
morphism f: T — T, f(T') is contained in U if and only if E' is n’-relatively deformation ample.

Proof. By [GD64, § 8.5.2, Proposition 8.9.1], it suffices to consider the case that T and 7" are
Noetherian affine schemes.

Let Z1 C T be the closed subset,
Zy = f[Supp(coker(n*m, E — E))].
Let Zo C T be the closed subset,
Zy = Supp(R'm.(E(Kr))).
Let Z3 C T be the closed subset,
Z3 = Supp(R'7.E).
Let i : U — T be the open complement of Z; U Zy U Z3.

Let f : 7" — T be a morphism of Noetherian affine schemes. By [Har77, Theorem III.12.11,
Proposition I11.9.3] and Nakayama’s lemma, R7,(E'(K.))={0} if and only if for
each closed point ¢ € T", h' (B}, E'( ,r/)|B£/) = 0. Denoting t = f(t'), hl(Bg,,E’(KW/)|B£,) =0 if
and only if h'(By, E(K,)|g,) = 0, i.e. if and only if ¢ is contained in the complement of Zs.
Hence R'7)(E'(K,)) = {0} if and only if f(T) is contained in the complement of Zs.
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By the same argument as in the converse direction of the proof of Lemma 2.7, E’ is 7’-relatively
generated by global sections if and only if for every closed point t' € 7', F| B, is generated by global
sections. Denoting ¢t = f(¢'), E| B, is generated by global sections if and only if E|p, is generated
by global sections. If E|p, is generated by global sections, then h'(By, E|p,) = 0. By [Har77,
Theorem II1.12.11], ¢ is not in Z3 and t is not in Z;. Conversely, if ¢ is not in Z3, then F|p, is
generated by global sections if and only if ¢ is not in Z;. Thus E’ is 7/-relatively generated by
global sections if and only if f(7”) is contained in the complement of Z; U Z3. So E’ is 7'-relatively
deformation ample if and only if f(7") is contained in U. O

LEMMA 2.10.

i) If x : E — E” is a morphism of locally free sheaves on B whose cokernel is torsion in every
fiber (in particular, if x is surjective), if E” is nonzero, and if E is w-relatively deformation
ample, then also E" is w-relatively deformation ample.

ii) If E' and E" are w-relatively deformation ample, then for every short exact sequence of coherent
Op-modules,

v X

0 E' E E" 0,
FE is w-relatively deformation ample.

iii) If E is w-relatively deformation ample, then for every integer n > 1, also E®™ is mw-relatively
deformation ample.

Proof. i) Let @ denote the cokernel of y and let I C E” denote the image of . There is a short
exact sequence of coherent Op-modules:

0 I E" Q 0.

When we ‘twist’ this exact sequence by Op(K ), it remains exact. Because 7 has relative
dimension 1, R'm, is right exact on the category of coherent Op-modules. In particular, since
R'7.E(K,) = {0}, also R'mI(K,) = {0}. Since Q is torsion in every fiber, R'm.Q(K,) = {0}.
Thus, by the long exact sequence of higher direct images associated to the twisted exact sequence
above, R, E"(K,) = {0}.

The surjective composition map

HE
i B ——= FE1 ——= 1T

factors through the natural map p; : n*m.I — I. Hence puy is surjective, i.e. I is m-relatively
generated by global sections. Since () is torsion in every fiber, the support of @ is finite over T'
and it follows that @ is m-relatively generated by global sections. By Lemma 2.3, part iii, £ is
m-relatively generated by global sections. So E” is w-relatively deformation ample.

ii) By hypothesis, R'm.E'(K;) = R'm.E"(K,) = {0}. By the long exact sequence of higher
direct images, also R'7,E(K,) = {0}. By Lemma 2.3, part iii, F is 7-relatively generated by global
sections. So F is m-relatively deformation ample.

iii) This is proved by induction on n, the case n = 1 being tautological. It suffices to consider
the case when T is affine. Suppose n > 1 and suppose the result is known for n — 1. In particular,
E®(=1) is generated by global sections. There is a natural surjection

T (E®(M 1)) ®o, E—E%".

There is a surjective map OE?N — 7T*(E®(”_1)). Hence there is a surjection E®V — E®" By part ii
and induction, E®V is m-relatively deformation ample. By part i, the quotient E®™ is m-relatively
deformation ample. Thus part iii is proved by induction. ]

43

https://doi.org/10.1112/50010437X04001253 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001253

J. HARRIS AND J. STARR

LEMMA 2.11. Let B be a proper, connected, at-worst-nodal curve of arithmetic genus 0 over an
algebraically closed field k. Let E be a locally free sheaf of positive rank such that:

i) for every irreducible component B; C B, E|p, is generated by global sections, and

ii) there exists a nonempty, connected, closed subcurve B’ C B such that E|g/ is deformation
ample.

Then E is deformation ample.

Proof. Let § be the number of irreducible components of B which are not contained in B’. The result
is proved by induction on §. The base case § = 0 is tautological, for then B = B’. Assume that
0 > 0 and that the result is true for all smaller values of §.

Let By C B be an irreducible component of B. Let By C B denote the union of all irreducible
components other than B;. There exists an irreducible component By not contained in B’ such that
By is connected: if the dual graph of B’ contains every leaf (= vertex of valence 1) of the dual graph
of B, then the two graphs are equal. The intersection B N By is a single node, denoted b. By the
induction hypothesis, F|p, is deformation ample.

The claim is that F is generated by global sections. Denote by F' C E the image of
HY(B,E)®, Op —E.
There is a short exact sequence of coherent sheaves:
0—FE®p, Op,(—b)—=FE——E ®0, Op,—0.

Since E|p, is a locally free sheaf on P! generated by global sections, Grothendieck’s lemma and
the cohomology of line bundles on P! imply that h!(B, E ®0, Op, (=b)) = 0 (h' (P, Opi(a)) =0
for @ > —1). Hence all the global sections of F|p, lift to global sections of E, i.e. ' — E|p, is
surjective. So E/F is supported on By. Hence E/F is a quotient of F|p,. Since F|p, is generated
by global sections, also E/F' is generated by global sections. There is a short exact sequence

0—>F—>FE—>FE/F—>0.

By Lemma 2.3, part iii, / is generated by global sections.

There is a short exact sequence of coherent sheaves,
0——=FE(Kp) ®oy; Op,(—b)—E(Kp)—FE(Kp) ®0, Op, —0.
This gives a long exact sequence in cohomology, part of which is,
HY(B,E(Kp) ®0, Op,(—b))—=HY(B,E(Kp))—=H'(B,E(Kp) ®0, Op,)—0.

The inclusion map By — B is finite, and therefore there is a canonical isomorphism of Opg-modules
(cf. [Har66, § II1.6] and [KM98, Corollary 5.68]),

OB, (Kp,) = Home, (Op,, Op(Kp)) = Op(Kp) ®0,; Op,(—b).

Hence h'(B, E(Kp) ®0, Op,(—b)) = hY(B2, E ®0, Op,(Kp,)), which is zero by the induction
assumption. Similarly, E(Kp) ®0, Op, is isomorphic to E ®p, Op, (—1) (identifying By with P1).
Since F|p, is generated by global sections, it follows by Grothendieck’s lemma and the cohomology
of line bundles on P! that h'(By, E|p, (1)) = 0. Hence h'(B, E(Kg)) = 0, and E is deformation
ample. Therefore the lemma is proved by induction on §. [l

Remark 2.12. A particular case of Lemma 2.11 is when B’ is one irreducible component of B, in
which case the lemma says that a locally free sheaf on B which is generically ample in the sense of
Lazarsfeld [Ful98] is deformation ample.
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3. Deformation theory of stable maps

The Kontsevich moduli space of genus-0 stable maps, ﬂo,r(X ,€), and the Behrend—Manin moduli
spaces, M(X,7), are described in § 1.1. The deformation theory of stable maps has been worked out
in [BF98] and [Beh97]. Many specific deformation-theoretic results follow easily from these papers
and are known to the experts, but have not been written down. Some of these specific results are
proved in this section. Although these results will only be applied to genus-0 stable maps in this
paper, the same arguments work for stable maps of arbitrary genus; in this section only, stable maps
and stable A-graphs are not necessarily assumed to be of genus 0.

Let X and T be schemes.
DEFINITION 3.1. A family of r-pointed, genus-g prestable maps to X over B is a triple
(=((p:X2—=B,o1,...,04),9: X — X)

consisting of a family p : ¥ — B of prestable curves of genus g over B, a sequence of r disjoint
sections o; : B — ¥ with image contained in the smooth locus of p (if » = 0, the sections are
omitted), and a morphism g : ¥ — X.

Let ((3,01,...,04),9) be a prestable map over an algebraically closed field. An irreducible
component ¥; C X is stable if the restriction of the log-dualizing sheaf, Ox.(Kx+01+4- - -+0,)@0, O,
is g-relatively ample, i.e. one of the following hold

i) g:%; — X is nonconstant,

ii) pa(zi) > 17
iii) pe(X;) =1 and ¥; contains at least one marked point or external node of ¥, or
iv) pe(X;) =0 and ¥; contains at least three marked points and nodes of B.

The curve X is stable if Ox(Ky+01+---+0,) is g-relatively ample, i.e. every irreducible component
of ¥ is stable. The family ( is stable if, for each geometric point ¢ € T', the curve 3; is stable.

Now assume that X is smooth.
Notation 3.2. Denote by L; the complex of coherent sheaves on X

-1 0

1
" e 0 (01 (T) £+ 0(T)), .

where —1 or 0 indicates the degree.

For a scheme T and a bounded-above complex of coherent sheaves C' on T, CV denotes the
object in the derived category of coherent sheaves on T,

CY := RHomp,.(C, Or).
In particular, LZ is the object
L¢ = RHomo, (L¢, Ox)

in the derived category of coherent sheaves on .
The relevance of the complex Lz/ is the following.

LEMMA 3.3. Let X be a smooth quasi-projective scheme. Let MW(X,ﬁ) denote the Deligne—
Mumford stack of r-pointed stable maps to X of arithmetic genus g and degree (3. Let p : ¥ —
ﬂg,,«(X ,3) denote the universal curve, let o; : MW(X ,3) — X denote the universal sections, and
let g : ¥ — X denote the universal map, i.e.

(=(p: % = My (X,8),01,...,00),9: ¥ — X)
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is the universal family of stable maps. There is an obstruction theory for ﬂg,T(X , ) in the sense
of [BF98, Definition 4.4] of the form

(Rp« (LAY — L, (x,8)-
A similar result holds for prestable maps; cf. Remark 3.4.
Proof. Essentially this follows from [BF98]| and [Beh97]. O

Remark 3.4. Explicitly, if ( = ((3,01,...,0,),9 : ¥ — X) is a stable map or a prestable map, the
space of first-order deformations of ( is EX’G}QE (L¢, Ox) and the obstruction group is a subgroup
of EXt%E (L¢, Ox). In the case of a prestable map, the space of infinitesimal automorphisms of the
map is EX‘G%E(LC, Os) (for stable maps this group is zero). In particular, if IEIX‘E%Q2 (L¢, Ox) vanishes,
then M, (X, 3) is smooth at the point [(].

LEMMA 3.5. Let ((¥,01,...,0.),9) be a prestable map. Let Oy, denote the tangent sheaf of X,
i.e. the dual of Qx. The space of infinitesimal automorphisms of (, IEX‘GOOZ (LC,Oz), is canon-
ically isomorphic to a subspace of the space of infinitesimal automorphisms of (X,01,...,0.),
HO(E, @2(—(0’1 +---+ O'r))).

An irreducible component 3; C X is stable if and only if the restriction of every infinitesimal
automorphism of ¢ to Ox(—(o1+---+0,)) ®o,, Oy, is zero. Moreover, if ¥; is unstable, then every
infinitesimal automorphism of the nodal curve ¥; that fixes all marked points and nodes of ¥ is the
image of an infinitesimal automorphism of (.

Proof. Analyzing the spectral sequence for hypercohomology, EXt%E (L¢, Ox) is canonically isomor-
phic to the kernel of

EXt%E(QZ(Ul + - +0;),05) — EXt??z (97€2x, Ox).

Ext%E(Qg(al + -+ 0,),0x) equals HO(Z, Ox(—(01 + -+ + ).
Assume that Y; is stable, i.e. X; satisfies one of the cases i—iv in Definition 3.1. In cases ii-iv,
the image of

H'(3,05(—(01+ - +07)) —= H°(%;,0x(=(01 + - + 07)) ®0y; Ox,)

is zero hence the restriction of every infinitesimal automorphism of ( is zero. In case i, chasing
through diagrams, the image of H%(X, ©x(—(01 + -+ + 0,))) is contained in the subsheaf which is
the kernel of d(g|y,) : Oy, — ¢"Tx ®oy, Oy,. Since g is nonconstant, this map is nonzero. Oy, is
a torsion-free sheaf, so the kernel of d(g|y,) is zero. Hence, also in case i, the restriction of every
infinitesimal automorphism of ( is zero.

Assume that ¥; is not stable. Then ¢ contracts ¥; to a point, and either ¥ = 3J; is a curve of
arithmetic genus 1 and there are no marked points, or ¥; is a smooth rational curve which contains
at most two marked points and nodes of 3. In both cases there is a positive dimensional group of
automorphisms of ¥; which fix all marked points and nodes of ¥: Pic™(¥;) acting by translation if
¥; has arithmetic genus 1, and the group of automorphisms of P! fixing (at most) two points if 3;
is a smooth rational curve. The Lie algebra of this positive dimensional group is the Lie algebra of
infinitesimal automorphisms of the marked curve ¥;. This group of automorphisms of ¥; extends to
a group of automorphisms of the map (. Therefore every infinitesimal automorphism of the marked
curve Y; extends to an infinitesimal automorphism of (. In particular there exists an infinitesimal
automorphism of ¢ whose restriction to ¥; is nonzero. O

Let f : X — Y be a smooth morphism of smooth quasi-projective varieties. Let
(= ((2,01,...,00),9: ¥ — X) be a prestable map. Denote by h : ¥ — Y the composition h = fog,
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and denote by £ the prestable map ((2,01,...,0,),h: X — Y). There is a short exact sequence of
complexes

0 Le L g Q1] —=0,
defined by the following commutative diagram:
-1 0
t
Lg : g*f*Qy L 92(0'1 +--+ O'T)

lg*(dfﬁl l:
drt

LCI g*Qx—f>Qz(O'1+"'+O'T)

L |

g ) 9" Qp ————0

LEMMA 3.6.
i) If ¢ is stable, then ( is stable.
ii) If the dimension of the obstruction group of  is 0, then the dimension of the obstruction group
of £ is 0.
iii) If hY(3Z, g*Qy) = 0 and if the dimension of the obstruction group of ¢ is 0, then the dimension

of the obstruction group of ( is 0, and the map from the space of first-order deformations of ¢
to the space of first-order deformations of & is surjective.

Proof. i) If the log dualizing sheaf of (3,01,...,0,) is h-ample, then it is g-ample.

ii) Associated to the short exact sequence of complexes above, there is a long exact sequence of
hyper Ext, part of which is

Ext%z (Lc, Oy) —— Extéz (Lg, Oy) —— Ext%z (g * Qf[l], Oy).

Of course EXt]éE (9" Q[1], Ox) :Hk_l(E,g*Q}/). In particular dim IEJ)«:’G?(’QE (g"Qf[1],0x) =
hQ(Z,g*QJVc) = 0. Therefore if dim Ext%E(Lg, Os;) =0, then dimExt%Z(Lg, Os) = 0.

iii) If hl(E,g*Q}/) = 0, then ExtQOE(LC, Os) — Ext%E(Lg, Os,) is an isomorphism. Hence if the
dimension of the obstruction group of ¢ is 0, then the dimension of the obstruction group of &

is 0. Moreover the preceding two terms in the long exact sequence of hyper Ext give a surjection
Extéz (Lg, Os) — Extéz (Lg, Oy). ]

Let ¢ : S — B be a smooth morphism and let 7 : ¥ — S be an unramified morphism of
B-schemes. Then (g,i) : ¥ — X x S is an unramified morphism of B-schemes; hence the map
of coherent sheaves

is surjective. Because p is flat of relative dimension 1 and the geometric fibers are reduced, local
complete intersection schemes, the kernel of d(g,7)" is a locally free sheaf N (vg i) Similarly the kernel

of dif : i*Qy — Q, is a locally free sheaf N’
There is a short exact sequence of coherent sheaves,

Denote by N, the subsheaf of N/ , (01(B) + -+ -+ 0,(B)) that contains N}/ (o1(B)+ -+ 07(B))
and such that N(VC Z.)/Nz-v(al(B) +---+0,(B)) is identified with ¢*Qx C ¢*Qx(01(B)+---+0,(B)).
Observe that NV, (VC ) is a locally free sheaf.
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Notation 3.7. There is a canonical map
Ny o(o1(B) + -+ 0n(B)) — (9,9)* Qx xs5/B-
The two projections give a canonical isomorphism of Qx, g/p With 73 Qx © 75€,. Denote by
e s Ny —= 9" Qx(01(B) - + 0:(B)) © i*Qy(01(B) + -+~ + 0,(B))

the induced morphism. Observe that the composition of (¢ ;) with projection on the first summand
factors through

9" Qx C g°Qx(01(B) + -+ + 0,(B)).
Denote by ¢ ;) : N(vm.) — g"Qx and B N(vm.) — i*Qq(01(B) + -+ - + 0,(B)) the composition of
Y(¢,iy With the two projections. Denote by L ¢ ;) the complex of locally free Os-modules concentrated
in degrees [—1,0]:

-1 0

By .
Ny 25 #Q(01(B) + -+ - + 00(B))

Denote by A« ) : L(¢i) — L¢ the quasi-isomorphism of complexes of coherent Ox-modules
NV Ben Q)
¢y —= 1" Qq(01(B) + -+ + 0v(B))

Q(¢,0) l l(di)f
do)T
7 Qx 0 (01(B) + - + 0r(B))

The relevance of A ;) L) — L¢ is that the complex L(vC 9 is easy to compute since L ;) is
a complex of locally free sheaves; it is simply

0 1
1

" Biciy
#Ty(—(01(B) + -+ + 0,(B))) —> Ny

In most applications, B will be the spectrum of a field and S will be a surface.

3.1 Contracting unstable components

In this section, the base B will always be the spectrum of an algebraically closed field.
The changes necessary to get relative versions of the lemmas over a more general base are straight-
forward.
Let
¢=(2,01,...,00),9: X — X)
be a prestable map, let
(o, .00, ... 0l

be a proper, connected, at-worst-nodal curve, and let
u: (X, 0l,...,00) —= (,01,...,07)

rer

be a map which contracts some of the unstable components of (X', 07, ...,0.) (i.e. u contracts some

of the irreducible components of ¥’ which have arithmetic genus 0 and contain fewer than three
nodes and marked points). Denote ¢ = g o u and denote by ¢’ the prestable map

¢ =(xol,...;000],....00), ¢ : ¥ — X).
What is the relationship of Extoy, (L¢, Ox) and Exto,, (Ler, Osy)?
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Any morphism u : ¥ — X as above can be factored as a sequence of elementary morphisms,
defined below.

DEFINITION 3.8.

i) The morphism u is a Type I elementary morphism if ( = (X,9 : ¥ — X) is a prestable map
without marked points, v : ¥’ — X contracts a single unstable component to a smooth point
of ¥,and (' = (¥,¢ = gou: ¥ — X).

ii) The morphism wu is a Type II elementary morphism if ( = (X,g : ¥ — X) is a prestable map
without marked points, u : ¥’ — X contracts a single unstable component to a node of X, and
(=0%,¢d=gou:¥ — X).

iii) The morphism w is a Type III elementary morphism if ( = (2, (01,...,0,),9 : ¥ — X) is a
marked prestable map, ¢’ is the same prestable map but with one extra marked point, and
u: X — XY is the identity map.

Let S be a smooth surface and let i : ¥ — S be a closed immersion. Let s € X C S be a closed
point.

Notation 3.9. Denote by v : 8" — S the blowing-up of S at s. Denote by E C S the exceptional
divisor. Denote by 4’ : X' — S’ the reduced total transform of B, i.e. the reduced scheme of v~1(X).
Denote by v also the morphism of pairs v : (S’, %) — (S, 3). Denote by u : 3’ — ¥ the restriction
of v to ¥'. Denote by ¢ : ¥ — X the composition ¢’ = g o u. Denote by (’ the prestable map
(X', g : 3 — X). Denote by I' C 3’ the closed (not necessarily connected) subcurve which is the
union of all irreducible components other than F, and denote D = ENT.

DEFINITION 3.10.

i) The morphism of pairs is Type la if s € ¥ is a smooth point that lies on a stable component.

The morphism of pairs is Type Ib if s € 3. is a smooth point that lies on an unstable component.

The morphism of pairs is Type Ila if s € ¥ is a node, and there exists a first-order deformation
of ¢ that smoothes the node s (to first order).

v) The morphism of pairs is Type IIb if s € 3 is a node, and there is no first-order deformation
of ¢ that smoothes the node s (to first order).

vi) The morphism of pairs is Type II if it is Type I1a or Type IIb.

)
iii) The morphism of pairs is Type I if it is Type Ia or Type Ib.
)

If v is Type I, then v*Y = ¥/ as Cartier divisors. If v is Type II, then v*Y¥ = ¥’/ + E as Cartier
divisors.

LEMMA 3.11. For every integer k the pullback morphism of sheaf hypercohomology groups,
HF (S, L)) — HF (Y, Lu* LY ), is an isomorphism.

Proof. Of course v,05 = Og and RFv,0g = {0} if &k > 0. Also v.(Og(E)) = Og and
RFv,(0Og(E)) = {0} for k > 0. If v is Type I then Og(—=Y%") = v*Og(—%), and if v is Type II
then Og/(—%') = v*Og(—X) ®o,, Og(E). For both types, the projection formula implies that
0:(0g/(=%")) = Os(—%) and RFv,(Og(—%')) = {0} for k > 0.

Associated to the short exact sequence of coherent Og/-modules,

0 — Og/(~X)) —> O — Oy —0,

there is a long exact sequence of higher direct images RFv,, and the higher direct images of Og
and Og (—Y') have just been computed. The conclusion is that u,Osy = Os and RFu,Osy = {0}
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for k > 0. In other words, the canonical morphism of complexes of coherent Os-modules, Ox[0] —
Ru,Osv, is a quasi-isomorphism. From this and the projection formula, it follows that the canonical
morphism

Ly — RuLur (L)
is a quasi-isomorphism. Therefore the pullback morphisms
HF (2, LY ) — H* (X', Lu*LY)
are isomorphisms. O

There is a canonical map of coherent sheaves Og/(¥') — v*Og(X). It is an isomorphism if v
is Type I, and is injective with cokernel v*Og(¥) ®o,, O if v is Type IL. If v is Type II, then

~

v*0x(¥) ®o,, Op = M ®@c Op where M = Og(¥)[s is a one-dimensional vector space. If v is
Type I, the canonical morphism N iy — u*N(¢ ;) is an isomorphism. If v is Type II, there is an
exact sequence:

0 —> M @¢ Tor ¥ (Oxy, Op) —= Ni¢r,iny —= u*Ni¢jy —= M &¢ O — 0.
LEMMA 3.12. Let N%/S/ denote the conormal sheaf of E C S’. There is a canonical isomorphism
Tory*' (Osr, Op) = Ny, g @0, Op(—D).
Proof. There is an Og/-flat resolution of Op,

0— Og/(—E) Og Og 0.

Tensoring this resolution with Oy over Qg gives a canonical isomorphism,
Tor(s' (Osr, Op) = I ®o,, Os/(—E) = Ny 5 0, Op(-D),
where Zr C Osy is the ideal sheaf of I' C X', O
In particular, if v is Type II there is an exact sequence:
0—— M ®c N%/sl ®og Op(=D) — N iy —=u*N¢ ) —= M ®@c O — 0.
LeEMMA 3.13. There is a long exact sequence,
0 — Tp(—D) — (i')*Tss 2> u*i*Tg — T ®0,; Ng/sr — 0.
(Both if v is Type I and if v is Type II.)

Proof. For both types, there is a short exact sequence of coherent Og-modules,

dv)t
0 ’U*QS( ) Qg Qg 0.

There is an associated long exact sequence of higher derived functors of Home S,(',OS/), part of
which is the short exact sequence,

0 — Ty —= v*Ts — Extp_, (5, Og) —0.
The resolution of Og from the proof of Lemma 3.12 gives a canonical isomorphism,
Exto,,(Op, Os) = Ng/gr,
where Ng/g is the dual of N}% /s So the previous exact sequence is
0——=Ty —=v*Tg —=TE ®o, Ngjss —0.
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Of course T ®o, Ng /s is a locally free Op-module; in particular, we have a canonical isomorphism,

Ogr ~ Ogr
TOI’I S (OEI,TE ®OE NE/S/) = TOI'I S (02/, OE) ®OE TE ®OE NE/S/'
Tensoring the short exact sequence above with Osy over Og and using Lemma 3.12 produces the
exact sequence,

0—>TE(—D)—>(Z'/)*TS,Lu*i*TS_>TE R0p NE‘/S’—>0. O

The maps N iy — u*N ) and (i)*Tss — u*i*Ts are compatible with a(c, ) and u a&’)

So there is an induced map of complexes L( o u*LE/ i)
Notation 3.14.
i) Denote by du : L(VC, in = h”‘L(vC ;) the induced map of complexes.

ii) Denote by Image(du) — u"‘L(VC 0 the image of du in the Abelian category of complexes of
coherent Oyy-modules.

iii) If v is Type I, denote K1 = Tg(—D)[0] and Q1 = (Tg ®o, Ng/sr)[0]-
iv) If v is Type 11, denote
K = Tp(=D)[0] & (M ®c Ny 5/(=D))[~1],
QH = (TE‘ ®OE NE'/S’)[O] S5 (M ®(C OE)[—].]

LEMMA 3.15. Both if v is Type I and if v is Type II, there are short exact sequences of complexes
of coherent Oss-modules,

0 K L(VC, i) _du Image(du) — 0,
0 — Image(du) — u* L} Q 0.

Proof. If v is Type I, there is a commutative diagram with exact rows,
\ * TV
Ly == u"Lig,

dv
0 —>TE(—D) - s ( )*TS, L)u*Z*TS —>TE‘ ®OE NE/S/ —(

N(C'ﬂ'/) = h*N(Qi)

The middle two columns of this diagram give du : LE/C/ i = u*LE/C 0 By inspection the kernel of du
is K1 and the cokernel of du is Q.

If v is Type 11, there is a commutative diagram with exact rows,
\ * TV
Ligrn == w"Lig,

( ) TS’ Lu*Z*TS —>TE‘ ®OE NE/S’ —(

-

0 - - M Xc NE/S/( D) —>N(§’,z") —>U*N(( D)

Te(—-D)

M ®c Og

0
The middle two columns of this diagram give du : L(VC/ in u”‘L(vC -
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The claim is that the induced map of kernels, Tp(—D) — M ®&c Ny, /S,(—D), is zero, and the
induced map of cokernels, Tg ®o, Ng/sr — M @c Of, is zero. To see this, observe that in each map,
the domain and target are locally free sheaves on E. So each map is really a section of a Home,, (-, -)
sheaf. Up to canonical isomorphisms, the sheaf in both cases is simply

Homop, (Tr, M ®&c N%/S/) =~ M ®¢ Q% @04 OF.

Identifying E with P!, there are isomorphisms Ng s = Op(—1) and Op(Kg) = Op(—2). By the
adjunction formula for divisors on surfaces, Q%, ®og Op = Og/(Kg') ®0y O is isomorphic to
Or(KEg) ®op N}J//S,, ie. Q% ®oy Op = Op(—2+ 1) = Op(—1). Since this sheaf has no nonzero
global sections, both the induced maps are zero. Therefore the kernel of du is Ky and cokernel of
du is Qrr. O

Assume first that v is Type L. Since Tg(—D) = Og(1), H (Y, K7) = HY(E,Tg(—D)) is two-
dimensional, and dimH (Y, K;) = 0 for i # 0. Similarly H(X,Q1) = H(E,Tg(E)) is
two-dimensional and dimH*(X’,Q;) = 0 for i > 0. Therefore there is a long exact sequence of
hypercohomology groups:

0— HY(E,Tg(=D)) — H (X', Lz ) = H(Z, Lz ) — -+
- — H(E,Tg ®0, Ngjs) = H' (X', Lz ) = H(Z, L ) — 0,

0 — FX(Z, L i) = (S, L ) — 0.

LEMMA 3.16. If v is Type la then there are exact sequences,
0— HO(E7TE(—D)) — HO(Z/7LE/C/’7:/)) — HO(Z, LE/C’Z)) — 07

0 — HY(E,Tp ®0, Nujs) — H(Z', Ly 1) — HY(S, LY ) — 0,

0 — H?(X', Lz ) — HA(S, L ) — 0.

In other words, the canonical map from the space of infinitesimal automorphisms of {’ to the space of
infinitesimal automorphisms of ( is surjective with two-dimensional kernel, the canonical map from
the space of first-order deformations of (' to the space of first-order deformations of ( is surjective
with two-dimensional kernel, and the obstruction space of ¢’ equals the obstruction space of (.

Proof. The only claim that does not follow from the long exact sequence of cohomology is that
HO(%, L(V<,7 Z.,)) — HO(%, L(VQ Z.)) is surjective. Since the irreducible component 3; C ¥ containing s is
stable, Lemma 3.5 states that every infinitesimal automorphism of ¢ vanishes on XJ;. The infinites-
imal automorphisms of ¢ that vanish at s are the same as the infinitesimal automorphisms of ¢’
that vanish on E. Therefore every infinitesimal automorphism of ( is the image of an infinitesimal

automorphism of ¢’ that vanishes on FE. O

Let v be a morphism of Type Ib. Let ¥; C ¥ denote the unstable component containing s.
Let N denote the one-dimensional vector space G)gj ®(92j O.

LEMMA 3.17. If v is Type Ib then there are exact sequences,
0 — HY(E,Tp(-D)) = H(X, Ly y) — H (2, L, ) — N — 0,
0 — HO(E, T ®0, Npjsr)/N — H'(S, LY 1) — HY(S, L)) — 0,
O — H2(2,7 LE/C/7Z'/)) — Hz(z, LE/C,Z)) — O

In other words, the canonical map from the space of infinitesimal automorphisms of {’ to the space of
infinitesimal automorphisms of ¢ has a two-dimensional kernel and a one-dimensional cokernel, the
canonical map from the space of first-order deformations of (' to the space of first-order deformations
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of { is surjective with one-dimensional kernel, and the obstruction space of { equals the obstruction
space of .

Proof. As in Lemma 3.16, the only claim that does not follow from the long exact sequence of
cohomology is that the cokernel of du : HO(E,vLE/g',z'/)) — HO(Z7LE/<,i)) is N. Let ¥} C X' denote
the strict transform of Xj; Z;- is canonically isomorphic to ¥;. Composing du with the restric-
tion map HO(X, LE/QZ.)) — HY(%y, Oy, ) gives a map which is canonically isomorphic to the restriction
map HO(X, LE/CI77:I)) — H O(E;, @2;_). By Lemma 3.5, every infinitesimal automorphism of ¢’ restricts
to an infinitesimal automorphism of E;- that vanishes at s. On the other hand, the infinitesimal
automorphisms of ¢ that vanish at s are the same as the infinitesimal automorphisms of ¢’ that
vanish on F. Hence the image of du is precisely the subspace of infinitesimal automorphisms of ¢
that vanish at s.

Since X¥; is unstable, either ¥ = 3; is a curve of arithmetic genus 1 with no markings and g is
constant, or ¥; is a smooth curve of genus 0 containing at most two marked points and nodes of X
and g|gj is constant. In each case, it is easy to see that there is an infinitesimal automorphism of ¥;
that vanishes at all marked points and nodes of ¥ and that does not vanish at s. By Lemma 3.5, this
infinitesimal automorphism of ¥; is the image of an infinitesimal automorphism of ¢, i.e. there exists
an infinitesimal automorphism of ¢ that does not vanish at s. Therefore the cokernel of du is N. [

Assume next that v is Type II. Because the divisor D C E has degree 2, the Og-module
NE/S,(—D) is isomorphic to Op(—1). Since h°(E, Og(—1)) = h'(E,Or(—-1)) = 0, the term M &¢
N, /S,(—D)[—l] in K1 does not contribute to the hypercohomology; i.e. the hypercohomology of
Kip is the sheaf cohomology of Tg(—D). The Og-module T(—D) is isomorphic to Op; hence
(B, Tg(—D)) = 1 and h'(E,Tg(—D)) = 0. Therefore dim H°(X', K1) = H°(E, Tg(—D)) is one-
dimensional, and dim H (Y, K1;) = 0 for k # 1.

For Qu both Tk ®o, Ng/¢[0] and M ®c Og[-1] contribute to the hypercohomology.
The Op-module Ty ®o, Ng/g is isomorphic to Og(1). Hence H'(Y', Qu) = H(E, Tp(E)) is two-
dimensional, H'(X/, Q1) = M is one-dimensional (recall M = Og(%)|s), and dimH*(X', Q1) = 0
for k # 0, 1. Therefore there is a long exact sequence in hypercohomology:

0 — H(E,Tg(=D)) — H (X', Lz ) — H(Z, Lz ) — -+
= HE,Tg ®0, Np/s) — H' (¥, Liy ) = H(Z, L ) = -+

Fo M= (Y, Ly ) — HP(S, L) = 0.

Every infinitesimal automorphism of { vanishes at s. So the infinitesimal automorphisms of { are
the same as the infinitesimal automorphisms of ¢’ that vanish on E. In particular, H°(>’, L(VC, Z.,)) —

HO(2, L{; ;) is sutjective. The map H'(Z, Ly ;) — Os(¥)[s is nonzero if and only if there are
deformations of ¢ that smooth the node s to first order. This proves the following two lemmas,

which are stated separately for notational convenience.

LEMMA 3.18. Ifv is Type Ila then there are exact sequences,

0 — H°(E, Tg(—D)) — H (Y, Lz 1)) = H(Z, L ) — 0, (2)
0 — H(E, T ®0; Npysr) — H' (S, L 1) — H' (3, L ;) — Os(X)]s = 0, (3)
0 — H(X, L ) — H2(E, L ) — 0. (4)

In other words, the canonical map from the space of infinitesimal automorphisms of (' to the space
of infinitesimal automorphisms of ( is surjective with a one-dimensional kernel, the canonical map
from the space of first-order deformations of (' to the space of first-order deformations of ¢ has a
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two-dimensional kernel and a one-dimensional cokernel, and the obstruction space to (' equals the
obstruction space to (.

LeEMMA 3.19. Ifv is Type IIb then there are exact sequences,

0— HY(E,Tp(—D)) = H°(X', Lty 1)) — H(Z, L 5y) — 0, (5)
0 — HY(E,Tg ®0, Npys) — H'(X, Lz ) — H'(S, L ;) — 0, (6)
0— Os(2)]s = HA(X, L i1y) — HA(, L, ) — 0. (7)

In other words, the canonical map from the space of infinitesimal automorphisms of {’ to the space of
infinitesimal automorphisms of ( is surjective with a one-dimensional kernel, the canonical map from
the space of first-order deformations of (' to the space of first-order deformations of ( is surjective
with one-dimensional kernel, and the map from the obstruction space of ' to the obstruction space
of ( is surjective and has a one-dimensional kernel.

Finally, assume that u : ¥’ — X is a Type III elementary morphism, i.e. u is the identity map,
but there is one marked point ¢’ € ¥’ that is not in X.

DEFINITION 3.20. Let u : ¥’ — X be a Type III elementary morphism.
i) The morphism u is Type Ila if ¢’ € ¥ lies on an unstable component.
ii) The morphism w is Type IIIb if o' € X lies on a stable component.
In both cases, there is a canonical short exact sequence of complexes:

0 L¢ L Qs (o) ®oy, O [0]—0.

Of course ExtéZ(Qg(a’) ®oy Oy,0yx) is canonically isomorphic to T% ®p, Oy, and
dim IEJ)«:’GI("’QE (Qx(0") ®oy, Oy, Os;) = 0 for k # 1. In particular, there is an induced map

EX’G%E (Lc, Og) ——=Tx ®oy Of.

This map is zero if and only if ¢’ lies on a stable component of . Combined with the long exact
sequence of hypercohomology associated to the short exact sequences, this proves the following two
lemmas, which are stated separately for notational convenience.

LEMMA 3.21. Ifu: ¥ — X is Type IIla then there are exact sequences,
0 — Extg, (Lo, Osy) — Bxt (Le, Ox) — Ty @0y Opr — 0,
0— EX’G%OE,(LC/, Oy) — EX’G%QE (Lc, Os) — 0,
0— EXt%E,(Lgl, Oy) — Ext%z (Lg, Os) — 0.

In other words, the space of infinitesimal automorphisms of (' maps isomorphically to a codimen-
sion-1 linear subspace of the space of infinitesimal automorphisms of (, the space of first-order
deformations of (' equals the space of first-order deformations of ¢, and the obstruction space of ¢’
equals the obstruction space of (.

LEMMA 3.22. Ifu: Y — X is Type IIIb then there are exact sequences,
0— EXt%E,(LC/, 02/) — EXt%E (LC7 02) — 0,
0 — Ty ®oy, O — Extg, (L¢r, Osy) — Extiy (L, Os) — 0,
0— EXtQOE,(Lgl, Oy) — EXt%E (Lg, Os) — 0.

In other words, the space of infinitesimal automorphisms of (' equals the space of infinitesimal
automorphisms of (, the canonical map from the space of first-order deformations of ' to the space
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of first-order deformations of ( is surjective with one-dimensional kernel, and the obstruction space
of ¢! equals the obstruction space of '.

Taken together, Lemmas 3.16-3.19, 3.21 and 3.22 describe the canonical maps
Ext]foz, (L¢r, Osy) — IEJ)«:’GI("’QE (L¢, Osy) for any morphism u : ¥’ — X that removes a subset of marked
points from ¥’ and then contracts a subset of the unstable components.

3.2 Gluing stable maps

Let 7 be a stable A-graph, not n(ﬁssarily of genus 0. To describe the analog of Lemma 3.3, a more
precise description of the stack M(X,7) is needed. Let B be a scheme. A 1-morphism ¢ : B —

M(X,T) is equivalent to a pair ({, ¢) consisting of a family of r-pointed stable maps,
CZ ((p:z_)Bao-lw"aJT)vg: Z_)X)v

along with a natural assignment to each geometric point b € B of a contraction of stable A-graphs
oy = T(¢p) — 7. The graph 7((p) is the stable A-graph of ((Xy,01(b),...,0.(b)),gs). A contraction
of stable A-graphs, ¢ : 7/ — 7 is a map that contracts subgraphs of 7" to vertices of 7; cf. [BM96,
Definition 1.8]. Geometrically the vertices of 7 give a decomposition of ¥ into connected subcurves.
The main example of a contraction of stable A-graphs comes from a family of stable maps over a
discrete valuation ring, ¢ : Spec R — ﬂg,r(X ,e). Let (p denote the fiber over the geometric closed
point of R and let ¢, denote the fiber over the geometric generic point of R. There is a canonical
contraction ¢ gy : 7(Co) — T(¢y); a vertex of 7((p) corresponding to an irreducible component
¥o,; C Yo maps to a vertex of 7((;,) corresponding to an irreducible component of ¥, , C ¥, if and
only if ¥ ; is in the closure of X, ;.. The assignment ¢ from above is called natural if it is compatible
with the action of the Galois group of x(b) and for each map from a discrete valuation ring to B,
p : Spec R — B, the contractions ¢, and ¢, commute with the contraction ¢,-¢ r.

Notation 3.23. Associated to each edge € = {f1, fo} of 7, there is a section o, : B — X such that
for each geometric point b € B, o/b) € 3%, is a node. Denote by N, the pullback
U:ExtéE(Qp(Jl(B) + -4+ 0,(B)),Ox). Denote by N, the direct sum €, N. where e ranges over
all edges of 7.

DEFINITION 3.24. Let T be a scheme. Let C' be a complex of coherent sheaves on 1" and let n be
an integer. The good (<r)-truncation, CS", is the complex of coherent sheaves on T,

C*, k<,
(CSTYF = {Ker(d" : C" — C™Y), k=r,
{0}, k> r

The differentials on C'S™ are the obvious ones. The association C' — CS” defines a functor on the
category of complexes of coherent sheaves on 7. This functor takes quasi-isomorphisms to quasi-
isomorphisms and sends null-homotopic maps to null-homotopic maps; thus it induces a well-defined
functor on the derived category of coherent sheaves on T'. There is a natural transformation to the
identity functor, CS" — C.

The Op-module N, is invertible and the localization of Ext}oE (Qp(o1(B) + -+ + 0,(B)),Ox)
along o¢(B) is canonically isomorphic to (o¢)«N.. By construction there is a map of complexes
of coherent Os-modules, L/ — RHomoy(2y(01(B) + -+ + 0+(B)),0x). For all k > 1,

Ext’éB (Qp(o1(B) + -+ 0,(B)),0p) = {0}. So the complex is quasi-isomorphic to its (<1)-good
truncation,

qism

RS'Homoy, (Q,(01(B) + - - - + 0,(B)), Os) — RHomoy, (Qp(01(B) + - - + 0,(B)), Ox).
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Notation 3.25. After replacing L\C/ by a quasi-isomorphic complex, there is a morphism of complexes
denoted a( -y : L — RS'Homp,, (Q(01(B) + - - - + 0,(B)), Oyx) factoring the original morphism.
There is a map of complexes of Ox-modules denoted

bic.r) : RS Homoy, (Q(01(B) + -+ + 0,(B)), Os) —= Extl,_(Q(01(B) + -+ + 0,(B)), Ox)[~1].
Denote by
e Extoy (U(01(B) + -+ + 04(B)), On)r — Ext, (Y(01(B) + - - + 02(B)), Ox)
the kernel of
Extoy, ((01(B) + - + 07(B)), Og) — D(0e) Ne.
Denote by
di¢,ry : RS Homoy (Qp(01(B)+ -+ + 04(B)), Ox)r —= RS Homoy, (Qy(01(B) + -+ + 0(B)), O)
the fiber product of b -y and ¢(¢ ;). Denote by
e¢r) + Lign —L{
the fiber product of a(¢ - and d(¢ ;).

Let |7| denote the underlying modular graph of T, i.e. the graph of 7 along with the genus
function on vertices, but without the degree function on vertices; cf. [BM96]. There is a (highly
nonseparated) Artin stack of |7|-prestable curves, M(|7|), and a I-morphism M(X,7) — IM(|7|).
The relative obstruction theory for this 1-morphism is described in [Beh97]. From this the absolute
obstruction theory of M(X,7) readily follows.

LEMMA 3.26. Let X be a smooth quasi-projective scheme. Let T be a stable A-graph. Let
C=(p: 2= M(X,7),01,...,0.),9: % — X)

denote the universal family of stable maps over M(X, 7). There exists an obstruction theory for

M(X,7) in the sense of [BF98, Definition 4.4] of the form
Rp. (LY, )Y — Lz

This obstruction theory is perfect, and there is a distinguished triangle in the derived category of
complexes of coherent Oﬂ( ¥ T)—modu]es,

Rp. (L 1)) [1]——Rps (L) [1] —= N, —Rp.(L{ ) [2].

Remark 3.27. The definition of LE/C ) seems very complicated, but in fact it is quite simple.
Let ((3,01,...,04),9) be a stable 7-map. Let i : ¥ — S be a closed immersion from ¥ to a
smooth surface S. Let IN; denote the normal sheaf of i. The complex LY is quasi-isomorphic to the
complex LE/C,Z')' There is a surjective map N ;) — Nj(01(B)+:--+0.(B)). Define N(¢; 1) C N ;) to
be the subsheaf which is the inverse image of Z- N;(o1(B)+---+0,(B)) C Ni(o1(B)+---+0.(B)),
where 7 is the ideal sheaf of Ucoe. Then e .y : LE’C o L{ is quasi-isomorphic to the following
map of complexes.
0 1
Ligiz  i*Ts(01(B) + - + 0r(B)) — Nir)

] |

Lz U Ts(o1(B) + -+ + 0,(B)) — Nic)
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Let € = {f1, fo} be a disconnecting edge of 7. Let 71 C 7 be the maximal connected subgraph
which contains f; and not f2, and let 75 C 7 be the maximal connected subgraph which contains fo
and not f;. There are ‘forgetful’ 1-morphisms F; : M(X,7) — M(X,7;) for i = 1,2. Let { = (¢, ¢)
be a map in M(X,7;), where ¢ = ((3,01,... ,0r),9). Let 0. € ¥ be the node corresponding to e.
Let ¢ = ((i, ¢5) € M(X,7;) be the image F;(¢). Denote (; = (34,0005 -+, 0ip;), i) for i = 1,2
where 0, € ¥; is the point corresponding to the flag f; of 7;, i.e. 0,9 = 0.

LEmmA 3.28. If
i) the dimension of the obstruction group of M(X,t;) at (NZ is0,7=1,2, and
ii) the evaluation morphism evy, : M(X,71) — X is smooth at G,
then the dimension of the obstruction group of M (X, ) at Z is 0, and there is a short exact sequence,
00— Tevy, —=C T x 1) == TR (x /r) —0,

where Tg, f is the dual of the sheaf of relative differentials of evy,.

Proof. The proof follows from the fact that M (X, 7) is an open substack of the 2-fibered product:

M(X,Tl) Xervaerg M(X,TQ). ]
Let ¢ : 7 — 7’ be the minimal contraction of stable A-graphs that contracts the edge {f1, f2}.
The induced 1-morphism,
M(Xa ¢) : M(Xv 7-) —>M(X7 T,)a

is unramified and the image has codimension at most 1. In some circumstances, this morphism is
the normalization of a Cartier divisor.

LEMMA 3.29. If

i) 7 has genus 0,
ii) the dimension of the obstruction group of M(X, ) at (y is 0, and

iii) the Ox,-module ¢iTx is generated by global sections,

then the dimension of the obstruction group of M(X,7') at M(X, ¢)(() is 0, the irreducible compo-
nent of M(X, ) containing ( maps to a Cartier divisor under M(X, ¢), and there is a short exact
sequence,

0—>TW(X,T) |E—>TH(X,7—/) |Z—>921 ‘01,0 ® Ox, |02,o —0.

Proof. There is a short exact sequence of complexes,
0——=Lx(o1 + -+ 0p) —=Lc——g*Qx [1]—0,
that gives rise to a long exact sequence in hypercohomology, part of which is
H' (8, L) —H'(Z, Ly(=(01 + -+ + 0,))) — H'(3,9"Tx)) — H(%, L) — 0.

The goal is to prove that dim H?(3, L{) =0, ie. that HY (2, Ly (= (o1 + - +0y))) — HY(Z, " Tx)
is surjective. After replacing Ly, and L¢ by quasi-isomorphic complexes of locally free Os-modules,

57

https://doi.org/10.1112/50010437X04001253 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001253

J. HARRIS AND J. STARR

there is a diagram of distinguished triangles of coherent Opg-modules

L2(01+"'+Jr) LC g*Qx[l]—>L2(01+"'+Jr)[_1]
Ly(o1+:-+0,) ®0, Ox, — L¢ ®0y, Ox, — ¢*QAx @0y, — Ly (014 -+0,) @0y, Os,[—1]
that gives rise to a commutative diagram of exact sequences in hypercohomology:

H'(Z, Lyy(=(01 + -+ + 7)) HY(2, g*Tx)

|

HY (2, LY.(— (o1 + - 4+ 04)) @0y, Ox,) —=HY(E, ¢*Tx ®0y, Os,)

To prove that the top horizontal arrow is surjective, it suffices to prove the following requirements:

i) the left vertical arrow is surjective,
ii) the right vertical arrow is an isomorphism, and

iii) the bottom vertical arrow is surjective.

Let S be a smooth surface, and let ¢ : ¥ — S be an unramified morphism. Then
LY.(=(o1 4 -+ + o)) is represented in the derived category of coherent sheaves by the following
complex:

0 1

LY(~(or+ -+ +0,)) i Ts(— (01 4+ 01)) o Ni(— (o1 + -+ 7))

Let K denote the kernel of ﬁj and let ) denote the cokernel of ﬁj . The sheaf K is torsion-free and
is locally free of rank 1 on a dense open subset of . The sheaf @) is torsion. There is a short exact
sequence of complexes

0 K0] L{(=(o1+ - +0,)) —= Q[-1] —0.

This gives rise to a long exact sequence in hypercohomology, part of which is
H'(Z,K) —=HY(Z, LY (= (01 + -+ 0v))) —= HO(Z,Q) —= 0.

Let K’ denote the kernel of B;r ®os, Ox, and let Q" denote the cokernel. There are induced maps of
coherent sheaves on X, K — K’ and Q — Q’. These maps give rise to a commutative diagram with
exact rows:

HY(Z, K) HY(E, LY (= (o1 + -+ 0,))) H(Z,Q) —=0

| | |

HY(3,K') —=HNZ, L (= (01 + -+ + 0v)) ®0y;, Ox,) —= H(X,Q") —=0

Now @Q — @’ is a surjective map of torsion sheaves, so the map on the right is surjective. The cokernel
of K — K’ is torsion, and hence the map on the left is surjective. Therefore the map in the middle
is surjective, i.e. requirement i holds.

There is a short exact sequence of Ox-modules,
0— (1) Tx(—010) — g"Tx —= g"Tx ®oy, Ox, — 0.

By hypothesis (g1)*Tx is generated by global sections; hence h'(Xy,(g1)*Tx(—010)) = 0 by
Lemma 2.3. Therefore HY (3, g*Tx) — HY(X, g*Tx ®oy, Os,) is an isomorphism, i.e. requirement ii
is true.
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Denote by j : 39 — X the canonical closed immersion. There is a morphism of complexes of
Os:-modules:
-1 0

dag)t
L g*QXLQE(O'l +--4o0y)

(d)T
l l/ j*(dQQ)T l

JeLcy 1 4i(92)*Qx— Qs (020 + - - + 02,1,)

By adjunction, there is a morphism of complexes of Ox,-modules, L ®o,, Os, — L¢,. So there is
a commutative diagram in hypercohomology:

HY (B2, LY., (—(o1 + -+ + 0v))) HY (S, (g2)*Tx)

| |

H' (29, LY, (—(020 + - - - + 02,r,)) @0y, Ox,) — H (X9, 5% g Tx)

Of course (g2)*Tx = j*¢*Tx, so HY(Zg,(g2)*Tx) — HY(X9,7*¢*Tx) is an isomorphism.
By hypothesis, the obstruction group of (s vanishes; hence Hl(EQ,L%Q(—(O—ZO + -+ o025,))) —
HY (X2, (g2)*Tx) is surjective. Therefore also H (Yo, LY,(—(01++ - -+0,)) @0y Osy) — H (32, §* 9" Tx)
is surjective. This proves requirement iii. Therefore the dimension of the obstruction group of
M(X,7') at M(X,9)(¢) is 0.

Because the obstruction groups of M(X,7) and M(X,7’) both vanish, each stack is smooth
of the expected dimension at Z . The expected dimension of M(X,7) is one less than the expected
dimension of M(X,7'), because T has one extra edge (before stabilization). Therefore the image of
the irreducible component of M(X, 7) containing C is a Cartier divisor in M(X, 7).

Finally, the short exact sequence follows from the 2-Cartesian diagram of Artin stacks:

_ M(X,0) —
MX, ) 22 R (x, )

l Mgl l

M(|7|) ———=Mm(|7'])

The image of M(|¢|) is a Cartier divisor. Because the image of M(X,¢) is a Cartier divisor, the
normal bundle of M(X, ¢) is simply the pullback of the normal bundle of 9(|¢|), which is the bundle
whose fiber at ( is the space of first-order deformations of the node o, € ¥. It is well known that
this space is canonically isomorphic to Ox, |¢; ; ® O5, ey - O

Remark 3.30. There is a relative version of Lemma 3.29. Let B be a scheme and let Z = (¢, ) be
a family of 7-maps over B. If, for every geometric point b € B, the map (, satisfies the hypotheses
of Lemma 3.29, then the obstruction group of M(X,o) at a, vanishes, the image of M(X,7) in
M(X,7") is a Cartier divisor, and there exists a short exact sequence of locally free Og-modules,

00— g*Tﬂ(X,T) — Z*TM(XJI) —0109%,/B ®0p 030O5,/B — 0.

4. Conditions on families of stable maps

This section defines and proves basic results about the many conditions discussed in § 1.2.
Because of the process of modification given in the next section, it is necessary to work with families
of stable maps that are parametrized by reducible curves of genus 0. This is the setting in which all
definitions are made.
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Let ¢ = ((¥,01,...,0.),9: X — X) be an r-pointed genus-0 stable map to X.
DEFINITION 4.1. The stable map (¢ is very stable if the prestable map (X, g : B — X) is stable.

Let X be a quasi-projective scheme. Let B be a scheme. Let ( : B — ﬂg,r (X, e) be a l-morphism.
Notation 4.2. The 1-morphism ¢ : B — M, (X, e) consists of a datum,

CZ ((pg : EC — B?J(Q,l))"' 7U(C7T))7g< Y — X),
where

i) p¢ : ¥¢ — B is a proper, flat family of connected prestable curves of arithmetic genus g,
ii) o) B — ¥, i=1,...,7, is a collection of everywhere disjoint sections with image in the
smooth locus of p¢, and
ili) g¢ : 3¢ — X is a morphism of schemes,
that satisfies the stability condition in Definition 3.1. Denote by h¢; : B — X the composition
gc © 0(c,i)- When there is no risk of confusion, the subscript ¢ will be omitted.

Let X be a smooth, quasi-projective variety. Let m : B — T be a proper, flat family of connected
prestable curves of arithmetic genus 0. Let ¢ : B — My 1(X, 1) be a I-morphism ((p: ¥ — B,o), f :
Y- X).

DEFINITION 4.3. The l-morphism ¢ : B — Mg 1(X, 1) is twisting (respectively very twisting) if:

i) (r:B—T,h:B— X) is a family of stable maps to X, i.e. a l-morphism & : T — My o(X,e)
for some e > 0,

ii) the dimension of the obstruction group of My o(X,e) at each point of £(T) is 0,

iii) the dimension of the relative obstruction group of the evaluation morphism ev : Mg (X, 1) —
X at each point of {(T) is 0,

iv) denoting by T, the dual of the sheaf of relative differentials ey, the pullback (*T¢, is
m-relatively generated by global sections (respectively m-relatively deformation ample), and

v) denoting by pr : Mo 1(X,1) — Moo(X,1) the projection map, and denoting by T}, the dual
of the sheaf of relative differentials €2y, the pullback (*T}, is m-relatively generated by global
sections, i.e. the line bundle 0*Ox,(0(B)) is m-relatively generated by global sections.

Remark 4.4.

i) The sheaf (*Tj, is canonically isomorphic to o*Ox (o (B)).

ii) The product morphism (p, g) : ¥ — Bx X is a closed immersion whose ideal sheaf is everywhere
locally defined by a regular sequence, i.e. it is a regular embedding. Denote by A the normal
bundle of this regular embedding. Then condition iii of Definition 4.3 is equivalent to the
condition that R'p,(N(—o(B))) = {0}. Under this hypothesis, (*T,, is canonically isomorphic
to p. (N (—a(B)).

iii) Condition ii of Definition 4.3 is superfluous. Since the prestable family of maps (7 : B — T,¢ :
B — X)) is stable, also (7 : B — T,(: B — Mp1(X,1)) is stable by Lemma 3.6, part i.

iv) The conditions in Definition 4.3 impose some restrictions on the degrees of the locally free
sheaves involved. By [Pan99, Lemma 2.2.2], the total degree of 0*Ox(c(B)) is simply 6 = 2e—¢’

where e is the degree of h : B — PV and ¢’ is the degree of f : ¥ — PN, If ¢ is twisting then
2¢ > €.

Let B be a prestable, connected curve of arithmetic genus 0. Let B1,By C B be _connected
subcurves of B such that B; N By = {q} is a single node, and B = B; UBy. Let ( : B — My 1(X,1)
be a 1-morphism.
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LEMMA 4.5. If ¢|p, : B; — Mo 1(X, 1) is twisting for i = 1,2, then ( is twisting. If both (1, (s are
twisting, and if at least one of them is very twisting, then ( is very twisting.

Proof. This follows from Lemma 2.11. O

Let m : B — T be a proper, flat family of connected, prestable curves of arithmetic genus 0.
Let ¢ : B — My 1(X,1) be a l-morphism. For every morphism of schemes g : 7" — T', denote by
7rr : By — T’ the base change of 7 by g, and denote by (v : Byw — Mg 1(X, 1) the composition
of Byr — B with .

LEMMA 4.6. There is an open subscheme Uyyist C T (respectively Uyiwist C T') with the following
property: for every morphism of schemes g : T' — T, the pullback family wr : By — T and (v -
By — MOJ(X , 1) is twisting (respectively very twisting) if and only if g(T") C Uwist (respectively
f(T/) - thwist)-

Proof. By [Beh97, Lemma 1] there is an open subscheme U; C T with the property that, for every
morphism g, (7pv : Byr — T’ hy : By — X) is a family of stable maps if and only if g(7") C U;.
For every morphism ¢ such that (7 is twisting, g(7") C U;y. Hence the lemma for {y, implies the
lemma for (. After replacing T by Uj, the morphism h : B — X is a family of stable maps over T,
i.e. a l-morphism & : T'— Mg (X, e) for some integer e.

Because 7 has relative dimension 1, the cohomology sheaf H*(Rm.(L))) = {0} for k > 2.
By cohomology and base change, for every geometric point ¢ of the support of the sheaf H! (R, (LY)),
dim Hl(Bt,L}L/t) > 0, i.e. the obstruction group of & does not vanish. Therefore the dimension of
the obstruction group of My o(X,e) at each point of &v(7”) is 0 if and only if g(7”) is contained
in the complement of the support of H'(Rm.(L)')). The complement of the support of this sheaf is
an open subset of T'. After replacing 7" by this open set, the dimension of the obstruction group of
My o(X,e) at each point of £(T) is 0.

For similar reasons, T' can be replaced by the complement of

[Supp(R'p. (N (—a(B))))],

where A is as in part ii of Remark 4.4. After replacing T' by this open subset, for every g, (7
satisfies conditions i, ii, and iii of Definition 4.3. In order that condition v is satisfied, it is necessary
and sufficient that g(7”) is contained in the complement of the support of the sheaf

Coker(m*m,.0*Ox(0) — 0" Oxn(0)).

After replacing 1" by the complement of the support of this sheaf, for every g, {7+ satisfies conditions i,

Define Uiyist to be the complement in T of the image under 7 of the support of
Coker(m* (" Tey — ("Tev).

For every morphism g, ((*Tey )7 is mp-relatively generated by global sections if and only if g(T") C
Utiwist- Therefore, for every morphism g, (7 is twisting if and only if g(T") C Uywist- By Lemma 2.9,
there exists an open subset Ustywist C T such that for every g, ((*Toy )7 is mpr-relatively deformation
ample if and only if g(7") C Uytwist- Therefore (77 is very twisting if and only if g(T") C Ugtwist-

Let (m: B — T,h : B — X) be a family of genus-0 stable maps, i.e. a 1-morphism £ : T' —
My o(X,e) for some e > 0. For every morphism of schemes g : T' — T, denote by 7p : By — T'
the base change of 7 by g, and denote by &7 : Byv — Mg 1(X, 1) the composition of By» — B
with &.
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DEFINITION 4.7. The family of stable maps & : T — Mo o(X,e) is twistable (respectively very
twistable) if there exists a surjective étale morphism v : 77 — T and a morphism ¢ : By —
My,1(X, 1) such that & = &7 and such that ¢ is twisting (respectively very twisting).

PROPOSITION 4.8. There is an open subscheme Uy_ap1e C T (respectively Uy aple C T') such that for
every morphism of schemes g : T' — T, {1 is twistable (respectively very twistable) if and only if
g(T") C Ui_aple (respectively g(T") C Ust-able)-

Proof. 1t suffices to check that, if ¢ € T is a geometric point such that h; : By — X is twist-
able (respectively very twistable), then there is an étale neighborhood of ¢ € T over which ¢
is twistable (respectively very twistable). Denote by (; : By — Mo 1(X, 1) the twisting morphism.
Consider My 1(X, 1) as a quasi-projective scheme via the Pliicker and Segre embeddings of G(1,n) x

P e Pt =1 qep (G denote the degree of the stable map (.

Define M = T x Mg o(Mo1(X,1),3), i.e. M parametrizes pairs (s,¢) consisting of a point
s € T together with a genus-0 stable map ¢ : B — My 1(X,1) of degree . Denote the universal
stable map over My o(My1(X,1),3) by

p: B — MO,O(MO,l(Xa 1)7/8)7
¢:B— Myi(X,1).

As in Notation 4.2, let p : ¥ — B be the pullback by ( of the universal curve over ﬂo,l(X, 1), let
o : B — ¥ be the pullback of the universal section, let g : ¥ — X be the pullback of the universal
map, and let h = g o 0. This gives a family of prestable maps,

E= (p:BHM0,0(MO,l(X,l),ﬁ),h:B—>X). (8)

By [Beh97, Lemma 1] there is a maximal open substack U C Mg o(Mo1(X,1),3) over which £ is
stable of degree e. By hypothesis, (¢,(;) is in T' x U,.

Because (; is twisting, the hypotheses of Lemma 3.6, part iii are satisfied where f : X — Y
corresponds to ev : Mp1(X,1) — X and where (X,9 :+ ¥ — X) corresponds to (B¢, @ By —
Mo.1(X,1)). Therefore at the point (B, (; : By — Myp1(X,1)), the stack U, is smooth and the

morphism & : U, — My (X, e) is smooth by the Jacobian criterion.

Consider the 1-morphism (17,&) : T — T x Mg o(X,€). Denote by M the 2-fibered product of
the 1-morphism (17, &) and the 1-morphism (1, £~) : TxU, — T x Moo(X,e). The 2-fibered product
M is the stack whose objects are triples (t,(,0) consisting of a point ¢ € T', an object ( : B —
My 1(X,1) of Ue, and an equivalence 6 : & — ( of objects in the groupoid Mo (X, e)(Speck(t)).
Because (1T,E) is smooth at (t, (B, (¢)), the projection pry : M — T is smooth at (¢,(By,()).
Hence there exists an étale 1-morphism f : M — M from a scheme M to M such that (¢, (B, (;))
is in the image of f and such that the composite morphism pr; o f : M — T is smooth. By [BLR90,
Proposition 2.2.14], there exists an étale morphism w : (77,¢') — (T,t) and a section z : T/ — M
such that f(z(t')) is (¢, (B, (t)). Denote by (pre : T — U, the composition pry o f o z.

Denote by ¢ : B — My 1(X,1) the pullback by (pre : T" — U, of the universal stable map.

By construction, £(¢) : B’ — Mpo(X,e) is equivalent to u*¢ : u*B — My o(X,e). Hence, after
replacing 7" by a surjective, étale cover, B’ = u*B as T'-schemes, and | (¢) = u*¢. The fiber of
¢ :u*B — Mp1(X,1) over every preimage of (¢, (B, (;)) is twisting. So by Lemma 4.6, after
replacing T’ by a Zariski open subscheme whose image contains ¢, ¢ : u*B — Mg 1(X, 1) is twisting.
Similarly, if (¢, (B¢, (;)) is very twisting, after replacing 7" by a Zariski open subscheme whose image
contains t, ( is very twisting. On the Zariski open subscheme of T' that is the image of v : T — T,

the family & : B — Mo o(X,e) is twistable (respectively very twistable). O
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Let
& =((m:B;—T,0;:T— By),h;: Bi— X), i=1,2,
be two families of 1-pointed stable maps such that hy o 07 = hy 0 09. Denote by
E=(r:B—-T,h:B— X)

the family obtained by taking B to be the union of B; and B where the section o is identified
with the section os.

LEMMA 4.9. If for i = 1,2 the family of unpointed stable maps (m; : B; — T,h; : B; — X) is
twistable, and if for every geometric point t € T', the variety parametrizing free lines that contain
h(o(t)) is irreducible, then £ is twistable. If also one of &1,&y is very twistable, then £ is very
twistable.

Proof. This follows from Lemma 4.5. First of all, using Proposition 4.8, it suffices to prove the result
when T' = Spec k for some algebraically closed field k.

For each of ¢ = 1,2, let M; denote the 2-fibered product constructed in the proof of
Proposition 4.8, i.e. the objects of M; are pairs ((;, 6;) consisting of a twisting family (respectively
very twisting family), ¢; : B; — M1(X, 1), such that the induced map

G = ((Bi,0i),9i 0 pi : B; — X)
is stable, and an equivalence of objects, 0; : & — ZZ Since each of & is twistable, each of M; is
nonempty.

By the proof of Proposition 4.8, each of M; is smooth. By the definition of twisting families, for
each 7 = 1,2 the morphism

€; . Mz —>MO,I(X7 1)7 CZ — CZ(O-Z)

has image contained in the unobstructed locus of ev : M 1(X,1) — X. Let P C Mo 1(X, 1) denote
the preimage under ev of the point p = hy(o1) = ha(o2). The image of e; is contained in the
smooth locus of P. The claim is that e; : M; — P is smooth. The obstruction space at a point (;
is a quotient of the cohomology group H!(B;, (Twy(—0;)). By Definition 4.3, condition iv, (fTey is
generated by global sections. Hence, by Lemma 2.3, part ii, this cohomology group is zero, and e;
is smooth.

Since both e; : My — P and ey : My — P are smooth, both have nonempty, open image
contained in the locus of free lines. By hypothesis, the open subset of P parametrizing free lines
is irreducible. Therefore the image of e; and the image of ey intersect. Choose a family (; € M;
and (5 € My such that e1(¢1) = e2((2). Then (; and (s can be glued to obtain a morphism
¢:B — Mo1(X,1) such that ¢|g, = (1 and (|, = (o. By Lemma 4.5, ¢ is twisting. Moreover, if

one of (1, (s is very twisting, then ( is very twisting, and ( = £. Therefore £ is twistable, and it is
very twistable if one of &1, &5 is very twistable. O

HyPOTHESIS 4.10. Let U C My 1(X,1) denote the preimage of Upape € Moo(X,1) under pr.
The evaluation morphism ev : U — X has Zariski dense image, i.e. a general point of X is contained
in a twistable line.

Let m: B — T be a family of prestable curves of arithmetic genus 0.
DEFINITION 4.11. A l-morphism ¢ : B — M 1(X,e) is positive (respectively very positive) if:

i) (m:B— T,h: B — X) is a family of stable maps, i.e. a 1-morphism & : T — M (X, ¢) for
some € > 0,
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the dimension of the obstruction group of M (X, €) is 0 at each point of &(T),

)
iii) the dimension of the obstruction group of Mg (X, e) is 0 at each point of pr(¢(T)),
) the pullback (pro ¢ )*Tﬂo,o (X.e) is m-relatively deformation ample, and

)

the pullback o0*Ox (o) is m-relatively generated by global sections (respectively m-relatively
ample).

Remark 4.12. This definition is similar to Definition 4.3. It differs in that e need not equal 1 and that
pro( has image in the unobstructed locus, instead of requiring ¢ to have image in the unobstructed
locus of the morphism ev.

LEMMA 4.13. Let m : B — T be a family of prestable curves of arithmetic genus 0 and let ( :
B — My1(X,1) be a 1-morphism. There is an open subscheme Upos C T (respectively Usypos C T)
with the following property: for every morphism of schemes f : T’ — T, the pullback family
f*m: f*B — T and f*C: f*B — Mo1(X, 1) is positive (respectively very positive) if and only if
f(T") C Upos (respectively f(T") C Uypos)-

Proof. The proof is almost identical to the proof of Lemma 4.6. ]

LEMMA 4.14. Let B be a prestable curve of arithmetic genus 0, and let ( : B — MOJ(X, e) be a
positive 1-morphism whose image is contained in the locus of very stable maps.

i) If B is smooth, then ¢ : B — My 1(X,e) is free, i.e. {*Tmm(x@ is generated by global sections.
If ¢ is very positive, then ( is very free, i.e. ("I L(X,e) is ample.

ii) The dimension of the obstruction group of the 1-morphism ¢ : B — MOJ(X, e) is 0. In partic-
ular there is a discrete valuation ring, R, a family of prestable curves, m : B — Spec R, and a
positive 1-morphism (g : B — Mo 1(X,e) such that the geometric closed fiber is ¢, such that
the geometric generic fiber B, is smooth, and such that (g(B) is contained in the locus of very
stable maps.

Proof. i) By hypothesis, ¢ is positive (respectively very positive). By the relative version of
Lemma 3.21, the image of ¢ is in the smooth locus of My (X, e) and there is a short exact
sequence,

0——0"Ox(0) — C*Tﬂo,l(X,e) —(pro C)*TMO,O(Xve) 0.

By Definition 4.11, parts iv and v, (pro ¢ )*Tmo,o (X.e) is deformation ample and ¢*Ox (o) is gener-
ated by global sections (respectively deformation ample). Hence ¢ *Tﬂo,l( X.e) is generated by global
sections (respectively deformation ample by Lemma 2.10, part ii). Since B is smooth, ¢ is free
(respectively very free).

ii) Let R’ be a discrete valuation ring and let 7 : B/ — Spec R’ be a smoothing of B, i.e. there is
an isomorphism i : B — B, and the generic fiber 87’7 is smooth. For technical reasons it is necessary
to compactify MOJ(X, e). Let j : X < X be an open immersion of X into a projective scheme,
and let j. : Mp1(X,e) — Mp1(X,e) be the corresponding open immersion of moduli stacks.
By [FP95], ﬂo,l(Y, e) is a proper Deligne-Mumford stack with projective coarse moduli space.
Form the R'-stack, B’ x ﬂo,l(Y, e). With respect to an ample invertible sheaf on the coarse moduli
space, let € denote the degree of the map (i,() : B — B’ x M 1(X,e). Then (4,¢) is an object of
the Abramovich—Vistoli stack,

K = Koo(B' x Mo1(X,e),¢) — Spec R/,

that parametrizes twisted stable maps to B’ x My 1(X,e) over Spec R'; cf. [AV02]. The stack K —
Spec R’ is a Deligne-Mumford stack that is proper over Spec R’, and the coarse moduli space is
projective over Spec R'.
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The deformation theory of twisted stable maps is developed in [AV02, § 5], and is exactly
analogous to the deformation theory of stable maps. In particular, the obstruction space to the
morphism o : K — SpecR’ at [(,{)] is a quotient of Hl(B’C*TWO,l(X,e))' Since C*Tﬂo,l(X,e) is
generated by global sections, by Lemma 2.3, part i, h!(B, ¢ *Tﬂo (X, 6)) = 0. Therefore o is smooth
at [(i,¢)]. By [BLR90, Proposition 2.2.14], there exists an étale m(;rphism of discrete valuation rings,
Spec R — Spec R’ and a section s : Spec R — K of o. In other words, there exists a family of twisted
stable maps over Spec R whose closed fiber is isomorphic to the pullback of (i, (), i.e.

(m: B——=Spec R/, A\ : B——Spec R Xgpec 7 (B’ x Mo 1(X,€))).

Because B is a scheme, the family of curves over Spec R is a scheme, i.e. m : B — SpecR is a
morphism of schemes. Because the composition of (,() with projection onto the closed fiber of 5’
is an isomorphism, the composition

B )\—> Spec R X Spec R/ (Bl X HOJ(Y, 6)) & SpeC R XSpec R’ B’

is an isomorphism. Since the image of (i,() is contained in the open substack B’ x ﬂo,l(X ,€),
the image of A is contained in the open substack SpecR Xgpec g2 (B’ x Mo 1(X,€)). Putting the
pieces together, m : B — Spec R is a smoothing of B, and A induces a 1-morphism of R-stacks,
(r:B— Mp1(X,e), such that the closed fiber is (.

By Lemma 4.13, (g is positive. Since the locus of very stable maps in HOJ(X, e) is open, the
image of (g is contained in this locus. O

Remark 4.15. The use of the Abramovich—Vistoli stack above is a bit contrived. The most natural
stack to use is the Hom stack parametrizing 1-morphisms between two flat, proper, tame Deligne—
Mumford stacks. Martin Olsson has proved existence and some foundational properties of the Hom
stack in the generality needed above, but the details have not yet been published.

The following is the main definition of this section.

DEFINITION 4.16. Let m: B — T be a family of prestable curves of arithmetic genus 0. An inducting
pair of degree e is a pair of 1-morphisms

(C1: B——=Mo1(X,1), {,: B—My,1(X,e)),
such that
i) ¢ is very twisting,

ii) (, is very positive and the image of ¢, is contained in the locus of very stable maps, and

iii) the morphisms h¢, : B — X and hz : B — X are equal.
LEMMA 4.17. Let w: B — T be a family of prestable curves of arithmetic genus 0, and let
(Cl : B —>M0,1(X7 1)) Ze : B —>M0,1(X7 6))

be a pair of 1-morphisms such that h¢, = hf . Then there is an open subscheme Upquet C 1" with the

following property: for every morphism of schemes f : T" — T, the pullback of ((1,¢
if and only if f(T") C U.

.) Is inducting

Proof. Define Ujpquet to be the intersection of the open subset Ugtwist C 1' from Lemma 4.6 for (3
and the open subset Uypos C 1" from Lemma 4.13 for (. O

The final definition of this section is the following.
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DEFINITION 4.18. Let (7 : B — T.,(, : B — Moy1(X,e)) be a very positive family whose image
is contained in the locus of very stable maps. The 1-morphism (., is inductable if there exists a
surjective étale morphism u : 7" — T and a morphism ¢; : u*B — M, ;(X, 1) such that

i) h¢, =u*hg , and

ii) ((1,¢,.) is an inducting pair.

LEMMA 4.19. Let (7 : B — T, (, : B — My1(X,e)) be a very free family. There is an open
subscheme Ui_yne C T with t]le following property: for every morphism of schemes f : T' — T, the
pullback (f*m: f*B — T, f*C, : f*B — My,1(X,e)) is inductable if and only if f(T') C Ui_aple-

Proof. Apply Proposition 4.8 to
{=(r:B—Th : B—X). O

5. The induction argument

In this section it is proved that if X satisfies Hypotheses 1.5, 1.6, 1.7, and 4.10, and if there
exists an inductable 1-morphism (, : B — ﬂo,l(X ,€), then there exists an inductable 1-morphism
Ceyr: B — Mo 1(X, e+ 1). The basic idea is, given an inducting pair ((1,.,1), to form the family
of ‘connected sums’, i.e. the family of reducible curves obtained by gluing the families ¢; and (, 11
along the two sections. However, this is a family of unpointed curves, and an inducting family is
a family of pointed curves. By hypothesis, the section of (., @ : B — X, is such that the Cartier
divisor 7(B) C ¥ moves. A general member of the linear system |7(B)| is the image of a section,
o' : B — 3. Except at finitely many points of B, the sections @ and ¢’ are disjoint. Away from these
points, the section of the family of reducible curves is taken to be ¢’. The stable limit over the finitely
many points of B is obtained by blowing-up X along the zero-dimensional scheme &(B) N o' (B).
Unfortunately, the resulting family of pointed, reducible curves is no longer very positive.

To make the resulting family very positive, the family is altered by a modification.

5.1 Modification
DEFINITION 5.1. An input triple is a triple I = ({, L, 0;) where

i) ¢(=((%,01,...,0.),9: X — X) is an r-pointed stable map to X of arithmetic genus g,
ii) L C ¥ is an irreducible component that is smooth, and

iii) o; € L is a marked point.

Let I = (¢, L,0;) be an input triple. Denote by M C ¥ the union of all irreducible components
other than L. Denote by R = (p1,...,pc) the intersection L N M, denote by S = (0j,,...,0j,) the
marked points that are contained in L other than o;, and denote by S’ = (o, ..., 0k, ) the marked
points that are contained in M.

Denote by A : L — L x L the diagonal, and denote by u : A — L x L the blowing-up of
L x L along A(RU S). For each closed point A € RU S, denote by F\ C A the proper transform
of L x {\} C L x L. Denote by Fa C A the proper transform of A(L) C L x L. For each A € RU S,
there exists a unique section of pryou: A — L, o7\ : L — A, such that F = o7 ,(L). Also there is
a section of pry ou, oy A, such that oy aA(L) = Fa.

Consider the projection pr; : L x M — L. For each closed point A € R U S’ there is a unique
section of pry, o}y, such that ¢} ,(L) = L x {A\}. Let X; be the simple normal crossing surface
containing A and L x M that is obtained by identifying the divisor ora(L) C Awith o) (L) C LxM
for each A € R. The divisors are identified by o7 ,(t) < o7 ,(t) for each ¢ € L. There is a unique
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morphism py : ¥; — L whose restriction to A is pry ou and whose restriction to L x M is pry. There
is a unique morphism g; : ¥; — X whose restriction to A is g|;, o pry o u and whose restriction
to L x M is g|ps o pry. For each integer j = 1,...,r such that j # 4, there exists a section of py,
or; L — X, given by

OI\ A= g} S S,
O-I’-] = / _ !
Also there exists a section o7, : L — X given by o7; = 07 a. By construction, the sections o7 ; are
pairwise disjoint. Hence the datum
Cr=(pr:¥r—L,or1,...,01,),91 : X1 — X)
is a family of r-pointed stable maps to X of arithmetic genus g. The fiber over o; € L is canonically
isomorphic to (.

DEFINITION 5.2. The family of stable maps, (7, is the modification associated to I.

The relevance of this construction is the following. Let B be a prestable curve and let
CZ((p:Z_>B70-17"'7UT)7922—>X)

be a family of r-pointed stable maps to X of arithmetic genus g. Let b € B be a smooth point,
let L C Xp be an irreducible component that is smooth, and let o;(b) € L be a marked point.
Then I = (¢, L,0i(b)) is an input triple. Let ¢; be the modification associated to I. The fiber
(I,0:(v) 1s canonically isomorphic to the fiber ;. Let B be the prestable curve containing B and L
obtained by identifying b € B with o;(b) € L. There is a unique family of r-pointed stable maps to
X of arithmetic genus g,
E: ((p: ¥ —>§,51,...,5r),§: 5 — X),
whose restriction to B is ( and whose restriction to L is (;.

DEFINITION 5.3. The family of stable maps, Z, is the modification of ¢ associated to (b, L, c;(D)).

Let I = (¢, L,0;) be an input triple. Denote by (s the (r — 1)-pointed stable map obtained by
omitting the marked point o;.

LEMMA 54. Let I = (¢, L,0;) be an input triple.
i) The dimension of the obstruction space of (s, is 0 and, for each closed point A € R, there exists
a first-order deformation of (5, that smoothes the node A if and only if the same is true for (.

ii) For every closed point A € L, the dimension of the obstruction space of (; y is 0 if and only if
both the dimension of the obstruction space of (s, is 0 and for each closed point A\ € R there
exists a first-order deformation of (s, that smoothes the node \.

iii) If the equivalent conditions of part ii are satisfied then there is an exact sequence,

O TL C?Tﬂg,r(x,e) —_— s ..

c— Tﬂg,ﬂ(x,e),ca 9 OL —— @y Trx ®0, Taup — 0.
iv) If the equivalent conditions of part iii are satisfied, if L has genus 0, and if the map

Mg,rfl(Xve)vgﬁz I @)\ER TLv)‘ ® TMv)‘

is surjective, then h'(L, (}ng (X 6)) =0.
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Proof. Part i follows by Lemma 3.22. Parts ii and iii follow by Lemmas 3.18, 3.19, 3.21 and 3.22.
If L has genus 0, then T7, is generated by global sections. So part iv follows from the long exact
sequences in cohomology associated to the exact sequence in part ii and by Lemma 2.3 part i. [

Let ¢ be a stable map of arithmetic genus 0 and let I = (¢, L, 0;) be an input pair.

LEMMA 5.5. If the dimension of the obstruction group of g|r, : L — X is 0, and if the pullback of T'x
by g|a : M — X is generated by global sections, then for every closed point A € L, the dimension
of the obstruction space of (;  is 0, and h'(L, T4, (X e)) =0.

Proof. By Lemmas 3.17, 3.21 and 3.22, the family of pointed stable curves,
((pryou: A——=L,ox,0n),g9|p oprygou: A —=X),

is such that for each point of L the dimension of the obstruction space is 0. Consider the families
obtained by successively gluing on the connected components of L x M. Applying Lemma 3.29 to
each of these families, the hypotheses of Lemma 5.4, part iv are satisfied for (;. ]

Let B be a prestable curve of arithmetic genus 0, and let
CZ ((p:2—>370'1,.,,70'r)7g:Z_>X)

be a family of r-pointed stable maps of arithmetic genus 0. Let b € B be a smooth point, let L C >
be an irreducible component that is not contracted by g, and let o;(b) € L be a marked point.
Let M be the union of all irreducible components of ¥ other than L.

LEMMA 5.6. If for every point b/ € B the dimension of the obstruction group of ¢y is 0, ifC*Tﬂo,r(X,e)
is generated by global sections, if the dimension of the obstruction group of g|r, : L — X is 0, and
if the pullback of T by g|a : M — X is generated by global sections, then for every point b/ € B
the dimension of the obstruction group of (y is 0 and hl(é, z*Tﬂ (X’e)) =0.

o,r

Therefore the dimension of the obstruction group ofg: B — ﬂo,r(X, e) is 0. In particular there
is a discrete valuation ring, R, a family of prestable curves, w : B — Spec R, and a 1-morphism
(r:B— ﬂo,r(X, e) such that the geometric closed fiber is Eand such that the geometric generic
fiber B,, is smooth.

Proof. The hypotheses of Lemma 5.5 are satisfied for the modification associated to I = ((, L, 04(b)),
(L : L — Moy,(X,e). Hence the dimension of the obstruction group of ¢ at each closed point of L

is 0 and h'(L, {ZTmO (X 6)) = 0. There is a short exact sequence of coherent sheaves on B ,
0—=C"Txay , (x,0) (~0)—=CTrz, (x.0—CL Ty, (x,0)—0-

By Lemma 2.3, part ii, h' (B, (*T* Mo (X.e) (=b)) = 0. Hence by the long exact sequence of cohomology

associated to the short exact sequence above, hl(E , z *Tﬂo (X e)) =0.

The second part of the lemma follows by the same proof as in Lemma 4.14, part ii. O

5.2 The induction argument
Notation 5.7. The notation for the generators of the group of Q-Cartier divisor classes on My 1 (P", ¢)
is taken from [Pan99].

i) For each integer 0 < ¢ < [e]| denote by A;, or sometimes A;._;, the class of the Q-Cartier
divisor that is the closure of the locus parametrizing embedded curves that have one irreducible
component of degree i, one irreducible component of degree e — i, and where the marked point
is on the irreducible component of degree 1.
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ii) Denote by L the first Chern class of ev*Opn (1).

iii) Denote by H the class of the Q-Cartier divisor parametrizing stable maps g : ¥ — P" such
that g(X) N A # (), where A C P" is a fixed linear P"~2,

Let B be a prestable curve of genus 0. Let ( = ((p: ¥ — B,0),¢ : ¥ — X) be a family of stable
maps of genus 0 and degree e > 1. Denote by h : B — X the composition go o.

DEFINITION 5.8. The 1-morphism ¢ : B — My 1(X,e) is typical if:

i) the curve B is smooth,

) for every closed point b € B, the obstruction group of (, has dimension 0,
iii) for every point b € B, the stable map ¢, has only the trivial automorphism,

) for every integer j = 1,...,e — 1, the preimage (" '(A;) consists of finitely many points, and
for each b € ¢ _I(Aj), the curve ¥, has only two irreducible components,

v) for every point b € (~1(A1), ¥y is a union of two irreducible components L U M with o(b) € L
such that g|z : L — X is an isomorphism to a twistable line.

LEMMA 5.9. Let m : B — T be a family of prestable curves of arithmetic genus 0 and let ( :
B — MOJ(X, e) be a 1-morphism. There is an open subscheme Uiy, C T with the following
property: for every morphism of schemes f : T' — T, the pullback family f*r : f*B — T’ and
f*C: f*B — Mo1(X,e) is typical if and only if f(T") C Usyp.

Proof. Each of the conditions in Definition 5.8 is clearly an open condition. O

LEMMA 5.10. If X satisfies Hypotheses 1.5, 1.6, 1.7, and 4.10, if for every closed point b € B
the obstruction group of ¢, has dimension 0, and if ("1 o1 (Xoe) is generated by global sections,
then there exists a discrete valuation ring, R, a family of prestable curves, m : B — Spec R, and a
1-morphism (g : B — Mo,l(X, e) such that the geometric closed fiber is ¢, such that the geometric
generic fiber B,, is smooth, and such that ((g), is typical.

Proof. By the same argument as in the proof of Lemma 4.13, there exists a family (r : B —
Moy 1(X,e) such that B,, is smooth. The condition that for every point the obstruction group has
dimension 0 is stable under generization, so it also holds for (Cg);,. Similarly, (Cr);T* Mo (X,e) 19
generated by global sections. By [Kol96, Proposition 3.7], the family (g may be chosen so that
(Cr)(By) is disjoint from any given finite collection of closed substacks of codimension at least 2.
By Hypothesis 1.5, the locus of stable maps such that the domain curve has three or more irreducible
components has codimension at least 2. Let Z C A; be a closed substack whose image in the coarse
moduli space of A; is an ample divisor. Again by Hypothesis 1.5, Z has codimension 2 in ﬂo,l (X, e).
So (Cr)(By) does not intersect Z, and therefore it is not contained in A;. By Hypothesis 1.7, the
locus of stable maps that have a nontrivial automorphism has codimension at least 2. Finally,
by Hypotheses 1.6 and 4.10, the locus in A; parametrizing stable maps ¢ : L U M — X such
that g|r, : L — X is an isomorphism to a twistable line is a dense open in A;. In particular the
complement in A; is a closed substack that has codimension 2 in My (X, e). Therefore ((r)y is
typical. O

By Hypothesis 4.10, a general line L C X is twistable. Denote by
Cr=((pr:XL— Lyop),g.: 21 — X)

a twisting family such that hy : L — X is the inclusion. By Remark 4.4, part iv, the degree of
gy, is either 1 or 2, i.e. either g7, : ¥ — X is a birational map to a linear P? in X (obtained by
blowing-up a point on the P?), or gy, is an isomorphism of ¥, to a nonsingular quadric surface in X.
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DEFINITION 5.11. Let X be a variety that satisfies Hypotheses 1.6 and 4.10. The variety X is planar
type if for a general line L there exists a twisting family such that the degree of gy, is 1. The variety
is quadric type if it is not planar type.

Remark 5.12. Tt is not hard to prove that, if X is planar type, then there exists an integer r > 2
such that, for a general point x € X, the set of lines in X that contain x sweep out a linear P".
Let @ denote the irreducible component of the Hilbert scheme of the P” in X that contains the P”
constructed in this way. Then X is birationally a P"-bundle over ) and, with its natural Pliicker
embedding, () is not uniruled by lines. If X satisfies Hypothesis 1.5, then @ is not uniruled by
rational curves of any degree. If also X contains a very twistable curve, then @) is a point and X is
isomorphic to P" (not merely birational to P"). Thus, in what follows, X will usually be of quadric
type.

Let ((1,¢,) be an inducting pair denoted by
G=((p:2— B,o),g:%— X),
C ((p: E—>BU) §—>X)
Denote
6 = deg(¢y (2L —H)),
e—1 .
- (2 1 — )2
5= deg((e <—£ R (e 22) Ai>>.
e e ~ e

By [Pan99, Lemma 2.2.2], deg(c*Ox;(0(B))) = § and deg(c*Ox(5(B))) = 4. In particular, both &
and ¢ are nonnegative integers, and § is positive by Definition 4.11.

THEOREM 5.13. For each integer d = 1,...,4, there exists an inducting pair (41,&4..1) such that
Ed@ 41 Is typical and such that the following conditions are satisfied,

(deg(€ge1H) = deg(CH) + oleg(q1 ),
deg(&yH) = deg((TH) + if X is planar type,
deg(&yH) = deg((TH) + 2d if X is quadric type,
deg(&i,£) = deg(¢TL) +
deg(§gei1L) = deg((.L) + (9)
deg(ges1Ai) = deg(C A ) i=2...,e—1,
deg(€ei1e) = deg(Ciher) + 0 +d,  if i > 1,
deg(€y01A1) =0 — d, ifi>1,
deg(€5,01) =0+0 ifi=1.

The families are denoted
Ed,e—i—l = ((Pa,es1 : Baet1 — B,Taer1), 94 etl : Bger1 — X),
€41 = ((pa1 :2a1 — B,0d1),9d1 : La1 — X).
Also Ed7e+]_ denotes Gg 11 ©0det+1 and hgy denotes gq1 0 04,.

Proof. By Lemma 4.14, part ii and Lemma 4.19, it suffices to consider the case that B is smooth.
By Lemma 4.14, part i, {, : B — Mg 1(X,e) is very free. Hence, by the same argument as in the
proof of Lemma 4.14, part ii and [Kol96, Proposition 3.7], it suffices to consider the case that (,(B.)
is in general position, i.e. for any finite collection of codimension-2 subvarieties (Z,|a = 1,..., M)
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and any finite collection of divisors (Ds|8 = 1,...,N), (.(B.) is disjoint from each Z, and has
zero-dimensional intersection with each Dg. The proof is long and is split up into a number of
families and claims.

The family ¢V, Denote by ©() the surface containing ¥ and ¥ obtained by identifying the
divisor o(B) C ¥ and (B) C ¥ via o(b) < @(b). Denote by p*) : ©(1) — B the unique morphism
whose restriction to ¥ is p and whose restriction to ¥ is . Denote by g(l) : 21 - X the unique
morphism whose restriction to ¥ is ¢ and whose restriction to 3 is §. Then ¢(V) = (p(l) :xM - B,
gV . x® X) is a family of stable maps in the boundary divisor Ay C ﬂo,o(X, e + 1). Denote by
7 the stable A-graph with two vertices v and v of degree 1 and e respectively, with no tails, and with
one edge connecting v and 7. Then ¢! factors through the canonical 1-morphism of Behrend—Manin
stacks M(X,7) — Mo o(X, e+ 1).

CLAIM 5.14. The pullback (¢(M)*T: o.o(X,¢) 18 ample.

By Lemma 3.28, there is a short exact sequence,

0 CfTev (C( ) M(X, )—><e M01(Xe)—>0‘ (10)

Since (; is very twisting, by Definition 4.3, (;T., is ample. Since (, is very positive, by Lemma 4.14,
Ce Moot (X.e) is ample. Hence (¢(V)* TM(X - is ample. By Lemma 3.29, there is a short exact
sequence,

0—— (C(l))*TH(X,T) — (C(l))*Tﬂoyo(X,e"rl) —— O-*OE(O') & E*OE(E) —0. (11)

By Definitions 4.3 and 4.11, both 0*Ox(0) and 7*Ox(7) are ample. Therefore the tensor product
is ample, and (C(l))*Tﬂoo(X e+1) is ample.

The family ¢2). The family (V) cannot be an inductable family, because it is a family of
unpointed curves rather than 1-pointed curves. The next approximation to {4 .41 ‘adds’ a marked
section to ¢(1). The self-intersection of 7(B) C ¥ is the degree of the invertible sheaf *Ox(5(B)),
which is also

6 =deg(2(,L — C H).
Let ¢ : B — X be a section such that ¢(B) C ¥ is a general member of the linear system [5(B)].
Because 7 Ox(@(B)) is generated by global sections, there exists ¢ such that ¢(5) has only transverse

intersections with (). Denote the points of intersection by g1, ..., 5 € 3. Denote by w : 5(2) )
the blowing-up of ¥ at the points ¢, . . . , q5- Let @ . 5(2) — B denote the projection pow. Let §(2)

denote g o w. Let 72 . B - 5(2) and §(2) : B — 5(2) denote the proper transforms of & and ¢
respectively. Notice that 72 (B) and ¢(?)(B) are disjoint by construction. So the data

—22) _ (@(2) LN Bﬁ(z)’§(2))7 5(2) LR X)
is a family of stable 2-pointed maps, i.e. a 1-morphism Zf) : B — Mpa(X,e).
Cramm 5.15. The pullback (Ce ) Mo.2(X,¢) is generated by global sections.
By Lemmas 3.16, 3.21 and 3.22, there is a short exact sequence:
0— (C(m)*oi(g) (V(B)) — (ZEQ))*TM,Q(X@) . Z:Tml(x,e) — 0.
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By construction, the self-intersection of ¢(?)(B) C T@ s 0, ie. (g(2))*(9§(2) (<@ (B)) is the triv-
ial invertible sheaf Op. By hypothesis Z:Tm (X.e) is generated by global sections. Therefore by

0,1
Lemma 2.3, part iii, (Z?)*Tmo 2(X,e) 18 generated by global sections.

Denote by ¥(?) the surface containing 5(2) and X obtained by identifying the divisors &) (B) C
T® and o(B) C % via 2 (b) < o(b). Denote by p® : £ — B the unique morphism whose

@ is p@ and whose restriction to ¥ is p. Denote by 9(2) : ©® — X the unique

)

restriction to ¥
morphism whose restriction to §(2 is 3@ and whose restriction to ¥ is g. Denote by o? : B — £(2)

the morphism obtained by composing <2 with the inclusion 5(2) C @, Then
(@ =(p?® 2@ - B, ¢?), ¢@ .2 . Xx)

is a family of stable maps in the boundary A, C MOJ(X, e + 1). Denote by 73 the stable A-graph
with two vertices v and v of degree 1 and e respectively, a single tail attached to v, and a single
edge connecting v and 7. Then ¢@ factors through the canonical 1-morphism of Behrend-Manin

stacks M(X,7®) — My 1(X, e+ 1).
CrAmM 5.16. The pullback (¢ (2))*TW0 L(Xee) is generated by global sections.
By Lemma 3.28, there is a short exact sequence,

OﬁngevH(C(2) )*TM(X,T(Q)) %(Z((f))*TﬂO,Q(X’e) %0

By Claim 5.15, the third term is generated by global sections. Since (7 is very twisting, by
Definition 4.3, ({7, is ample. In particular it is generated by global sections. By Lemma 2.3,
part iii, (¢ (2))*TW(X 7)) is generated by global sections. By Lemma 3.29 there is a short exact
sequence, 7

0= (¢ Ty 0y = (€P) Trgy y (xern) = 0" Os(0(B)) ®oy, (77) Oge) (@2 (B)) — 0.

By construction, Oi(z) (@) (B)) is isomorphic to Op. Since (; is very twisting, by Definition 4.3,
0*Ox(0(B)) is generated by global sections. Hence the third term in the short exact sequence is
generated by global sections. Since also the first term is generated by global sections, by Lemma 2.3,
part iii, (¢ (2))*Tﬂo,1( X,et1) I8 generated by global sections.

If e > 1, the image of ¢(? intersects the divisor A; transversely at the images of the points
q1,- -, q5- In particular, the degree of the Q-Cartier divisor class (C(2))*OMO71(X,€+1)(A1) is 0, which
is positive. If e = 1, then A7 = A.. In this case H(X,T@)) is the normalization of A;; in a
neighborhood of ¢®(B). So the degree of (C@))*Oﬂo,l(Xg)(Al) is the sum of the degree of the
pullback of the normal sheaf of M (X, 7)) — Mo1(X,2) and the degree of the divisor q1 +- - + g5,
i.e.  + 6. So also in this case the degree of (C@))*Oﬂo,l(X,eH)(Al) is positive.

Similar computations give that deg((C®)*A;) = C.A;_ fori = 2,...,e—1. The curve (?(B) is
contained in the divisor A., which is the image of M(X, 7'(2)). As noted above, by Lemma 3.29, the
morphism M(X,7?)) — My 1(X, e+ 1) is unramified and the pullback by ¢ () of the normal sheaf
has degree deg(c*Ox(a(B))) = 6. If e > 1, then the image of ((?)(B) is contained in the smooth
locus of A, so that the degree of (C(Q))*Oﬂo,l(x,eﬂ)(Ae) is precisely ¢. If e = 1, then each point
q1,---,q5 maps to a point of A; where A; intersects itself transversely. So if e = 1, the total degree
of (4(2))*0ﬂo 1(X72)(A1) is 6 + & (this is the same result from the last paragraph; it is included for
the sake of cohsistency).

It is evident that

deg((¢(?)*H) = deg(C.H) + deg(¢iH),
72
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and deg((¢?) L) = deg(ZZE). As a ‘consistency check’ for the computations of these degrees,
observe that, by [Pan99, Lemma 2.2.2],

e

e — )2
deg(o12) Oy (012 (8)) = deg (¢ (20 - - S A),
=1

Substituting the values above, using the formulas for § and §, and using that (;£ = Z: 1L, the
degree of the right-hand side is 0. Of course this is correct; 0(2)(B ) C > has self-intersection 0 by
construction.

The family 2076 +1. Before proceeding to the construction of the families zdﬁ 11, the family ¢ )
is deformed to a typical family 2076 115 cf. Definition 5.8. The families de 41 will be constructed as
suitable modifications of 5076 ey

Since ¢® : B — Mo 1(X,e+1) is free, i.e. (4(2))*Tﬂo,1(x,e+l) is generated by global sections,
it follows by the same argument as in the proof of Lemma 4.14, part ii and [Kol96, Proposition 3.7]
that there exists a deformation xige11 : B — Mop1(X,e+ 1) of ¢ that is in general position.
Here deformation means that both ¢(® and EO,@ 11 have a common generization. Moreover, for any
finite collection of open conditions that are satisfied by ¢(?), the deformation 5076 41 may be chosen
also to satisfy these conditions. Denote the family of stable maps by

ZO,@—{-I = (@0,54—1 3§0,e+1 - 3750,54-1), 90,641 ZEO,E-H — X).

Denote by 5076_’_1 : B — X the composition 90,641 © 00,e+1-
CrLAIM 5.17. There exists a deformation Eo7e+1 of ¢@ such that:

) €41 i typical,
ii) (pro EO,eJrl)*Tﬂo,o(X,eJrl) is ample,

)
iii) hger1: B — X is very twistable,
)

iv) and (50,e+1)*(9§0 EH(EWH(B)) is isomorphic to Op.

It suffices to prove that, for a general deformation EO,@ 11 0f(¢ @), 5076 1 satisfies the properties in
Claim 5.17, i.e. for every irreducible component of the Hom stack Hom(B, My 1(X, e)) that contains
¢®@, each of the conditions i-iv holds on a dense open substack.

i) By Lemmas 5.9 and 5.10, a general deformation of ¢ @) is typical.

ii) The pullback by pro () : B — Moo(X,e+1) of Ty | (x .1y equals ((W) Ty o-
By Claim 5.14, this is ample. The condition on deformations of ¢ ) that the pullback of Tﬂo,o (X.e)
is ample is an open condition by Lemmas 2.8 and 2.9 (or more direct arguments). Therefore the
pullback (pro go,e+1)*Tﬂ0,0(x,e) is ample.

iii) The morphism ¢ 0 ¢® : B — X equals g o ¢, and this is a deformation of Go@ = g o 0.
Because (7 is very twisting, g o o is very twistable. By Proposition 4.8, ¢ can be chosen so that
g2 0 6@ is very twistable. Since EO,e-{-l is a deformation of ¢® o ¢(?), by Proposition 4.8, 5076“
can be chosen so that Eo,eﬂ is very twistable.

iv) Since (0(2))*(92(2) (6@ (B)) is isomorphic to Op, also (Go,e+1)*O5;

EOY‘EH(EO,eH(B)) is isomor-

phic to Op. This proves Claim 5.17. In particular, EO,e—i—l is positive and zo,e+1(B) is contained in
the locus of very stable maps. Unfortunately it is not very positive!

To be a bit more precise in the proof of condition iii, there exists a deformation of (1, {p;1 : B —
Mo,1(X, 1) that is very twisting and such that ho 1 := go,1 0 09,1 : B — X equals hg e 1.
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Because EO,@ .1 is a deformation of ¢(?), the intersection number of EO,@ +1(B) with any divisor of
My 1(X,e+1) is equal to the intersection number of ¢ (2)(B) with that divisor. These intersection
numbers were computed above. Similarly, the intersection number of {y1(B) with any divisor in
Mo1(X,1) is equal to the intersection number of ¢;(B) with that divisor.

The families Ed@ +1- The families Ed@ 41 and £y are constructed by induction on d. The base
case d = 0 is the pair ({1, Zo,e 1 1) constructed above, and the induction step consists of performing
a single modification and then deforming.

Let d be an integer 1 < d < 6. By way of induction, suppose that a pair (£4-1.1, gd—l,&i—l) has been
constructed such that g_1,1 : B — Mo,1(X,1) is very twisting, £;_1 .41 : B — Mo1(X,e+1) is
very positive and typical (in particular £;_; ., (B) is contained in the locus of very stable maps), the
map hg—1,1 : B — X equals the map Ed_17e+l : B — X, and the degree conditions of Equation (9)
hold for d — 1. In particular, because d < 9, deg(EZ_LeHAl) > 1.

Let b € B be a closed point such that the stable map (Zd—l,eﬂ)b is in Ay. By Definition 5.8,
this stable map is of the form,

Eater1)b = (LUM,T4-1,641(0)), (Gg_1.001)p : LUM — X),
where 74_1 ¢4+1(b) € L and g|, : L — X is an isomorphism to a twistable line.
Denote by B the prestable curve of genus 0 containing B and L obtained by identifying the
divisor b € B with the divisor G4_; +1(b) € L. Denote by
i tet1 = ((Pater1 : Ba1es1 — B,Ga1.e41)s Gdter1: B — X)
the modification of £;_; . associated to (b, L,7q_1,e41(b)); cf. Definition 5.3.

By construction, for each divisor in HOJ(X ,e + 1), the difference of the intersection number
with £4_1,.41(B) and the intersection number with €, ; ., ;(B) equals the intersection number with

§a-1,e41(L), ie.

(53—1,e+1H = EZ—I,@—Fle

52—1,e+1£ = E:l—l,eﬂﬁ + 1,

52—1,e+1Ai = EZ—l,eHAz‘a 1=2,...,e—1,
g;—l,e—i—lAl = EZ—I,@—HAI -1, i>1,
g;—l,e—i-lAe = gji—l,e-‘,—lAe +1, i>1,

55—1,2A1 = EZ—LBHAL i=1.

Just a few remarks should be made about this list. The second line arises because i~1d_17e+1 L — X
equals g|z, : L — X, which is an isomorphism to a line. The fourth line arises by applying Lemma 3.29
and using the fact that the pullback of Oxz, | (x .41)(A1) equals

010N (01 (L)) © (07 2)"OLxm (07 A(L)),

in the notation of § 5.1, where A is the point in L N M. Of course the second factor in the tensor
product is isomorphic to Or, and the first factor is Or(—\) (because of the blowing-up of L x L at
(A, A)); hence the net degree change is —1. Similarly, the fifth line arises because the intersection of
€d—1.e+1(L) and A, is exactly {g—1,¢+1(A); hence the degree increases by 1. In the case e = 1, the
last two contributions exactly cancel each other, which gives the last line.

As a ‘consistency check’, substituting the computations above into the formula for the self-
intersection of 041 ¢+1(B) C Lg_1,e+1 [Pan99, Lemma 2.2.2] yields a net change of +1. Of course
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this is correct because the change equals the self-intersection of oy a(L) C A, which is Tp(—\)
(because of the blowing-up of L x L at (A, \)), and this has degree 2 — 1 = 1.

CrAiM 5.18. The 1-morphism §~d_1,6+1 ‘B — ﬂo,l(X, e + 1) is very positive, the image is contained
in the locus of stable maps with only the trivial automorphism, and the hypotheses of Lemma 5.6
are satisfied.

First of all, the restriction of i~1d_17e+1 . B — X to B is Ed_l’e_i_l and the restriction to L is
glr : L — X. By hypothesis, Ed—l,e-ﬁ-l is stable, and g|r, is stable because it is a closed immersion.
Therefore Ed_l’e_i_l is stable. By hypothesis, the dimension of the obstruction group of Ed—l,e-ﬁ-l is 0.
Moreover, possibly after deforming Ed—l,e 11, it may be assumed that the node of L N M maps to
a very general point of X. Therefore g|;, : L — X is free by [Deb01, Proposition 4.14]. So the
dimension of the obstruction group of g|z is 0. Also, by Hypothesis 4.10 it may be assumed that
ev: Mp1(X,1) — X issmooth at ((L,Tg—1.41(b)), 9|z : L — X). So by Lemma 3.28, the dimension
of the obstruction group of Ed_LeH is 0. Hence parts i and ii of Definition 4.11 are satisfied.

By hypothesis, the dimension of the obstruction group of Myo(X,e+ 1) at each point of

pr(gd—l,e—i-l(B)) = pr(gd—l,e—i-l(B)) is 0. Pr(gd—l,eJrl(L)) is the point pr((gd—l,e—i-l)b)a which is one
of the points above. Thus part iii of Definition 4.11 is satisfied. Similarly, the restriction to B of the
pullback

(Pro&a—1,e41) " TRg, o (x,e41)

equals the pullback associated to pr o Ed_lﬁ 11, which is deformation ample by hypothesis.
The restriction to L is the pullback of a vector bundle by a constant map, and hence it is isomorphic
to a direct sum of copies of Op. In particular the restriction to L is generated by global sections.
By Lemma 2.11, the pullback is deformation ample on all of B ; hence part iv of Definition 4.11 is
satisfied.

Finally, the restriction to B of the pullback

&2—1,e+10§jd71’5+1 (Gd-1,e+1(B))

is equal to the analogous sheaf for Ed_l,e 11, and this is generated by global sections by construc-
tion. The restriction to L is the pullback by the diagonal of Ty, twisted down by Gg_141(b),

ie. Op(2—1) = Or(1). Thus by Lemma 2.11, the restriction to all of B is deformation ample.
Hence part v of Definition 4.11 is satisfied; therefore {z_1 .41 is very positive.

By hypothesis gd_LeH(B) = €4 1.+1(B) is contained in the locus of stable maps that have
only the trivial automorphism. In particular, (Zd_Le +1)p has only the trivial automorphism, from
which it easily follows that gd—l,e-i—l(L) is contained in the locus of stable maps with only the trivial
automorphism. Therefore the image of all of B is contained in the locus of stable maps with only
the trivial automorphism.

Because gd—l,e-ﬁ-l : B — Mo1(X,e+1) is positive and the image is contained in the locus of
very stable curves, the hypotheses of Lemma 3.22 are satisfied and there is a short exact sequence
of locally free Op-modules,

0— 52_17e+10§d_176+1 (Ed_175+1(B)) —

fd—1,e+1Tﬂo,1(X,e+1) — (Prody 141 Tﬂo,o(X,eJrl) — 0.

By hypothesis, the third term is deformation ample, and the first term is generated by global
sections. By Lemma 2.3, part iii, the pullback of TMM(X e+1) is generated by global sections.

Because the node of L N M is mapped to a very general point of X, by [Deb01, Proposition 4.14],
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the pullback of T'x to L and the pullback to M are each generated by global sections; in particu-
lar the dimension of the obstruction group of g|;, : L — X is 0. Hence the hypotheses of Lemma 5.6
are satisfied; therefore Claim 5.18 is true.

Of course the next step will be to apply Lemma 5.6 to construct Ed@ 41- But first the family
§d—1,1 is constructed. By hypothesis, the line L is twistable. Denote by

§ea=((pr1:¥L1— Lyopa),gra X1 — X)
a twisting family such that hy; = g[z. If X is of planar type, assume that the degree of gz, ; is 1;

otherwise the degree of g, 1 is 2. By Hypotheses 1.6 and 4.10, Lemma 4.9 applies to §4—1,1 and &1,
i.e. possibly after deforming the two families (without deforming hq_j ¢41),

(€a-11)0 = (€0,1)70_ 1 0s1(b)-

Define ENd_Ll . B — HOJ(X, 1) to be the unique 1-morphism whose restriction to B is {z-1,.
and whose restriction to L is {1 1. By Lemma 4.5, {511 is very twisting. By construction,
hg—11 = hgq-1,+1. Also,

deg(gfl—mH) = deg(§3-11M) + deg(gr,1)-
By definition, deg(gr,1) is 1 if X is planar type, and 2 if X is quadric type. Finally,

deg(gfl_mﬁ) =deg(§5-1.£) + 1,
because hy 1 : L — X is an isomorphism to a line.
By Lemma 5.6, there exists a 1-morphism Zd,e+1 : B — M071(X,e + 1), i.e. both Ed_l,eﬂ and
§de+1 have a common generization. Since the image of ;1 41 is contained in the locus of stable
maps with only the trivial automorphism, {; ., ; can be chosen with the same property. Because the

dimension of the obstruction group at every point of the image of Ed_l,eﬂ equals 0, the same is
true for £;..,. Hence the image of £, ., is contained in the locus of Mg 1(X,e+ 1) that is a
smooth scheme. Because §~d_176+1 can be chosen to contain a very general point of m071(X ,e+1)
(because £,_; .1 is typical), the same is true of £, ... By [Deb01, Proposition 4.14], the pullback
E;e +1Tm0’1( X,e+1) is generated by global sections. Therefore, after deforming further, Ed,e 41 can be
chosen to be typical. Because ENd_LeH is very positive, by Lemma 4.13, Ed,e—i—l can be chosen to
be very positive. Also, by the proof of Proposition 4.8, Ed@ 41 can be chosen so that there exists a
deformation £g 1 of §~d_1,1 that is very twisting and such that hg = Ed’e_l'_l.

Of course for any divisor in My 1(X, e+ 1) (respectively Mg (X, 1)), the intersection number
with Ed@ 41 (respectively &;1) equals the intersection number with Ed_LeH (respectively Ed_l,l),
and these are computed above. This finishes the proof of the induction step. Hence, by induction

on d, for each d = 1,...,6, there exists an inducting pair (gd,l,Ed,eH) as claimed. This completes
the proof of Theorem 5.13. ]

6. Twistable lines on hypersurfaces

In this section it is proved that if n + 1 > d2, if X C P" is a general hypersurface of degree d, and
if L C X is a general line on X, then L is twistable.

Remark 6.1. There is one exceptional case, namely d = 1. For n = 1,2, there is no twistable line
on a hyperplane in P?, i.e. there is no twistable line on P*~!. For n > 3 there is a twistable line on
P"~1 In this section it is proved there is a twistable line on P*~! if n > 4. Let ((7 : ¥ — B,0),9)
be a twisting family in P" such that h : B — P" is a line, and let p € P" — g(X). Denote by
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proj, : P --» P"~! projection from p. Then ((7 : ¥ — B, o), proj, o g) is a twisting family in pr—t
and proj,oh: B — P"~! is a line. Therefore there is also a twistable line on P2.

Notation 6.2. Denote Ny = (”:d) — 1 and denote by PV the projective space parametrizing hyper-
surfaces X C P" of degree d. Denote by X C PNd x P™ the universal family of degree-d hypersurfaces
in P". Denote by G(1,n) the Grassmannian variety of lines in P". Denote by F(X) C PV x G(1,n)
the parameter space of pairs ([X],[L]) consisting of a hypersurface of degree d, X C P", and a line

L C X. Denote by P(t) = (t + 1) the Hilbert polynomial of a quadric surface in P3. Denote by

U C Hilbg,gt) the open subscheme of the Hilbert scheme that parametrizes subschemes of P" projec-

tively equivalent to a smooth quadric surface in P2 ¢ P". Denote by V' C U x G(1,n) the parameter
space of pairs ([X],[L]) consisting of a smooth quadric surface, ¥, and a line L C 3. Denote by
V — U — U the Stein factorization of the projection pry : V — U. Denote by W C PVaxUxG(1,n)
the parameter space of triples ([X], [X],[L]) consisting of a hypersurface of degree d, X C P", a
smooth quadric surface 3 C X, and a line L C X.

Observe that the projection F'(X) — G(1,d) is a projective bundle of relative dimension
Ng— (d+1). Observe that U — U is a finite, étale morphism of degree 2. Observe that V' — U is a
Pl-bundle. Observe that W — V is a projective space bundle of relative dimension Ny — (d + 1)2.

Let ([X],[X],[L]) be a triple in W. There is a map (well defined up to nonzero scalar) dx :
Ctl — HOY(P" Opn(d — 1)) that evaluates the partial derivatives of a defining equation of X.
Compose this map with the restriction map HY(P", Opn(d — 1)) — HY(3, Os(d — 1)), and denote
the composition by

Oxy : C"" ——= HY(2, O (d — 1)).
Denote E = (’)ﬁ,(nﬂ). Denote by G the unique quotient of HY(P"?, Opn(d — 1)) @c Op that is locally
free and whose fiber at each point ¥ is the quotient
HO(P™, Opn(d — 1)) — HY(Z, Os(d — 1)).
Denote by F' the locally free Oy -module,
F = prpn, Opn, (1) @ priG.

There is a map of Oy -modules, 0 : E — F whose fiber at each point ([X], [X], [L]) is the map Ox x.
Denote by W° C W the open subscheme that is the complement of the support of Coker(9), i.e. W°
is the maximal open subscheme on which 0 is surjective.

LeMMA 6.3. Let ([X],[X],[L]) be a point in W°. Then,

i) X is smooth along ¥,
) h'(3, Nxypn) = h' (3, Ngypn(—L)) = h'(Z, Ngypn (1)) = 0, for i > 0,
) B2, Ny x) = hi(S, Nyx (L)) = hi(S, Ny xy ® Os(~1)) =0, for i >0,
iv) h'(L, Ny x(~1)) = h'(L,Np/x) = 0,
) the projection morphism prpn, : W — PNt is smooth at ([X],[%], [L]),
) the projection morphism prpn, : F(X) — PNt is smooth at ([X],[L]), and
) the projection morphism prpyy: W — F(X) is smooth at ([X], [Z], [L]).
Proof. i) Since the partial derivatives of a defining equation of X generate H°(%, Ox(d — 1)), the

subscheme of X where the partial derivatives all vanish is disjoint from ¥. By the Jacobian criterion,
X is smooth at each point of X.
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ii) Denote by P3 C P the span of ¥. There is a short exact sequence,

0—>NZ/]P’3 —>N2/]P>n —>NIP’3/]P’"|2 — ().

Since Ny /ps & Ox(2) and since Nps /pn[s & Os(1)®(=3) | the short exact sequence above is

0—0x(2) Ny /pn O (1)®8(=3) —— .
From this it is easy to compute that
W' (S, Ny pn) = h'(E, Ny pn ® Osy(—1)) = B (2, Ny jpn ® Ox(—L)) =0,

for i > 0.
iii) There is a short exact sequence,

0 Ny x Ny jpn — Nxpn|s —0.

Of course Nypn|s = Ox(d). For the three cases L = Ox, L = Ox(—L), and L = Og(-1),
h'(E,0x(d)® L) = 0 for i > 0. By part ii, h*(X, Ng/pn ® L) = 0 for i > 0. By the long exact sequence
in cohomology associated to the twist by £ of the short exact sequence above, h*(3, Ny /x ® L) =0
for i > 2. Also h*(3, Ny;,xy ® £) = 0 if and only if the map e : H(X, Ny /pn © L) — H(E, Ny /pn|5)
is surjective.

The map ep, factors the map Jxy. Since Jxy is surjective, also ep, is surjective and
hl(Z,NE/X) =0.

For the case £ = Ox(—L), observe that Ox(1) = Ox (L + L) where L' C ¥ is a line of the ruling
opposite to L. There is the following commutative diagram:

HY(2, Ny /pn(—1)) ©c H°(3, Oy (L)) —— H°(Z, Ny /pn(—L))

| |

HO(S, Ny /o5 (~1)) @ HOS, Os(L)) —= HO(S, Nyjp|ss(~ L)
The left vertical arrow is surjective by part ii. The bottom arrow is
H(Z,05((d = 1)L+ (d — 1)L")) ® H(X, 0Og(L')) —= H(Z, 0x((d — 1)L + dL")),
which is surjective. Therefore the right vertical arrow is also surjective, i.e. h'(3, Ny x(—L)) = 0.

The proof that h'(X, Ny;/x) = 0 is almost identical to the proof that h'(3, Ny, x(—L) = 0.
iv) There is a short exact sequence,

0 — Nyg/x(-1) — Nyg/x(-L') — Ny/x|c(-1) —0.

By the associated long exact sequence in cohomology and the computations above,
h'(L, Ns;;x|r(—1)) = 0. There is a short exact sequence,

0— Np/s(=1) — Np/x(=1) — Ny/x[L(=1) —0.

Of course Np 5, = Op(1), so h'(L,Npx(—1)) = 0. As proved above, h*(L, Ny, x|r(—1)) = 0.
Therefore by the long exact sequence in cohomology, h'(L, N, /x(=1)) = 0. Since Ny /x is a locally
free Op-module and h'(L, N, /x(=1)) = 0, by Grothendieck’s lemma Ny, x is generated by global
sections. In particular, also h'(L, Npx) = 0.

v) By [Kol96, Proposition 1.2.14.2], the obstruction space for the relative Hilbert scheme,

Hilbi%Nd, at the point ([X],[%]) is contained in H' (3, Ny x ), which has dimension 0 by part iv.
P(t)

Since the obstruction space vanishes, it follows by [Kol96, Theorem 2.10] that Hilb x/pNe PN g
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smooth at ([X], [X]). Also W — Hilbi%N  is smooth. Therefore the composition prpw, : W — PN
is smooth at ([X], [X], [L]).

vi) The proof is almost identical to the proof of part v.

vii) By part v, W — PN is smooth at ([X],[X],[L]). By part vi, F(X) — PY¢ is smooth
at ([X],[L]). So the Jacobian criterion for the smoothness of prp(y) at ([X],[%],[L]) is that the
map of vertical tangent bundles, dprpx) @ Ty png — T Tp(yypng is surjective at ([X], [Z], [L]).
This reduces to the surjectivity of H°(X, Ny, /x) — H O(L, Ny, /x|r). The cokernel is contained in
H'(%, Ny x(—L)), which is zero by part iii. Therefore Prpyy is smooth at ([X], [¥], [L]). O

We associate to each ([X],[S],[L]) € W° a morphism ¢ : L — Mp1(X,1) as follows.
Let 0 : L — ¥ be the inclusion and let pr; : ¥ — L be the unique projection such that o is
a section of pry. Let g : ¥ — X be the inclusion. Then,

(= (pry:¥X—L,0),g: ¥ — X)
is a family of stable maps, i.e. a morphism ¢ : L — My 1(X,1).
LEMMA 6.4. For every point ([X],[X],[L]) € W°, the morphism ¢ : L — Mg 1(X,1) is twisting.

Proof. Since go o : L — X is an embedding, axiom i of Definition 4.3 is satisfied. By Lemma 6.3,
part vi, the dimension of the obstruction group of Mo,o(X, 1)at [goo: L — X]is 0, i.e. axiom ii
of Definition 4.3 is satisfied.

Denote by A the normal bundle of the regular embedding (pr;,g) : ¥ — L x X. There is a
short exact sequence,

0 pr; T N Ny ) x —0.
By Remark 4.4, part ii, axiom iii holds if R!(pr;).N(—c) = {0}. For each fiber L' of
pry : X — L, N(—0)|r = Npyx(—1). Since ([X], [X],[L']) is also in W°, by Lemma 6.3, part iv,
h' (L', N x(—=1)) = 0. Therefore R (pry).N(—0c) = {0}, i.e. axiom iii holds.
By Remark 4.4, part ii, (*Tey = (pry )N (—0). Part of the long exact sequence of higher direct
images associated to the twist by Ox(—L) of the short exact sequence above is,

(prp)prpTL(=o (L)) = (prp)«N(=o(L)) — (prp,)sNy/x (=0 (L)) — R (prp).prT1(~o(L)) — 0.
For each fiber L' of pry, Tr(—o(L))|rr = Op/(—1). Therefore (pry).pr;Tr(—o(L)) = {0} and
R'(prp).prpTr(—o(L)) = {0}, ie. (prp)N(—o(L)) = (prp)«Nsyx(—o(L)).

Let p' € L be a closed point and denote L' = pr;'{p'}. Since R (pr;).priTr(—L — L") =
{0} and R'(pr;)«N(—L — L") = {0}, by the long exact sequence of higher direct images, also
R(pry)«Ns x(—L—L") = {0}. By the Leray spectral sequence, h' (3, Ny, x (—L—L"))=h*(L, (pry, )«
(Ns;/x(=0o(L)))(—p'))- By Lemma 6.3, part iii, h' (X, Ny x (=L — L')) = 0, so also h'(L, (pry).
(N x(=a(L)))(=p")) = 0. By Grothendieck’s lemma, (pry,)«Ns/x(—0(L)) is a direct sum of line
bundles of degree > 0, i.e. it is generated by global sections. Therefore axiom iv is satisfied. Finally,
0*Ox(0(L)) = Oy, so axiom v is satisfied. O

PROPOSITION 6.5. If either
i) d=1andn >4, or
i) d>2andn+1 > d?,

then prpyy : W° — F(X) is dominant. Therefore, for a general pair ([X],[L]) € F(X), L is a
twistable line on X.

Proof. By Lemma 6.3, part v, it suffices to prove that W° is nonempty.
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i) If d = 1 and n > 4, then for any quadric surface ¥ C P™ and any hyperplane X C P"
containing span(X), 0 is an isomorphism so ([X], [¥], [L]) is in W© for any line L C X.

ii) Next suppose that d > 2. Denote by I; the set
I,={(i,j) €ZxZ: 0<i,j<d—1, i+j >3},
which has d? — 4 elements. Denote by
(Yo, Y1, Y2, Y3) U (Xij)ijyer, U (Zm :m=1,...,n+1—d)

a basis of HO(P", Opn(1)), i.e. a basis of homogeneous coordinates on P". Denote by ¥ C P" the
smooth quadric surface with ideal

Iy = (YoYs = YiVa) + (Xi1(i,§) € Ig) + (Zm|m = 1,...,n+ 1 - d°).
This is the image of the closed immersion f : P! x P! — P",

([Uo: Uh],[Vo : 1)) = [UoVy : UgVh : Ui Vo : Uy Vp 202 -+ -2 0]

For each (i,j) € I, denote k = min(i, j), denote i = i — k, and denote j° = j — k. Denote by
X C P” the hypersurface with defining equation

(Zv.])eld
Clearly ¥ C X. The claim is that OF : C"*! — H(X, Ox(d — 1)) is surjective. By construction,
v, U v, oy, — Ui o2, ay; — VUi v, ay; — Vol VWi,
For each (i,7) € 14,
oF 7 rd—1—iy jvd—1—j
ax., Ui Vi (12)

Since the partial derivatives of the form 0F/9Y; give the terms UéUfl_l_iVOled_l_j with (i,7) =
(0,0),(0,1),(1,0), and (1, 1), and since these are precisely the pairs (i, j) not contained in I;, OF is
surjective. Therefore, for every line L C ¥, ([X], [X],[L]) is in W°. O

Together with Remark 6.1, Lemma 6.4 and Proposition 6.5 imply the following corollary.

COROLLARY 6.6. If X C IP" is a general hypersurface of degree d and either
i) d=1andn >3, or
i) d>2andn+1>d?

then Hypothesis 4.10 holds.

7. Base case of the induction for hypersurfaces

In this section it is proved that if n > d®>+d+1 and if X C P" is a general hypersurface of degree d,
then there exists a morphism ¢; : P! — Mo,1(X, 1) that is both very twisting and very positive.
This provides the base case for the induction argument of § 5.

Remark 7.1. There is one exceptional case, d = 1. It will be proved that for n > 7, there is a
morphism (; : P! — ﬂo,l(P”_l, 1) that is both very twisting and very positive. As in Remark 6.1,
repeatedly projecting from a point produces a morphism ¢; : P! — ﬂo,l(]}””_l, 1) that is very
twisting and very positive for all n > 3.
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The techniques in this section are the same as those of § 6. Proposition 6.5 is proved by finding
a single degree-d polynomial F' on P", vanishing on some quadric surface ¥, and such that

OFy : crtl —>H0(Z,Og(d - 1))

is surjective. In this section, the role of L. C X is replaced by a rational normal curve Cy C X of
degree k < n (in the end, only the case k = 2d will be needed). The role of the quadric surface is
replaced by a rational normal scroll ¥ of degree 2k — 1 such that Cy € ¥ C X. The cohomology
vanishing results of the last section are replaced by the vanishing of h'(X, Ny x(—Cp — 2L)) for
i > 0, where L is a line of the ruling of ¥. The computation in this section will be to find a single
degree-d polynomial F' on P", vanishing on ¥, and such that the image, W, of the map

OFy : Crtl ——= HY(%,05(d — 1))
has the property that the induced map
W@ H(E,Ox((k - 3)L)) —= H°(%, Ox(d — 1) ® Ox((k - 3)L))

is surjective. A similar polynomial F' to that of the last section satisfies this condition.

7.1 Generating linear systems on [,

In the last section, the relevant surface was the Hirzebruch surface Fy = P! x P! embedded as a
quadric surface. In this section, the relevant surface is the Hirzebruch surface F; embedded as
a rational normal scroll of degree 2k — 1. The projective model of Fy used here is,

Fy = {([Ty : T, [ToU : ThU : V]) € P* x P? | To(ThU) = Ty (ToU)}.

In the equation above, ‘TyU’ and ‘Ty;U’ are just names of homogeneous coordinates on P?
(although the term U does have a meaning described below). Denote by prp: : F; — P! and
prp2 : F; — P2 the projection morphisms. Denote by Op, (F) the invertible sheaf prp:1Op1 and by
Or, (E + F) the invertible sheaf prj, Op2. The invertible sheaf O, (E) is associated to the directriz
E C F;. (This explains the terminology ToU and T1U; U is a nonzero element of H%(Fy, O, (E)),
and ToU and TyU are the products of U with the two global sections Ty and T} of H°(Fy, Op, (F)).)

The invertible sheaves O, (E+ F') and O, (F') generate the Picard group of 1, thus motivating
the notation

O(a,b) .= Of,(a(E+ F) + bF).

The divisors E + F and F' are each nef, but not ample. Therefore they generate the nef cone; an
invertible sheaf O(a,b) is nef if and only if 0 < a,b, and it is ample if and only if 0 < a, b.

Let O(a,b) be a nef invertible sheaf, and let W C HY(Fy,O(a, b)) be a linear system. Let ¢ > 0
be an integer.

DEFINITION 7.2. The linear system W is a c-generating linear system if the associated map
pwe: W@ HY(Fy,0(0,¢)) — H(Fy,Oa, b+ c))
is surjective.
When is W a c-generating linear system?

Notation 7.3. For each integer i, denote

=251,
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Denote by 34, 3;, ag and «, the unique integers such that 0 < o, 5, < c+1 and b—1 = By(c+1)+05;,
a+b—1=a4(c+ 1)+ a,. Denote by N(a,b,c) the integer,
a

N(a,b,c) = > (r(i) +2)

=0
Bale+1—pr) +aa(l + o) + (g — Ba — 1)(c+ 1), ag> B,
Balar — By + 1), g = P
Denote by Wo(a,b,c) € HY(F1,O(a,b)) the linear system,
Wo(a,b,c) = span{UiV“_iTébH)_j(CH)Tf(CH) |i=0,...,a,7=0,...,7(:)}
+ span{U Ve T | i =0,...,a}.

:2a+2+{

LEMMA 7.4. The linear system Wy(a,b, c) is a c-generating linear system of dimension N (a,b,c).

Proof. For each pair of nonnegative integers a’, ¥’ there is a decreasing filtration on H%(Fy, O(a’, 1)),
F'HO(Fy,0(d, b)) = H*(F1,0(d, V') (—iE)) = H°(F1,0(d’ — i,V')).
For any linear system W C H°(Fy,O(a, b)), there is an induced filtration F'W = F'NW. The multi-

plication map . respects the filtrations on W and on H%(Fy, O(a,b+c)). Hence py is surjective
if every associated graded map

g’ e gr'W @ HO(Fy,0(0,¢)) — gr' HO(F1, O(a, b + ¢))
is surjective. Now dim(W) is the sum of all terms dim(gr'W). For each i, what is the minimum
possible dimension of a vector subspace W* C gr' H'(FF1, O(a, b)) such that the associated map
griNWi,c W ® HO(Flﬂ 0(07 C)) - griHO(Flv O(av b+ C))

is surjective?
The associated graded pieces of O(d’,b’) are,
, HY(E,Op(t +1i), 0<i<d,
e HO(E, O 1) = { 1T (BOEEH ), s
{0}, i>a.

Let Wi C H°(E,Og(b+1i)) be a linear system such that the multiplication map
gyt W@ HY(E, Op(c)) — H(E,Op(b + ¢ +1))

is surjective. Counting dimensions on the left and right sides of the equation, dim(W?) - (¢ + 1) >

(b+c+i+1), ie

b+i—1
c+1

The linear system W' = griWy(a, b, c), which is generated by the set of monomials

(Uiveig MDD = o)y U UV,

has the property that W ® HY(E,Og(c)) — HY(E,Op(b + c + i)) is surjective, and dim(W?) =
r(i) + 2. So Wy(a,b,c) is a c-generating linear system of dimension,

dmwvﬁ>{ J+2=mn+z

a .
b -1
20+ 2+ {LJ = N(a,b,c).

, c+1

1=0
Moreover, this is the minimum dimension among c-generating linear systems for which each map
gr'pyyi o is surjective. O
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Notation 7.5. Denote by S the Cox homogeneous coordinate ring of Fy, i.e.

S = @ HO(Fy,0(a, b)) = C[Ty, T1, U, V.
(a,b)eZ?

This is a Z?-graded ring, where deg(Tp) = deg(Ty) = (0, 1), deg(V) = (1,0) and deg(U) = (1, —1).
For every (a,b) € Z*, S(o = H°(F1,0(a,b)). Denote by deg : S — Z U {—oc} the total degree
defined by deg(M) = a + b for all elements M € S, ). Denote by < the graded lexicographical
monomial order on S that refines the grading by total degree by U > V' > Ty > T;. For every linear
system W C H°(Fy,O(a,b)) denote by IN(W) the linear system generated by the initial terms
of W.

LEMMA 7.6. If the linear system IN(W') contains Wy(a, b, c), then W' is a c-generating linear system.

Proof. The linear system of initial terms of Image(uw,) satisfies
IN(W) - S(0,¢) C IN(Image(pw,c))-
Since IN(W) contains Wy(a, b, ¢),
Wo(a,b,c) - Sq,) C IN(Image(pw,c))-

By Lemma 7.4, Woy(a,b,c) - So,.) = Sapte)- Hence IN(Image(pw,c)) = S(apte), and therefore
Image(puw,c) = S(a,ptc)- O

Remark 7.7. The most important case isa =d —1, b= (d—1)(k — 1) and ¢ = k — 3 for positive
integers d > 1 and k > 3 (d will be the degree of the hypersurface X C P", and k will be the degree
of the curve Cy C X). In particular, if d > 2 and k > 2d, then b—1 = (d — 1)(k — 2) +d — 2,
a+b—1=(d-1)(k—2)+2d—3and 0<d—2, 2d—3 < k—3. Hencer(i) =d—1fori=0,...,a
and N(a,b,c) = d(d+ 1) = d* + d. Moreover, ming>3 N(d — 1,(d — 1)(k — 1), (k — 3)) = d* + d.
This is the origin of the term ‘d?> + d’ in Theorem 1.1.

7.2 Cohomology results

Notation 7.8. Let Ny, PV4, and X c PMa x P" be as in Notation 6.2. Let k be any integer with
3 < k < n/2 (only the case k = 2d will be used later). Let R¥(P") C Hilbff,,ffl denote the open
subscheme parametrizing curves Cy C P" that are projectively equivalent to a degree-k rational
normal curve Cyp C P*¥ C P Let R¥(X) c PN x RF(P") denote the parameter space for pairs
([X],[Co]) such that Cy C X. Let Q(t) = (¢t + 1)((2k — 1)t 4 2) denote the Hilbert polynomial
of a rational normal scroll of degree 2k — 1 in P%*. Let U C Hilbgn(t) denote the open subscheme
parametrizing closed subschemes > C P" that are projectively equivalent to a rational normal scroll
of degree 2k — 1 in P?* C P" and that are abstractly isomorphic to F;. Let V C U x R¥(P") denote
the parameter space of pairs ([X], [Cp]) such that Cy C ¥ and such that, via the isomorphism of
¥ = Fy, the invertible sheaf of Cp is O(1,0). Let W C PNe x U x R¥(P") denote the parameter
space for triples ([X], [X], [Co]) where ([2], [Cp]) is in V and where ¥ C X.

Observe that RF(P") is a homogeneous space of PGL, 1, and therefore is smooth and con-
nected. Observe that the projection R¥(X) — R¥(P") is a projective bundle of relative dimension
N4 — (kd + 1). Observe that the projection map V — U factors as an open subset (with nonempty
fibers) of a projective bundle over U of relative dimension 2 (more precisely, every fiber is isomor-
phic to the A2 of irreducible curves in the linear system |O(1,0)|). Observe that the projection map
W — V is a projective bundle of relative dimension N; — Q(d).

For each triple ([X],[Z],[Co]) € W, define dxyx : C"*1 — HOY(X,0x(d — 1)) as in § 6.
More precisely, denote £ = (’)IG/?,("H). Denote by G the unique quotient of H°(P", Opn(d—1)) ®¢c Oy
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that is locally free and whose fiber at each point ¥ is the quotient
HO(P", Opn(d — 1)) — H(X, Ox(d — 1)).
Denote by F the locally free Oyy-modules
prpn, (Opr, (1)) @ pr,G.
Then there is a map of Oyy-modules 0 : € — F whose fiber at each point ([X], [X],[Co]) is the map
Jx 5. Denote by W° C W the open subscheme parametrizing points ([X], [X], [Cp]) such that
Image(dx,x) C H(5, Opn(d — 3)|5)

is a (k — 3)-generating linear system.
Let ¥ C P?* C P" be a rational normal surface scroll of degree 2k — 1, and let f : F; — %

be an isomorphism. For each pair of nonnegative integers (a,b), denote by N(a,b) the locally free
Op,-module

N(a,b) = f*(Nspn @ Opn(—1)[2) ® O(a, b),
and denote by N'(a,b) C N(a,b) the subsheaf
N’(a, b) = f*(NZ/]pzk ® Opn(—1)|x) ® O(a,b).

LEMMA T7.9.
i) N’(0,0) is generated by global sections and h*(Fy, N'(0,0)) =0 for i > 0
ii) N(0,0) is generated by global sections and h*(F1, N(0,0)) = 0 for i > 0
iii) For every pair of nonnegative integers (a,b) and for every coherent sheaf F on Fi that is

generated by global sections and such that hi(Fy,F) = 0 for i > 0, F(a,b) := F @ O(a,b)
is generated by global sections and h'(Fy, F(a,b)) = 0 for i > 0.

In particular, for every pair of nonnegative integers (a,b), N(a,b) (respectively N'(a,b)) is gen-
erated by global sections and h'(Fy, N(a,b)) = 0 for i > 0 (respectively h'(F1, N'(a,b)) = 0 for
i>0).

Proof. i) The morphism prp: : F; — P! is isomorphic over P! to projection from the projective
bundle

F1 = P(Op1(=(k — 1)) & Op1(=k)).

Under this isomorphism the invertible sheaf O(1, k—1) on X corresponds to the invertible sheaf O(1)
on P(Op1(—(k — 1)) ® Op1(—k)) where O(1) is the universal invertible quotient of pry; (Op1 (k — 1)
® Op1(k)). Up to projective equivalence, the morphism f : F; — P?* is the closed immersion given
by the complete linear system of O(1); in particular, f*Opex(1) = O(1). Using this isomorphism,
there is a short exact sequence of Op,-modules,

0 —— Prj Tpt — pry, (Op1 (1) D) @ f*Opai (1) — f* Ny pee —— 0.

Twisting by f*Opz2:(—1), N’(0,0) is a quotient of prﬁil((’)pl(l)@(%_l)). Hence N’(0,0) is generated
by global sections. Also,
(prp1)« (Prin Tpr © f*Opar(—1)) = {0}, R (prps )« (prn T ® f*Opai (—1)) = {0}.

Twisting the short exact sequence by f*Opar(—1) and forming the associated long exact sequence of
higher direct images, Rl(prpl)*(f*Ng/pzk(—l)) = {0}, and (prp1 )« (f* Ny por (—1)) = Op1 (1)8Ck-1),
Computing the cohomology of N’(0,0) via the Leray spectral sequence associated to prp: : F; — P1,
h'(Fy, N'(0,0)) = 0 for i > 0.
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ii) There is a short exact sequence,
00— N’(0,0) — N(0,0) — 0(0, O)EB(n—Qk) —0.

By part i, h'(F1,0p,) = 0 for i > 0. Therefore N(0,0) is generated by global sections and
hi(F1, N(0,0)) = 0 for i > 0.

iii) Let F be a coherent sheaf on F; such that F is generated by global sections and such that
hi(F1,F) = 0 for i > 0. It will be proved by double induction on (a,b) that, for every pair of
nonnegative integers (a,b), F(a,b) is generated by global sections and h*(Fy, F(a,b)) = 0 for i > 0.

The base case is b = 0 and is established by induction on a. For a = 0, the result follows by
hypothesis. Let a > 0 and, by way of induction, suppose the result is proved for a — 1. Let D C IFy
be a general member of the linear system |O(1,0)|. Then D is a smooth curve isomorphic to P!
Since D is general, there is a short exact sequence,

0——F(a—1,0) — F(a,0) — F(a,0)|p —0.

The sheaf F|p is generated by global sections, and O, (a(e + f))|p = Opi(a). Hence also F(a,0)|p
is generated by global sections. By the induction assumption, h'(F;, F(a — 1,0)) = 0. By the
long exact sequence of cohomology associated to the short exact sequence, every global section of
F(a,0)|p is the image of a global section of F(a,0). Hence F(a,0) is generated by global sections.
A coherent sheaf on P! that is generated by global sections has no higher cohomology. Combined
with the induction assumption and the long exact sequence in cohomology associated to the short
exact sequence above, h'(Fy, F(a,0)) = 0 for i > 0. Therefore, for every a > 0, F(a,0) is generated
by global sections and h*(Fy, F(a,0)) = 0 for i > 0.

Suppose that b > 0 and suppose the result is proved for b — 1. Let L C F; be a general fiber
of pry. Then L is smooth and isomorphic to P!. Since L is general, there is a short exact sequence,

0—— F(a,b—1) — F(a,b) — F(a,b)|p —=0.

Via the isomorphism L = PY Op, (a(e + f) + bf)|r = Opi(a). By almost identical arguments to
those above, F(a,b) is generated by global sections and h*(Fy, F(a,b)) = 0 for i > 0. O

Let ([X],[X],[Co]) be a point in W° and let f : F; — ¥ be an isomorphism. For each pair of
nonnegative integers (a,b), denote Nx(a,b) = f*(Nyg/x ® Opn(—1)|2) ® O(a,b).
LEMMA 7.10.
i) The hypersurface X is smooth along X.
ii) For each pair of nonnegative integers (a,b), h'(F1, Nx(a,b+k —3)) = 0 for i > 0.

iii) For every line of ruling L C ¥ and every nonnegative integer a, h'(L, Npjx(a—1))=0.

—e

v) The projection morphism prpn, : W — PNt is smooth at ([X],[%], [Co]).

)
)
v) For every nonnegative integer a, h*(Co, N¢,/x (a — 2)) = 0.
)
vi)

For every line of ruling L C %, the projection morphism prpy, : F(X) — PN is smooth at
(X1 [LD)-

vii) The projection morphism prpn, : R¥(X) — PNe is smooth at ([X], [Co])-

viii) The projection morphism m : W — R¥(X) is smooth at ([X],[X], [Co])-

Proof. 1) Since the partial derivatives of a defining equation of X span a c-generating linear series,

in particular they generate the sheaf Ox(d—1). Hence, there is no point of ¥ at which all the partial
derivatives vanish. By the Jacobian criterion, X is smooth along X.
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ii) There is a short exact sequence,

0 Ny /x Ny jpn —— Nxpn|s — 0.
Denote a« = a+ (d —1) and § = b+ (d — 1)(k — 1) (these are different from ay, a;, B3 and 3,.).
There is a short exact sequence,
0 —— Nx(a,b) — N(a,b) — O(a, ) — 0.
Since a, b > 0, by Lemma 7.9, h*(Fy, N(a,b)) = 0 for i > 0. By direct computation, h*(F1, O(a, 8)) =

0 for i > 0. Hence h?(Fy, Nx(a,b)) = 0, and h'(Fy, Nx(a,b)) = 0 if and only if the following map
is surjective:

HO(Fy, N(a, b)) — HO(F1, O(av, B)).

There is the following commutative diagram:

HO(Fy, N(a,b)) ® H(F1,0(a’,V/)) — H°(F1, N(a +d',b+ 1))

| |

HO(]Fb 0(0&, ﬁ)) ® HO(FD O(CL,, b/)) - HO(]Flv O(a + alv ﬁ + b/))

By direct computation the bottom horizontal arrow is surjective if a’, b’ > 0. Hence, if the left vertical
arrow is surjective, then also the right vertical arrow is surjective; i.e. if h*(Fy, Nx (a,b)) = 0 then
also h'(Fy, Nx(a +a’,b+b")) = 0. Thus part ii is reduced to the case a = 0,b = k — 3. In this case
the commutative diagram above factors the following commutative diagram

HO(Fy, Tpn) @ HO(Fy, 0(0, k — 3)) HO(Fy, N(0,k — 3))

l l

HOF,0(d—1,(d —1)(k —1))) ® H'(F,0(0,k — 3)) — H(F1, O(a, B))

By definition, the composition

HO(FlTPn) & HO(Fl, O(O, k— 3)) —— HO(Fl, O(Oé, ﬂ))
is surjective if and only if the triple ([X], [X], [Co]) is in W°. Since ([X], [X], [Co]) is in W°, the right
vertical arrow is surjective, i.e. h'(Fy, Nx(0,k — 3)) = 0.

iii) There is a short exact sequence,
0—>NL/E(CL - ].) —>NL/X(CL - ].) —>N2/X‘L(CL - ].) — ().

Since Npv = Op, for all a > 0, h'(L, Ny s(a — 1)) = 0. Therefore it suffices to prove
h'(L, Ny, x|r(a — 1)) = 0. Since O(a — 1,b)|1 = Op(a — 1), there is a short exact sequence,

O—>NX(CL,]€ —3) —>NX((I,]€ — 2) —>N2/)AL(CL — 1) — (.

By part ii, for a > 0 the higher cohomology of the first two terms vanishes. By the long exact
sequence in cohomology associated to this short exact sequence, h!'(L, Ny, /x|(a —1)) = 0 for
a > 0.

iv) The proof is almost identical to the proof of part iii.

v) By [Kol96, Proposition 2.14.2], the obstruction space for the relative Hilbert scheme Hilbg% Ny
at the point ([X],[X]) is contained in H'(X, Ny, x). If ([X],[X],[Co]) is in WP, then by part i,

h'(S, Nyy/x) = h'(F1, Nx(1,k — 1)) = 0. By [Kol96, Theorem 2.10], Hilbﬁ%w — PNa is smooth
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at ([X],[2]). The projection W° — Hilb®® (X /PNa) is an open subset of a projective bundle, and
so is smooth. Therefore the composite morphism W° — PN¢ is smooth at ([X], [X], [Co]).

vi) The proof is very similar to the proof of part v and uses the vanishing, h'(L, Ny, /x) =0,
which was proved in part iii.

vii) The proof is very similar to the proof of part v and uses the vanishing, h'(Cp, Ng, /x) =0,
which was proved in part iv.

viii) Since W° — PMe is smooth at ([X], [£], [Co]) and since R* — PV¢ is smooth at ([X], [Cp]), to
prove that m : W° — R¥(X) is smooth at ([X], [¥],[Co]), it suffices to check that the derivative map
dm : Tyyo png — T Ty pya is surjective at ([X], [X], [Co]). This reduces to the statement that

H°(%, Ny x) — H°(Co, Nx;/x|c,) is surjective. The cokernel is contained in H'(Fy, Nx (0,k — 1)).
By part iii, h(Cp, Ny xlc,) = 0, and therefore the derivative dr is surjective at ([X], [X], [Co]). O

Let ([X],[%],[Co]) be a point of W. Denote by o : Cy — ¥ the inclusion and denote by prg, :
¥ — Cp the unique projection morphism such that o is a section of prg, (via the isomorphism

¥ = Fy, prg, corresponds to prp:). Denote by g : ¥ — X the inclusion. There is a family of stable
maps ¢ : Ch — Mp1(X,1),

¢ = ((pre, : ¥ — Cp,0),9: L — X).
LEMMA 7.11. If ([X],[X], [Co]) is in W°, then ¢ : Cy — Mo 1(X, 1) is very twisting and very positive.

Proof. Very twisting: First the axioms of Definition 4.3 are verified. Since goo : Cy — X is an
embedding, axiom i of Definition 4.3 is satisfied. By Lemma 7.10, part vii, the dimension of the
obstruction group of Mo o(X, k) at [goo : Cy — X] is 0, i.e. axiom ii is satisfied.

The proof that axiom iii holds is identical to the argument for axiom iii in the proof of Lemma 6.4,
with Lemma 6.3, part iv replaced by Lemma 7.10, part iii.

As in the proof of Lemma 6.4, (*Tey = (prg, )« Nx (0,5 — 1). Hence (*T¢, is ample if and only
if h'(Cy,*Tey(—2)) = 0. By a Leray spectral sequence argument similar to the one in the proof
of Lemma 6.4, h'(Cy, (*Twy(—2)) = h'(Fy, Nx(0,k — 3)), which, by Lemma 7.10, part ii, equals 0.
Therefore (*Ti, is an ample bundle, i.e. axiom iv is satisfied.

Finally, observe that 0*Ox(0) = O¢,(1) is ample, i.e. axiom v is satisfied. Thus ¢ is a very
twisting family.

Very positive: Next the axioms of Definition 4.11 are verified. Axioms i, ii and iii follow from
axioms i, ii and iii of Definition 4.3, as proved above. There is a short exact sequence,

0—— C*Tev - C.*T’Ho,l(X,l) - (g © U)*TX —0.

It is proved above that (*7¢y is ample. Moreover, by Lemma 7.10, part iv, N¢,,x is ample. Of course
T¢, is ample. Therefore Tx|c, is ample by Lemma 2.10, part ii. Since the first and last terms in the
§hort exz.lct sequence are ample, by Lemma 2.10, Part i, ¢ *Tﬂo,l( X,1) is amplé. Sinc.e ¢ *pr* Mo,o(X,1)
is a quotient of C*THO LX) by Lemma 2.10, part i, C*PT*Tmo o(X,1) 18 ample, i.e. axiom iv is satisfied.

Finally, 0*Ox(0) = O¢, (1), which is ample, i.e. axiom v is satisfied. Thus ¢ is a very positive
family. O
PROPOSITION 7.12.

i) Ifd >3 andn > d*+d+1, then for k = 2d, W° — R¥(X) is dominant, and R¥(X) — PNa js

dominant.

ii) Ifd =1 or2 and if n > 7, then for k = 3, W° — R3(X) is dominant, and R*(X) — PN¢ js
dominant.
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Proof. By part viii of Lemma 7.10, it suffices to prove that WW° is nonempty. We have to find a pair
([X],[X]) such that for a =d—1, b= (d —1)(k — 1) and for ¢ = k — 3, we have that the image of
the derivative map

dx s : H'(P", Tpn (—1)) — H(F1,0(a, b)) (13)
is a c-generating linear system.
Recall that S = C[Ty,T1,U,V] is the Z2-graded Cox homogeneous coordinate ring of Fy.

Denote by Ay the set of d> + d monomials that occur in the linear system Wy(a, b, c), i.e.

Ay :{Uin‘l‘iTO((d_l)(k_1)+i)_j(k_2)Tf(k_2) ‘2 0, d—1,j=1,... ,r(z’)}

R e R N )
where
d—2+1
N=d—1+ |22
(i) —l—{ R J

i) d > 4: Suppose that d > 4 and n > d? + d + 1. Denote by By the set of 4d — 1 monomials,

By = { -1 To(d—l)k—(k—z)j Tl(k_z)j ‘ j=0,....d—1 }
U { U2y To(d—l)k—l—(k—2)j Tl(k—2)j | j=0,....d—1 }
U { Uds v To(d—l)k—2—(k—2)j Tl(k—2)j | j=1,...,d—1 }
SRR A N7 B o Cotbin Gt M s G AR T SN S SIS R
U { vd—l To(d_l)(k_l) }

Denote by C; the set of d?> — 3d + 1 monomials Cy = Ay — B,. Denote by
Yo,.... e} U{Zo, ..., Ze 1} U Xy | M e Clu{Vi|l=1,...,n— (d* +d+ 1)}

a basis of H(P", Opn (1)), i.e. a basis of homogeneous coordinates on P™.

Denote by f : F; — P2¢ ¢ P" the morphism mapping ([Tp : T3], [ToU : TyU : V]) € Fy to the
point in P* with coordinates Xj; = 0, M € Cy, with Vi =0,l =1,...,n — (d*> +d + 1), and with

Yo=UTy, ..., Yi=UTY 1, ..., Y, =UTY,
Zo=VTEt .., Zy=vIytUiTi, .., Z =VTFL

This is an embedding whose image 3 = f(F;) is a rational normal scroll of degree 2k — 1.

The pullback map HO((P?,Opar (1)) — HO°(F;,O(1,k — 1)) is surjective by construction.
The natural map

Sym¢ T HO(F, 01,k — 1)) —= H°(F1,0(d — 1,(d — 1)(k — 1)))
is surjective. Therefore the pullback map
HO(P*, Opar (d — 1)) —> HO(Fy, 0(d — 1, (d — 1)(k — 1))

is surjective. For each monomial M € Cy, choose a polynomial Gp(Yp,...,Ys,) such that
Gy =M.
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Consider the hypersurface X C P" with defining equation

F =

Y (YiZi - YiaZ) R 7
+ Y98 (YaersiZarj — YariZary) V)Y 232y
+ (Yoo1Za — YaZa—1) VaiIveE
+ (YaZag1 — Ya41Za) Y4 2 Zs
+ (Yi-2Zk-1 — Yi-1Z1-2) Y 21 Zs
+ (YeZo — ZaYa) Z5?

+ 2mec, GuYo,..

5 Yor) X

Observe that F' is contained in the homogeneous ideal of ¥, i.e. ¥ C X. The derivative map Ox x

acts on the coordinates Y}, Z;, Xjs as in Table 1. Each of the monomials in Ay occurs as the initial
term of Ox x acting on one coordinate. For every coordinate except Yy and Zj, the initial term of
Jx . is one of the monomials in A;. By Lemma 7.6, the image of Jx x; is a (k — 3)-generating linear

system.
TABLE 1. The map Ox x.
Coordinate IN(0x x(coordinate)) Lower-order terms in Ox x(coordinate)
Zji1, Ud—lTékfl)df(kf2)jT1(k72)j _Ud—1T0(k71)d7(k72)(j+1)71T1(k72)(j+1)+1
j=0,...,d—1
7 Ud,lTO(k—l)d—(k—z)(d—l)Tl(k—Q)(d—n _Ud,3V2TO(k—1)(d—2)+(d—3)le_1
—o(k—1)(d—2)+d
_Uvd QTé )( )+ Tld
Yji1, —yd-2y ik Damt= k=2 p(k=2)) yyd-2y - (k=GN =2 (k=2)(+ )+
j=0,...,d—1
Y, _Ud,QVTO(k—l)d—l—(k—Q)(d—l)Tl(k—z)(d—1) +Ud,4V2TO(k—1)(d—2)+(d—4)le_1
_Vd_lTékfl)(dfl)deld
Zatj, Ud—3y2x —Ui-2y2%
) k—1)(d—1)+(d—3)— (k—2)j -(k—2)j k—1)(d—1)+(d—4)+(k—2) (j+1) r(k—2) (j+1
j=1,...,d—2 Té )(d=1)+(d—3)—( )JTl( ) Té )(d=1)+(d—4)+(k—2)(j+ )T1( )(G+1)
A Ud—3y2x
k—1)(d—1)+(d—3)— (k—2)(d—1) n(k—2) (d—1
TO( )(d=1)+(d—3)—(k—2)( )T1( )(d—1)
Yasij, L VE N Ud—4y3x
) k—1)(d—1)+(d—4)— (k—2)j - (k—2)j k—1)(d—1)4(d—5)+(k—2) (j+1) (k—2) (j+1
j=1,...,d—2 TO( )(d=1)+(d—4)—( )JTl( ) TO( )(d=1)+(d—5)+(k—2)(j )Tl( )(G+1)
Yi_1 Ud—4y3x
k—1)(d—1)+(d—4)— (k—2)(d—1) (k—2) (d—1
TO( )(d—=1)+(d—4)—(k—2)( )T1( )(d—1)
Y VdflTO(k—l)(d—l)
X, M
M e Cy
Zo _UdflTék—l)(d—l)"‘(d—Q)Tl Uvd72Ték—1)(d—2)le
Y, Ud72VTO(k—1)(d—1)+(d—3)Tl
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i) d = 3: Suppose that d = 3 and n > 32 + 3 4 1 = 13. Denote by Bs the set of 4d — 1 = 11

monomials,
Bi= { U? P I Y
u { U v ot ki 019 )
U { E e S A I I S TP
u { U V H }
u { V2 7o b

Denote by C3 the singleton set consisting of the monomial M = U2T!2. Denote by
{Yo,.... Y5} U{Zo,.... Zs} U{Xn | M € C35}U{V; |l=1...,n—13}

a basis of H(P", Opn (1)), i.e. a basis of homogeneous coordinates on P™.
Denote by f : F; — P12 C P* the morphism mapping ([Tp : T1], [ToU : TyU : V]) € Fy to the
point in P" with coordinates Xy =0, M € Cy, with V; =0, =1,...,n — 13, and with

Yo=UTS, ..., Y, =UTS'T{, ..., Yp=UTY,
Zo=VTy, ..., Z;=VIoT!, ..., Zs=VT}.
This is an embedding whose image > = f(F;) is a rational normal scroll of degree 11.
Consider the hypersurface X C P" with defining equation

F= Yo (YiZja—YinZy) Yy 'Yq
+ (YaZ3 — Y325) Ys
+ (Y525 — Y6Z4) Zs
+ (Y325 — Y52o) Zy
+ (YaZy — YiZp) Zo
| YEX .

Observe that F' is contained in the homogeneous ideal of ¥, i.e. ¥ C X. It is straightforward to
compute the action of dxx on the coordinates Y}, Z;, Xjs. Every monomial in A3 occurs as the
initial term of dx x acting on one coordinate. For every coordinate except Yy and Zy, the initial
term of Jx x; is one of the monomials in A3. By Lemma 7.6, the image of Ox x is a (k — 3)-generating
linear system.

ii) d = 2: Suppose that d =2 and n > 22 + 2+ 1 = 7. Let k = 3. Denote by By the set of six
monomials,

By = { U w7 T ] j=0,1,2 }
U { vV Tyl T | j=0,1,2 }.
Denote by Cy the singleton set consisting of the monomial M = UT5. Denote by
{Yo,Y1,Y2,Y3, 20, Z1, Zo, Xps } ULV, | L=1,...,n =T}

a basis of H(P", Opn (1)), i.e. a basis of homogeneous coordinates on P™.
Denote by f : F; — PS C P" the morphism mapping ([T : Ti], [ToU : TyU : V]) € Fy to the
point in P" with coordinates X3y =0, M € Cy, with V; =0,l=1,...,n — 7, and with

Yo =UTy, Yy =UITy, Yo=UT)TE, Y3=UT?,
Zo=VT¢, 71 =VTyTy, Z,=VT}.
This is an embedding whose image > = f(F;) is a rational normal scroll of degree 6.
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Consider the hypersurface X C P" with defining equation
F = (Y32, = Y2Zy) + (YoZ1 — Y1Zy) + YaX .

Observe that F' is contained in the homogeneous ideal of X, i.e. ¥ C X. It is straightforward to
compute the action of dx y on the coordinates Y;, Z;, Xjs. Every monomial in Ay occurs as the
initial term of Ox y acting on one coordinate. For every coordinate except Yy, the initial term of
Ox . is one of the monomials in Ay. By Lemma 7.6, the image of Jx x; is a (k — 3)-generating linear
system.

ii) d = 1: Denote by
{%7Y17Y27}%7Z07217227XM}U{W | l= 1,...,71— 7}

a basis of HY(P", Opn (1)), i.e. a basis of homogeneous coordinates on P™.
Denote by f : F; — P® C P" the morphism mapping ([T : T1], [ToU : TyU : V]) € Fy to the
point in P™ with coordinates X3y =0, M € Cy, with V; =0, =1,...,n — 7, and with
Yo =UT3, Y, =UTITy, Yo=UT)TE, Y3=UT?,
Zo=VI3, Z,=VIyTy, Zy=VT?

This is an embedding whose image > = f(F;) is a rational normal scroll of degree 6.

Consider the hypersurface X C P™ with defining equation F' = Xj;. Observe that F' is contained
in the homogeneous ideal of ¥, i.e. ¥ C X. The image of dx »(Xas) is a generator for Sp; i.e. the
image of Jx x is a (k — 3)-generating linear system. O

Together with Remark 7.1, Lemma 7.11 and Proposition 7.12 imply the following corollary.

COROLLARY 7.13. If X C P is a general hypersurface of degree d and if n > d* +d+ 1, then there
exists a 1-morphism ¢ : Co — My 1(X, 1) that is both very twisting and very positive.

8. Proof of the main theorem

As explained at the end of § 1, if d < (n+1)/2, then for a general hypersurface X C P" of
degree d, Hypotheses 1.5, 1.6 and 1.7 are satisfied. By Corollary 6.6, if d > 2 and n + 1 > d2, or if
d =1 and n > 3, then for a general hypersurface X C P" of degree d, Hypothesis 4.10 is satisfied.
Finally, if n > d? + d + 1 then by Corollary 7.13 there exists a very twisting, very positive family
¢:Cop— Mp1(X,1). Therefore (¢,¢) is an inducting pair.

By Theorem 5.13, for every e > 1 there exists an inducting pair ((1,(,.). In particular, there
exists a very positive 1-morphism ¢, : C' — MOJ(X, e). As shown in the proof of Theorem 5.13, it
may be assumed that C is smooth and that the image of C' is contained in the smooth locus of the
fine moduli locus. By Lemma 4.14, part i, (, is a very free morphism. By [HRS04, Proposition 7.4],
Mo o(X,e) is an irreducible variety. Therefore, by [Kol96, Theorem IV.3.7], My o(X, e) is rationally
connected.
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