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The study of micro-craters generated as a result of impact events has a wide range of applications 
from forensic engineering [1] to the aerospace industry, and in particular to impact damage to 
satellites and spacecraft in low-Earth-orbit [2].  Hypervelocity collisions of natural micrometeoroids 
and artificial orbital debris (e.g. paint fragments) can pose a hazard to the operational capabilities of 
a satellite or space vehicle [3]. As a result, when space exposed surfaces are successfully retrieved 
from low-Earth orbit they are subjected to detailed post-flight investigations.  As part of these post-
flight investigations, optical and scanning electron microscopy based techniques are implemented to 
investigate micrometer to millimeter sized impact craters [4]. These microscopy studies focus on the 
search for remnant projectile material and the acquisition of crater geometries such as crater 
diameter (Dc) and crater depth (p).  Typically p measurements require prior cross-sectional 
destructive sample preparation, however here we discuss the application of high resolution x-ray 
microscopy to study intact micro-craters preserved in aluminum foils [5]. 
 
Conventional X-ray imaging is based on the absorption of radiation with image contrast produced as 
a result of the varying composition, thickness or density of the sample. While this is a well 
established technique, the method suffers severe limitations when studying low density and weakly 
absorbing materials which provide little attenuation of the X-ray signal. X-ray phase contrast 
imaging is a relatively new area of X-ray imaging science which is well suited to the study of such 
materials. Historically phase contrast imaging was considered to only be achievable using high 
brightness monochromatic X-ray sources, such as those achievable with a synchrotron, however 
more recent work has shown that phase contrast imaging can also be achieved using laboratory scale 
polychromatic X-ray sources [6]. 
 
The X-ray ultraMicroscope (XuM) is a high resolution point projection X-ray microscope which 
uses a scanning electron microscope as a host. The electron beam is focused onto a small target X-
ray source and the generated X-rays pass though the sample (100 micrometer thick Al 1100 series 
foil) to form a projected image containing both phase and absorption contrast onto the direct 
detection CCD X-ray detector (Fig. 1).  In addition to through-thickness planar imaging of the 
impact crater, the geometry of the XuM also lends itself to the acquisition of rotational data sets 
rotated about the vertical axis. A rotational data set acquired in this way was subjected to post-
acquisition phase-retrieval followed by tomographic reconstruction using an implementation of the 
Feldkamp-Davis-Kress cone beam algorithm [7]. The virtual slices generated during this post 
processing enabled detail investigation of crater geometries including p measurement (Fig. 2a).  
Finally the virtual slices were reconstructed to produce rendered tomographic surfaces and volume 
images of the crater for 3D analysis (Fig. 2b-2c). 
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The XuM analysis complements the traditional SEM imaging and analysis techniques applied to 
micro-crater analysis. Significant capabilities are the ability to form X-ray images showing the 
internal structure and micro-tomography without the need for destructive cross-sectioning. 
 

 
FIG. 1.  (a) X-ray image of an impact crater. (b) X-ray image of crater rotated. (c) High 
magnification X-ray image of the crater base. Microstructure damage to the aluminum substrate can 
also be observed (indicated by the white arrows). 
 

 
FIG. 2.  (a) Reconstructed cross-sectional virtual slice of the impact crater.  From this slice accurate 
measurement of the crater diameter (Dc) and crater depth (p) can be obtained. (b) A tomographic 
surface reconstruction of the crater. (c) A tomographic volume reconstruction of the crater. 
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