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This paper studies control function (CF) approaches in endogenous threshold regres-
sion where the threshold variable is allowed to be endogenous. We first use a
simple example to show that the structural threshold regression (STR) estimator
of the threshold point in Kourtellos, Stengos and Tan (2016, Econometric Theory
32, 827–860) is inconsistent unless the endogeneity level of the threshold variable
is low compared to the threshold effect. We correct the CF in the STR estimator
to generate our first CF estimator using a method that extends the two-stage least
squares procedure in Caner and Hansen (2004, Econometric Theory 20, 813–843).
We develop our second CF estimator which can be treated as an extension of
the classical CF approach in endogenous linear regression. Both these approaches
embody threshold effect information in the conditional variance beyond that in the
conditional mean. Given the threshold point estimates, we propose new estimates for
the slope parameters. The first is a by-product of the CF approach, and the second
type employs generalized method of moment (GMM) procedures based on two new
sets of moment conditions. Simulation studies, in conjunction with the limit theory,
show that our second CF estimator and confidence interval for the threshold point
together with the associated second GMM estimator and confidence interval for the
slope parameter dominate the other methods. We further apply the new estimation
methodology to an empirical application from international trade to illustrate its
usefulness in practice.
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2 PING YU ET AL.

1. INTRODUCTION

Endogenous threshold regression (ETR) has attracted much attention in recent
econometric practice. The interest is explained partly by the recognition that
economic relationships may shift over time, partly by the empirical relevance of
thresholding in the design of government tax and welfare programs, and partly by
the growing use of merit or need based awards in various social and educational
programs. In all such cases, shifts in the associated regression equations may be
driven by a companion variable which may itself be endogenous. For one example,
in the empirical growth models used in Papageorgiou (2002) and Tan (2010), the
corresponding threshold variables, the trade share to GDP in 1985 and the average
expropriation risk from 1984 to 1997, are endogenous, as argued in Frankel and
Romer (1999) and Acemoglu, Johnson and Robinson (2001), respectively. For
another example, our empirical application later in the paper explores the effects
of exports on real output growth, where the real exchange rate volatility, as the
threshold variable, is endogenous as argued in Tenreyro (2007). For recent discus-
sions of research on thresholding, including endogenously determined thresholds
and overviews of various time series and cross-sectional applications (see Hansen,
2011; Yu and Phillips, 2018 [YP hereafter] and Yu, Liao and Phillips, 2018 [YLP
hereafter]).

The usual modeling setup of the ETR has the following form:

y = (x′β1 +σ1u
)

1(q ≤ γ )+ (x′β2 +σ2u
)

1(q > γ )

=: x′β2 +σ2u+ (x′δβ + δσ u
)

1(q ≤ γ ) with E[u|x] �= 0, (1)

where x = (x′,q
)′ ∈ R

d, the parameter of interest is θ = (γ,β ′)′ with β = (β ′
1,β

′
2

)′
or equivalently, θ =

(
γ,β ′

2,δ
′
β

)′
with δβ = β1 − β2 being the threshold effect in

conditional mean, and δσ = σ1 −σ2 is the threshold effect in conditional variance.
Quite often, the ETR literature assumes δσ = 0 and absorbs σ2 into u (see, e.g.,
Caner and Hansen, 2004 [CH hereafter]; Kourtellos, Stengos and Tan, 2016 [KST
hereafter]), but allowing δσ �= 0 is often more realistic and plays an important role
in this paper. The regressor x may contain some exogenous regressors such as an
intercept, q may be a component of x (or some discussions in this paper can be
simplified), and both x and q may be treated as endogenous. This setup is similar
to endogenous linear regression (ELR) except that the regression coefficients and
error variances depend on whether the threshold variable q crosses the threshold
point γ .

As shown in YP, identification of γ does not require any instruments. Neverthe-
less, all the estimation procedures discussed in this paper involve instruments. In
this introductory discussion, the data are assumed to be sampled as i.i.d. but weak
dependence is permitted in the formal discussion later. When q is exogenous, CH
use a two-stage least squares (2SLS) method to estimate γ . Suppose the first-stage
regression is

x = �′z+v, (2)
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CONTROL FUNCTION IN THRESHOLD REGRESSION 3

where the instruments z contain both included (in x) exogenous regressors such
as 1 and q, and excluded exogenous regressors, E [v|z] = 0 and E [u|z] = 0. Then
by plugging (2) in (1) and taking the conditional expectation of y given z, we can
show that

E [y|z] = (�′
0z
)′

β101(q ≤ γ0)+ (�′
0z
)′

β201(q > γ0) =: gCH(z;θ0), (3)

where θ = (θ ′,�′)′, and the subscript 0 is used to emphasize the true value of a
parameter. The CH estimator of γ minimizes the sample analog of

E
[
(y−gCH(z;θ))2]

with gCH(z;θ) defined in (3).
When q is endogenous, KST call (1) a structural threshold regression (STR)

model and use a type of control function (CF) approach to estimate γ (see Navarro,
2008, for an introduction and Wooldridge, 2015, for a recent summary of CF
approaches in regular models). Their CF approach can be treated as an extension
of CH’s 2SLS method. Specifically, they derive under some assumptions that

E[y|z,q ≤ γ0] = g1(z;γ0,β10,κ0) and E[y|z,q > γ0] = g2(z;γ0,β20,κ0), (4)

where z contains the instruments which do not include q, κ0 is a nuisance parameter
indicating the endogeneity level of q, and g1 and g2 are some parametric functions
of z. Then KST’s STR estimator of γ , say γ̂ , minimizes the sample analog of

E
[
(y−g1(z;γ,β1,κ)1(q ≤ γ )−g2(z;γ,β2,κ)1(q > γ ))2],

for which a detailed construction is given in Section 2.1. KST develop their asymp-
totic theory of γ̂ in the small-threshold-effect framework as in CH, especially,
in which both δβ and κ are O

(
n−α
)

with α ∈ (0,1/2). We demonstrate with a
simple example in Section 2.2 that γ̂ is not generically consistent unless κ is
relatively small compared to δβ and that there does not exist a nonzero κ value
such that γ̂ is consistent for all possible δβ values. We further point out that an
extension of KST using copula theory by Christopoulos, McAdam and Tzavalis
(2021) (CMT hereafter) suffers a similar problem. Moreover, if γ̂ is not consistent,
the corresponding β estimator, β̂, is also inconsistent, thereby leading to failure in
the whole estimation procedure. Section 2.3 shows that the key problem in the KST
estimator is that when the objective function takes the form of a sum of squares,
the conditioning set in (4) cannot depend on the unknown parameter γ0.

As an alternative methodology, Section 3 puts forward two CF approaches for
γ , labeled CF-I and CF-II. These two CF approaches differ from KST and do
not require the degree of endogeneity to shrink to zero asymptotically. Method
CF-I corrects the CF in KST so that it can be treated as an extension of CH and
thereby includes CH as a special case. CF-II extends the classical CF approach in
ELR to the current context. The approach is new in the ETR literature and covers
the standard CH model (i.e., with q exogenous) as a special case. The difference
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4 PING YU ET AL.

between these two approaches lies in using E [y|z,q] or E [y|z,x] to identify γ .
Specifically, we first derive

E [y|z,q] = gI(z,q;θ0) in CF-I and E [y|z,x] = gII(z,x;θ0) in CF-II

under some auxiliary assumptions (which are standard in the usual CF approach),
noting that CH also derive E [y|z,q] since q ∈ z, so CF-I is indeed an extension of
CH. Then we estimate γ by minimizing in generic form the sample analogs of

E
[
(y−gI(z,q;θ))2] and E

[
(y−gII(z,x;θ))2],

for “I” and “II,” respectively, where we use θ to collect all unknown parameters
which need not be the same in CF-I and CF-II. Note that the conditioning sets in
E [y|z,q] and E [y|z,x] do not depend on any unknown parameter, which explains
why the new estimators are consistent and the KST estimator is not.

Interestingly, although both CF-I and CF-II use the conditional mean of y to
identify γ , these approaches also utilize some threshold effect information in
the conditional variance (i.e., δσ �= 0). This methodology differs from the usual
least squares (LS) estimator (without endogeneity) and CH’s 2SLS estimator (with
endogenous x but exogenous q), where only the threshold effect information in the
conditional mean can be explored even if there is a threshold effect in conditional
variance. We derive the asymptotic distribution of these two CF estimators of γ

in the small-threshold-effect framework, and also suggest inverting the likelihood-
ratio (LR) statistics to construct confidence intervals (CIs) for γ . Unlike the Heckit
model,

y =
{

y∗, if z′γ + v > 0 or d = 1,
0, if z′γ + v ≤ 0 or d = 0,

with y∗ = x′β +u, (u,v) ∼ N (0,(σ 2,ρσ ;ρσ,1)) and ρ �= 0,
(5)

where a CF is added to the LS objective function based on the observed data, the
extra randomness from the generated regressors in our objective functions does
not affect the asymptotic distribution of the CF estimators of γ , say, γ̂ .

Recently, Kourtellos, Stengos and Sun (2022) extended gI(z,q;θ) in CF-I to
a semiparametric setup where the CFs take nonparametric forms, whereas the
other components of gI(z,q;θ) retain parametric forms; their approach can also
be applied to CF-II. Section 3.2 provides detailed comparisons between the
parametric setup of this paper and their semiparametric setup. We emphasize here
that CF-II is the preferable approach because it has a firmer theoretical foundation
as discussed in Section 3 and is found to perform much better than CF-I in our
simulations of Section 5. CF-I is included in our analysis only to show the correct
objective function for the KST framework.

All the estimators of γ discussed above are M-estimators, and another type of
estimator with instruments employed are generalized method of moment (GMM)
estimators (or Z-estimators). YLP propose the 2SLS estimator in the cross-
sectional data case and Seo and Shin (2016) (SS hereafter) propose the FD-GMM
in the dynamic panel data case (Appendix A of SS also extends CH’s estimator

https://doi.org/10.1017/S0266466623000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000014


CONTROL FUNCTION IN THRESHOLD REGRESSION 5

above to the dynamic panel data case). More specifically, such GMM estimators
use the moment conditions like

E
[
z
(
y−x′β2 −x′δβ1(q ≤ γ )

)]= 0

to identify γ . Although GMM estimators are important and natural to handle endo-
geneity, compared with M-estimators, they suffer from at least three drawbacks as
discussed in YLP. First, GMM changes the nature of γ from a threshold point
(which is nonregular) to a quantile of q (which is regular), which implies the
convergence rate of γ̂ is n1/2, much slower than the convergence rate n of M-
estimators. Second, γ is not always identifiable by GMM, for example, when
q is independent of the rest of the system such as the time index in structural
change models, γ cannot be identified by GMM. Third, GMM requires more
instruments than our CF estimators for identification, which implies that GMM
may have less applicability since good instruments are hard to find in practice. Our
simulations show that the performance of GMM estimators is much worse than our
CF-II estimator. Of course, GMM estimators require only unconditional moments
to identify γ , whereas M-estimators require conditional moments; however, for
identification in nonlinear models conditional moments are routinely assumed in
the literature. Also, it should be emphasized that these drawbacks of GMM are not
due to the use of unconditional moments; as argued in YLP, even if conditional
moments (which are equivalent to uncountably many unconditional moments) are
employed, the first two drawbacks of GMM do not disappear. In summary, GMM
has several less desirable features for estimate of γ in ETR.

Given γ̂ , we propose two estimation procedures for β in Section 4. The first
type estimates β by β̂ = (β̂1 (γ̂ )′ ,β̂2 (γ̂ )′

)′
and is therefore a by-product of the

CF approaches for γ , where β̂ (γ ) = (β̂1 (γ )′ ,β̂2 (γ )′
)′

is the concentrated version
of the estimator of β given γ based on the objective functions employed in our
CF approaches. This type of estimator of β is not studied in CH or KST. Recall
that in the Heckit model the generated regressor affects the asymptotic variance
of the estimates of regular parameters such as β. A similar phenomenon occurs
here. Interestingly, in CF-I, the extra randomness in the generated regressor and
the randomness present in the original error term are correlated, whereas in CF-
II they are not. The second type of estimator relies on GMM estimation and is
based on two new sets of moment conditions. The first GMM estimator requires
more moments than the second and can be treated as an extension of CH’s GMM
estimator to the endogenous q case for which their GMM estimator is inconsistent.
The second GMM estimator is an extension of the first type of estimator (i.e.,
the CF estimator of β). For all β estimators, the γ estimates do not affect their
asymptotic variances even though γ̂ may not be op

(
n−1/2

)
convergent.

Section 5 reports simulation comparisons of the finite sample performance of
all existing estimators and CIs of θ when instruments are available. It turns out
that the CF-II estimator and CI for γ and the associated second GMM estimator
and CI for β dominate the other methods. Section 6 applies the new methodology
of this paper to an empirical application from international trade to illustrate its
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usefulness in practice. Section 7 concludes. Proofs of the main results (theorems,
propositions, and lemmas) are given in Appendixes A–C. Additional assumptions,
lemmas, and theorems as well as further details concerning the various procedures
in this paper and the properties of existing procedures in the literature are given in
the Supplementary Material which contains five sections labeled SD.1–SD.5.

A word on notation: Throughout this paper, we use the subscript 0 to designate
the true value of a parameter when it is not obvious and a hat to indicate its estimate.
The subscripts “≤ γ ” and “> γ ” signify use of the indicator functions 1(qi ≤ γ )

and 1(qi > γ ), so that for instance xi,≤γ = xi1(qi ≤ γ ). For three random vectors
x,y,z, x ⊥ y means x is independent of y, and x ⊥ y|z means x is independent of
y conditional on z. For a matrix A, A > 0 means A is positive definite. Im is the
m × m identity matrix. λ(·) = φ(·)/
(·) is the inverse Mills ratio, and φ(·) and

(·) are the standard normal pdf and cdf. Throughout the paper, the symbol � is
used to indicate the presence of two regimes in (1) and is not written out explicitly
as “� = 1,2.” The slope parameter is sometimes partitioned according to x and q,
as well as regime, giving the component representation β� = (β ′

�x,β�q
)′

.
A word on assumptions: Because CF-II is our preferable method, we list only

the assumptions for consistency and asymptotic distributions of CF-II in the main
paper, and relegate the counterparts for CF-I to Section SD.2 of the Supplementary
Material.

2. INCONSISTENCY OF KST’S STR ESTIMATOR

This section begins with a review of the STR estimator in KST, followed by
a simple example to show its inconsistency with an accompanying analysis
and discussion. To simplify the development, we assume the data are randomly
sampled in this section.

2.1. Review of KST’s STR Estimator

KST assume in the first-stage regression,

x = �′
xz+ vx,

q = π ′z+ vq,
(6)

where E [vx|z] = 0, E
[
vq|z
]= 0, and

(
u,vq

) |z ∼ N (0,(σ 2,ρσ ;ρσ,1)) with ρ �= 0
due to the endogeneity of q.1 KST also impose the following key assumption to
simplify their discussion.

Assumption K: x = x, and vx ⊥ 1(q ≤ γ0)|z.

1In this formulation, it is only required that E
[
u|vq

]
be linear in vq, but vq ∼N (0,1) is necessary. Also, q = π ′z+vq

with vq ⊥ z and vq ∼ N (0,1) implies that q follows a (mean) mixture normal distribution with the density∫
φ
(
π ′z,1

)
dFz (z), where φ

(
μ,σ 2

)
is the normal density with mean μ and variance σ 2, and Fz (z) is the cdf of z.
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Assumption K excludes q as a regressor; otherwise, the analysis is more
complicated as detailed below. Under Assumption K,

E[y|z,q ≤ γ0]

= E
[(

β ′
10gx +β ′

10vx
)

1(q ≤ γ0)+ (β ′
20gx +β ′

20vx
)

1(q > γ0)+u|z,q ≤ γ0
]

= β ′
10gx −κ0λ

(
γ0 −π ′

0z
)
,

where gx = �′
x0z, E [vx1(q ≤ γ0)|z,q ≤ γ0] = E [vx|z,q ≤ γ0]1(q ≤ γ0) =

E [vx|z]1(q ≤ γ0) = 0, E [u|z,q ≤ γ0] = E
[
u|z,vq ≤ γ0 −π ′

0z
]= −κ0λ

(
γ0 −π ′

0z
)
,

and κ0 = ρ0σ0. Similarly,

E[y|z,q > γ0] = β ′
20gx +κ0 ·λ(π ′

0z−γ0
)

.

Note here that the conditioning events are q ≤ γ0 and q > γ0 rather than q ≤ γ and
q > γ for an arbitrary γ . As shown at the end of Section SD.1 of the Supplementary
Material, the formulas above cannot be extended to other γ values. When x =(
x′,q
)′

,

E[y|z,q ≤ γ0] = (g′
x,gq

)
β10 −κ10 ·λ(γ0 −π ′

0z
)
,

E[y|z,q > γ0] = (g′
x,gq

)
β20 +κ20 ·λ(π ′

0z−γ0
)
,

(7)

where gq = π ′
0z, and κ�0 = ρ0σ0 +β�q0. To be consistent with KST, we maintain

Assumption K below. Now,

y = [β ′
10gx +κ0 ·λ1

(
γ0 −π ′

0z
)]

1(q ≤ γ0)

+ [β ′
20gx +κ0 ·λ2

(
γ0 −π ′

0z
)]

1(q > γ0)+ e∗, (8)

where we follow the KST notation and define λ1 (·) = −λ(·) and λ2 (·) = λ(−·),
and

e∗ = u−κ0 ·λ1
(
γ0 −π ′

0z
)

1(q ≤ γ0)−κ0 ·λ2
(
γ0 −π ′

0z
)

1(q > γ0) . (9)

In other words, the model becomes a nonlinear threshold regression, and γ can be
estimated by minimizing

Sn (θ,κ) = 1

n

n∑
i=1

{[
yi −β ′

1̂gxi −κ ·λ1
(
γ − ĝqi

)]2
1(qi ≤ γ )

+ [yi −β ′
2̂gxi −κ ·λ2

(
γ − ĝqi

)]2
1(qi > γ )

}
, (10)

where ĝxi = �̂′
xzi and ĝqi = π̂ ′zi with �̂x and π̂ obtained from a first-stage regres-

sion. As usual, we can concentrate on parameter γ , and regress yi on ĝxi1(qi ≤ γ ),
ĝxi1(qi > γ ) and �̂i (γ ) := λ1

(
γ − ĝqi

)
1(qi ≤ γ )+λ2

(
γ − ĝqi

)
1(qi > γ ) to obtain

β̂1 (γ ),β̂2 (γ ) and κ̂ (γ ). Then γ can be estimated by the extremum problem

γ̂ = argmin
γ∈�

Sn (γ ),
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where � = [γ,γ ] is a proper subset of the support of q, and

Sn (γ ) = Sn
(
γ,β̂1 (γ ),β̂2 (γ ),κ̂ (γ )

)
.

Given γ̂ , the parameter β can be estimated by 2SLS/GMMs as in CH. In the small-
threshold-effect framework of Hansen (2000), KST show that γ̂ is n1−2α-consistent
and its asymptotic distribution is based on a functional of two-sided Brownian
motion, under the assumption that both δβ and κ are O

(
n−α
)

with α ∈ (0,1/2).
The terms κ ·λ1

(
γ − ĝqi

)
and κ ·λ2

(
γ − ĝqi

)
in the criterion (10) are CF, as in the

Heckit model. Unfortunately in the present case, they do not take the correct form
as is illustrated in the simple example in the next subsection. When q is exogenous
or κ0 = 0, KST’s STR estimator reduces to the 2SLS estimator of CH which proves
that γ̂ is consistent.

2.2. Inconsistency of STR Estimator γ̂

We consider the case where q is endogenous and to highlight the reason why the
STR estimator is inconsistent, we consider the simple form of model (1) in which

yi = δ01(qi ≤ γ0)+ui,

qi = ziπ0 + vqi,
(11)

with ui = κ0vqi + eui,
(
vqi,eui

)′ ∼ N (0,I2), z ∼ N (0,1) independent of
(
vq,eu

)
,2

and γ0 = 0. In other words, in model (1), x = 1, β20 = 0 is known, δβ = δ0, δσ = 0,
and there is only one instrument. For the analysis of γ̂ consistency it is immaterial
whether π0 is known or is consistently estimated. So here, we simply assume that
π0 = −1 is known.

The extremum criterion (10) is now

Sn (γ,δ,κ) = 1

n

n∑
i=1

[
yi − δ1(qi ≤ γ )−κλ

γ

1i1(qi ≤ γ )−κλ
γ

2i1(qi > γ )
]2

, (12)

where λ
γ

1i = λ1 (γ + zi) and λ
γ

2i = λ2 (γ + zi). Assume that the unknown parameters
(γ,δ,κ)′ lie in a compact set with their true value in the interior. By a Glivenko–
Cantelli theorem, Sn (γ,δ,κ) converges uniformly to

S (γ,δ,κ) = E
[(

yi − δ1(qi ≤ γ )−κλ
γ

1i1(qi ≤ γ )−κλ
γ

2i1(qi > γ )
)]2

.

Define centered versions of Sn and S as

Qn (γ,δ,κ) = Sn (γ,δ,κ)−Sn (γ0,δ0,κ0) (13)

2As emphasized in Yu (2013), although in ELR, we can linearly project xi on zi in the first step even if E [xi|zi] is
nonlinear, in CH’s framework of ETR, we must nonetheless regress xi on zi (i.e., obtain E [xi|zi]) in the first step to
consistently estimate γ . Accordingly, it is critical to assume E

[
vq|z
]= 0 rather than E

[
zvq
]= 0; making z independent

of vq is a strengthening of E
[
vq|z
]= 0.
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Figure 1. γ ∗ As a function of κ0 ∈ [−2,2] for δ0 = ±0.5, ±1, ±2

and

Q(γ,δ,κ) = S (γ,δ,κ)−S (γ0,δ0,κ0),

where recentering Sn and S ensures that Qn (γ0,δ0,κ0) = 0 = Q(γ0,δ0,κ0). Then
by Theorem 2.1 of Newey and McFadden (1994), we need only show that
argmin

γ∈�

min
δ,κ

Q(γ,δ,κ) = γ0.

To simplify notation, we denote the pseudo-true value of γ by γ ∗ so that
argminγ Q

(
γ,δγ ,κγ

)= γ ∗, where
(
δγ ,κγ

)
is the concentrated value of (δ,κ) given

γ . The concentrated objective function Q
(
γ,δγ ,κγ

)
is symmetric about γ0, so we

examine only γ ∈ [γ,γ0], that is, we let the parameter space be � = [γ,γ0]. In
Section SD.1 of the Supplementary Material, we derive the formula of Q(γ,δγ ,κγ )

and show that as long as κ0/δ0 > 0.587, irrespective of whether δ0 is positive or
negative, γ ∗ < 0 = γ0; we also discuss the case where κ0 and δ0 are known in
Section SD.1 of the Supplementary Material.

Figure 1 shows γ ∗ as a function of κ0 ∈ [−2,2] for δ0 = ±0.5, ± 1, ± 2. First
of all, γ ∗(δ0,κ0) = γ ∗(−δ0, − κ0) because Q

(
γ,δγ ,κγ

)
remains the same when

(δ0,κ0) changes to (−δ0, −κ0). Obviously, γ̂ is consistent only if κ0/δ0 ≤ 0.587. As
a result, there does not exist a κ0 such that γ̂ is consistent for all δ0 �= 0, or the κ0 that
makes γ̂ consistent uniformly in δ0 �= 0 is 0. In other words, only if q is exogenous
is the KST estimator consistent for any δ0 �= 0. Even when κ0/δ0 < 0.587, γ̂

may still be inconsistent. In the third row of Figure 1, we show Q
(
γ,δγ ,κγ

)
as

a function of γ when δ0 = 2, and κ0 = 1.174,1.108, and 1.107. Indeed, when
κ0 = 1.174 = 0.587δ0, dQ

(
γ,δγ ,κγ

)
/dγ |γ=γ0 = 0, but argminγ Q

(
γ,δγ ,κγ

) =
−0.553 < 0. The case where κ0 = 1.108 is marginal and Q

(
γ,δγ ,κγ

) |γ=−0.45 =
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Q
(
γ,δγ ,κγ

) |γ=0. When κ0 = 1.107, Q
(
γ,δγ ,κγ

) |γ=−0.45 > Q
(
γ,δγ ,κγ

) |γ=0 = 0
and then argminγ Q

(
γ,δγ ,κγ

)= 0, as is evident in the final panel of Figure 1.
The arguments above provide a possible explanation for why the simulations

in KST work well. The setup above is a special case of their data generating
processes (DGPs). Specifically, in our setup, their x2i = 1, x1i is missing and
qi = −zi + vqi (rather than 2 + zi + vqi). In our notation, they set δ0 = 1,2,3 and
κ0 = 0.053,0.316,0.634. Obviously, their κ0’s are all relatively small compared to
δ0; this parameter setting is the reason why their simulation based estimates of γ̂

appear unbiased.
In Section SD.1 of the Supplementary Material, we point out the key problems in

KST’s consistency proof using the framework of our simple example. Basically,
they miss two terms in their calculation of the probability limit of the objective
function. When κ is small, these two terms are dominated, so the minimizer of the
limit objective function is still γ0. But when κ is large, these two terms are not
neglectable, so the minimizer is different from γ0. We also show that we cannot
modify KST’s objective function (pursuing their approach) to obtain a consistent
estimator of γ .

CMT suffer a similar problem as KST, where they replace λ
γ

�i by some functions
derived from copula theory. The problem here is similar to that of KST, that is,
they calculate E[y|z,q ≤ γ ] and E[y|z,q > γ ] rather than E[y|z,q]. The good
performances of CMT’s estimators in their simulations (even in the misspecified
scenarios) are also attributed to the large threshold effects compared to the
endogeneity levels in their DGPs.

2.3. Discussion

As emphasized in Section 3.3 of Yu (2015), conditional moment restrictions rather
than orthogonality conditions must be used to consistently estimate γ . Given that
KST’s estimation is indeed based on the conditional mean E[y|z,q ≤ γ0] and
E[y|z,q > γ0], a natural question is why KST’s estimator is inconsistent. The
key point here is that when the objective function takes the form of a sum of
squares (like in KST), the conditioning set in the conditional mean on which
the objective function is based cannot depend on the unknown parameter to
achieve a consistent estimator. This phenomenon emerges regardless of whether
the parameter is nonregular (like γ ) or not (like a mean). We here use a simple
example to illustrate this point.

Suppose y follows the exponential distribution, and we want to estimate its mean
θ0 = 1. It is easy to see that for any x ∈ (0,∞),

E [y|y ≤ x] =
∫ x

0
y

e−y/θ0

θ0
(
1− e−x/θ0

)dy = θ0 − x
e−x/θ0

1− e−x/θ0
,

E [y|y > x] =
∫ ∞

x
y

e−y/θ0

θ0e−x/θ0
dy = θ0 + x,

(14)
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Figure 2. S1 (θ) and S2 (θ)

which certainly hold when x = θ0, so it is natural to estimate θ by

S1n (θ) = 1

n

n∑
i=1

(
yi − θ + θ

e−1

1− e−1

)2

1(yi ≤ θ)+ 1

n

n∑
i=1

(yi − θ − θ)2 1(yi > θ) .

The probability limit of S1n (θ) is

S1 (θ) = E

[(
y− 1−2e−1

1− e−1
θ

)2

1(y ≤ θ)

]
+E

[
(y−2θ)2 1(y > θ)

]
with y following the standard exponential distribution. As shown in Figure 2,
S1 (θ) is minimized at around 1.24, different from θ0.3 On the other hand, if the
conditioning sets do not depend on θ , say, {y ≤ 1} and {y > 1}, then

E [y|y ≤ 1] = θ0 − e−1/θ0

1− e−1/θ0
and E [y|y > 1] = 1+ θ0, (15)

and we can set the objective function as

S2n (θ) = 1

n

n∑
i=1

(
yi − θ + e−1/θ

1− e−1/θ

)2

1(yi ≤ 1)+ 1

n

n∑
i=1

(yi −1− θ)2 1(yi > 1) .

3Of course, the above estimation approach need not always generate an inconsistent estimator. For example, if
we replace the standard exponential distribution by the standard uniform distribution and use E [y|y ≤ θ ] = θ

2 and
E [y|y > θ] = 1+θ

2 , θ ∈ (0,1), to identify θ0 = 1
2 , it indeed works. Actually, as shown in Section 2.2, when the

endogeneity level is relatively low compared to the threshold effect, KST’s estimator also converges to the true
γ0. However, because the true DGP is unknown, we cannot use these estimators without discretion or additional
information.
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From Figure 2, the probability limit of S2n (θ),

S2 (θ) = E

[(
y− θ + e−1/θ

1− e−1/θ

)2

1(y ≤ 1)

]
+E

[
(y−1− θ)2 1(y > 1)

]
=: S21 (θ)+S22 (θ) ,

is indeed minimized at θ0 since both S21 (θ) and S22 (θ) are minimized at θ0.
KST try to calculate E[y|z,q ≤ γ0] and E[y|z,q > γ0] whose conditioning sets

depend on γ0; this is why their estimator of γ may not be consistent. If we make
the conditioning set independent of γ0, for example, replacing q ≤ γ0 by q ∈ � or
q ∈R, then we can indeed get a consistent estimator. In KST’s setup, suppose x ∈ z
and only q is endogenous; then

E[y|z,q ∈ �] = β ′
10xP

(
q ≤ γ0|z,γ ≤ q ≤ γ

)
+β ′

20xP
(

q > γ0|z,γ ≤ q ≤ γ
)

+κ0E

[
vq|z,γ ≤ q ≤ γ

]
= β ′

10x


(
γ0 −π ′

0z
)−


(
γ −π ′

0z
)



(
γ −π ′

0z
)−


(
γ −π ′

0z
) +β ′

20x


(
γ −π ′

0z
)−


(
γ0 −π ′

0z
)



(
γ −π ′

0z
)−


(
γ −π ′

0z
)

+κ0

φ
(
γ −π ′

0z
)

−φ
(
γ −π ′

0z
)



(
γ −π ′

0z
)−


(
γ −π ′

0z
),

where the last equality is from q = π ′z + vq and vq ∼ N (0,1). The resulting
least square estimator of γ is

√
n consistent (rather than n consistent) because the

objective function is smooth in γ . Letting γ = −∞ and γ = ∞, we get

E[y|z] = E[y|z,q ∈ R] = β ′
10x


(
γ0 −π ′

0z
)+β ′

20x
(
1−


(
γ0 −π ′

0z
))

,

and a
√

n-consistent estimator can also result from this conditional mean. When
x is also endogenous, the analysis is much messier even if we assume vx ⊥ vq|z
(which strengthens KST’s assumption vx ⊥ 1(q ≤ γ0)|z). This is because x = �′

xz+
vx, so

E[y|z,γ ≤ q ≤ γ ]

= β ′
10

(
�′

x0z
)

P
(

q ≤ γ0|z,γ ≤ q ≤ γ
)

+β ′
20

(
�′

x0z
)

P
(

q > γ0|z,γ ≤ q ≤ γ
)

+E

[
β ′

10vx1(q ≤ γ0)|z,γ ≤ q ≤ γ
]
+E

[
β ′

20vx1(q > γ0)|z,γ ≤ q ≤ γ
]

+κ0E

[
vq|z,γ ≤ q ≤ γ

]
,

where the terms involving vx will not disappear.
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Note that KST’s estimation is inspired by Heckman (1979). In the Heckit model
(5), we note that d = 1(z′γ + v > 0) is observable, whereas the conditioning
events 1(q ≤ γ0) and 1(q > γ0) in KST’s estimation are unobservable. Estimation
is based on E [y|d = 1,x,z], that is, the conditioning set does not depend on
any unknown parameter, which results in consistent estimation of β. Similarly,
our CF-I is based on E[y|z,q] and CF-II is based on E[y|z,x], that is, neither
conditioning set depends on γ0; this is why our two CF estimators are consistent.
Compared with CF-I, KST integrate out q on a range depending on γ0 in E [y|z,q]
(or project the q dimension onto the two indicator functions 1(q ≤ γ0) and
1(q > γ0)).

In Section SD.1 of the Supplementary Material, we provide more discus-
sion on why we cannot include unknown parameters in the conditioning set of
M-estimation to generate consistent estimators by comparing M estimators and Z
estimators in the general sense.

3. TWO CONTROL FUNCTION APPROACHES FOR γ

In this section, we propose two CF approaches to estimate γ . In both approaches,
we allow x and q to be endogenous, treating the exogenous q specification as a
special case. First, we introduce some notation for future use. Define Fi−1 as the
sigma field generated by

{
zi−j,xi−1−j,ui−1−j : j ≥ 0

}
; then E [ui|Fi−1] = 0, that is,

{ui}n
i=1 is a martingale difference sequence.4 When the sample is random, we can

just replace Fi−1 by zi. Suppose the first-stage regression is written in stacked
form as

xi = �′zi +vi,

with components xi and qi taking the form (6) so that � = (�x,π) and vi =(
v′

xi,vqi
)′

, where E [vi|Fi−1] = 0. Denote the estimates of � and vi as �̂ = (�̂x,π̂
)

and v̂i =
(̂
v′

xi,̂vqi
)′

, and that of gi = �′zi by ĝi = �̂′zi. For exogenous covariates in
xi such as 1, the corresponding components in � are known and the corresponding
components of vxi are zero since such covariates are included in zi. In the two
approaches, we use only the first-stage error terms and residuals for endogenous
regressors; to avoid introducing further notation, we still use vi and v̂i to denote
such error terms and residuals. To unify the notations in the two approaches, define
θ = (θ ′,κ ′)′, where θ = (γ,β ′)′ is the parameter of interest, and κ collects all other
nuisance parameters which may be different in the two CF approaches. We will also
use the same notations x̆i (and̂̆xi) for the regressors and β� for the slope parameters
in the two approaches although they may be different. As mentioned in the Section
1, CF-II is our favorite approach, so CF-I is introduced here only for completeness
and all its properties such as consistency, asymptotic distribution and LR inference
are provided in Section SD.2 of the Supplementary Material.

4In CH, there is a typo in the definition of Fi−1; they miswrite xi−1−j as xi−j.
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3.1. Definition of the Two Control Function Estimators for γ

In the first CF approach (labeled CF-I), assume E [vi|Fi−1,qi] = E
[
vi|vqi

]
and

E [ui|Fi−1,qi] = E
[
ui|vqi

]
. Then

E [yi|Fi−1,qi]

= {β ′
1

(
�′zi

)+E
[
β ′

1vi|vqi
]+σ1E

[
ui|vqi

]}
1(qi ≤ γ0)

+{β ′
2

(
�′zi

)+E
[
β ′

2vi|vqi
]+σ2E

[
ui|vqi

]}
1(qi > γ0),

where conditioning also on qi rather than only on the exogenous variables is
because yi is nonlinear in qi, and to lighten notational burden the subscript 0 is
only added to γ to indicate the true value, not to other parameters whenever this
does not create confusion. If we assume further that E

[
vi|vqi

] = g1
(
vqi;ϕ

)
and

E
[
ui|vqi

]= g2
(
vqi;κ

)
for some possibly nonlinear functions g1 and g2 with ϕ and

κ being unknown parameters, then

E [yi|Fi−1,qi] = [β ′
1gi +β ′

1g1
(
vqi;ϕ

)+σ1g2
(
vqi;κ

)]
1(qi ≤ γ0)

+ [β ′
2gi +β ′

2g1
(
vqi;ϕ

)+σ1g2
(
vqi;κ

)]
1(qi > γ0),

and the error term

e0
i = [β ′

1

(
vi −g1

(
vqi;ϕ

))+σ1
(
ui −g2

(
vqi;κ

))]
1(qi ≤ γ0)

+ [β ′
2

(
vi −g1

(
vqi;ϕ

))+σ2
(
ui −g2

(
vqi;κ

))]
1(qi > γ0)

=: e1i1(qi ≤ γ0)+ e2i1(qi > γ0),

where E
[
e0

i |Fi−1,qi
] = 0, and we use the superscript 0 in e0

i to emphasize that it
is γ0 appearing in the definition of e0

i . We can estimate γ by minimizing

Sn (θ) =
n∑

i=1

[
yi −

(
β ′

1̂gi +β ′
1g1
(̂
vqi;ϕ

)+σ1g2
(̂
vqi;κ

))
1(q ≤ γ )

−(β ′
2̂gi +β ′

2g1
(̂
vqi;ϕ

)+σ2g2
(̂
vqi;κ

))
1(qi > γ )

]2
, (16)

where κ = (ϕ′,κ ′,σ1,σ2
)′ =:

(
ϕ′,κ ′,σ ′)′ collects the nuisance parameters in θ .

In the second CF approach (labeled CF-II), assume that E [ui|Fi−1,xi] =
E [ui|vi]. Then

E [yi|Fi−1,xi] = (x′
iβ1 +σ1E [ui|vi]

)
1(qi ≤ γ0)+ (x′

iβ2 +σ2E [ui|vi]
)

1(qi > γ0),

where we condition also on xi besides Fi−1 and qi as in CF-I. If assume further
that E [ui|vi] = g3 (vi;ψ) for some possibly nonlinear function g3 with ψ being
unknown parameters, then

E [yi|Fi−1,xi]

= (x′
iβ1 +σ1g3 (vi;ψ)

)
1(qi ≤ γ0)+ (x′

iβ2 +σ2g3 (vi;ψ)
)

1(qi > γ0),
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and the error term

e0
i = σ1 (ui −g3 (vi;ψ))1(qi ≤ γ0)+σ2 (ui −g3 (vi;ψ))1(qi > γ0)

=: e1i1(qi ≤ γ0)+ e2i1(qi > γ0), (17)

where E
[
e0

i |Fi−1,xi
]= 0. Then γ can be estimated by minimizing

Sn (θ)

=
n∑

i=1

[
yi −

(
x′

iβ1 +σ1g3 (̂vi;ψ)
)

1(qi ≤ γ )− (x′
iβ2 +σ2g3 (̂vi;ψ)

)
1(qi > γ )

]2
,

(18)

where κ = (ψ ′,σ1,σ2
)′ =:

(
ψ ′,σ ′)′.

CH and KST use the idea of CF-I, while the classical CF approach in ELR uses
the idea of CF-II, that is, conditioning on all endogenous regressors and exogenous
instruments. In other words, CF-II is the genuine CF approach in the literature
where the endogeneity is controlled by E [ui|vi] as the regressor xi includes two
components, zi and vi, and only vi is correlated with ui. We state CF-I here to show
the correct form of CFs in the KST approach. In ELR, using CFs and using moment
conditions are equivalent. However, in ETR, they are different (see the Sections 1
and 2.3 for the differences between GMM estimators and M-estimators like CF-I
and CF-II). CF-I imposes assumptions on both E [ui|Fi−1,qi] and E [vi|Fi−1,qi],
whereas CF-II imposes no assumptions on E [vi|Fi−1,qi] but only assumptions on
E [ui|Fi−1,xi,qi]. Of course, rigorously speaking, these two groups of assumptions
do not nest each other.

Because CF-II is based on E [yi|Fi−1,xi,qi], whereas CF-I is based on
E [yi|Fi−1,qi], CF-II controls for more endogeneity effects than CF-I (when xi = xi

and only qi is endogenous, they are the same). So CF-II is indeed more appealing
from a theory perspective. Actually, CF-I projects all endogeneity on the vqi

dimension, that is, these two approaches are connected. Specifically,

E [yi|Fi−1,qi]

= E [E [yi|Fi−1,xi,qi] |Fi−1,qi]

= E
[(

x′
iβ1 +σ1g3 (vi;ψ)

)
1(qi ≤ γ0)

+(x′
iβ2 +σ2g3 (vi;ψ)

)
1(qi > γ0) |Fi−1,qi

]
= [β ′

1

(
�′zi

)+β ′
1E
[
vi|vqi

]+σ1E
[
g3 (vi;ψ) |vqi

]]
1(qi ≤ γ0)

+ [β ′
2

(
�′zi

)+β ′
2E
[
vi|vqi

]+σ2E
[
g3 (vi;ψ) |vqi

]]
1(qi > γ0)

= [β ′
1gi +β ′

1g1
(
vqi;ϕ

)+σ1g2
(
vqi;κ

)]
1(qi ≤ γ0)

+ [β ′
2gi +β ′

2g1
(
vqi;ϕ

)+σ2g2
(
vqi;κ

)]
1(qi > γ0), (19)

where we need strengthen E[vi|Fi−1,qi] = E[vi|vqi] to E[g3(vi;ψ)|Fi−1,qi] =
E[g3(vi;ψ)|vqi], and note that E[g3(vi;ψ)|vqi] = E[E[ui|vi]|vqi] = E[ui|vqi] =
g2(vqi;κ) by the law of iterated expectation.
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We now show the consistency of the CF-II estimator of γ based on (18) to
formalize our identification scheme. First, the following assumptions are imposed.
Note here that we label our assumptions as “C-II” since the label “C-I” has been
used for CF-I in Section SD.2 of the Supplementary Material.

Assumption C-II:

1. {wi}n
i=1 := {(yi,x′

i,qi,z′
i

)′}n
i=1 are strictly stationary and ergodic; θ ∈ � with �

being compact;
(
β ′

10,σ10
)′ �= (β ′

20,σ20
)′

.
2. E [vi|Fi−1] = 0, and E [ui|Fi−1,xi] = E [ui|vi] = g3 (vi;ψ0).
3. E

[
ziz′

i

]
> 0, E

[‖zi‖2
]
< ∞ and E

[‖vi‖2
]
< ∞.

4. E
[
g3 (vi;ψ0)

2]< ∞ and E

[(
e0

i

)2]
< ∞ .

5. For all γ ∈ �, f (γ ) ≤ f < ∞, f (γ ) is continuous at γ0 and f := f (γ0) > 0,

P
(

q < γ
)

> 0 and P(q > γ ) > 0, where f (·) is the density function of q.

6. g3 (v;ψ) is a Lipschitz function in each of its arguments, that is, there is a
positive constant C < ∞ such that

‖g3 (v1;ψ)−g3 (v2;ψ)‖ ≤ C‖v1 −v2‖,

‖g3 (v;ψ1)−g3 (v;ψ2)‖ ≤ C (v)‖ψ1 −ψ2‖,

with E
[
C (v)2

]
< C.

7. P
(
x′β� +σ�g3 (v;ψ) �= x′β�0 +σ�0g3 (v;ψ0) |q

)
> 0 for any θ� �= θ�0 and any q

value in its support, where θ� = (β ′
�,σ�,ψ

′)′.
Condition C-II.1 covers weakly dependent data beyond random samples but

excludes time trends and integrated processes; it also assumes the existence
of threshold effects in the conditional mean and/or conditional variance of y.
C-II.2 collects the nonlinear endogeneity assumptions which imply the correct
specification of the conditional mean in the structural equation and reduced form.
C-II.3 implies the consistency of the first-stage estimator �̂. C-II.4 is implied
by E

[
u2

i

]
< ∞ but we express it in this way for convenience. C-II.5 includes

some regularity conditions on f (·); especially, it requires the threshold variable
to have a continuous distribution and excludes the possibility that γ0 falls on the
boundary of q’s support. C-II.6 guarantees that replacing vi by v̂i will not affect
the consistency of γ̂ . C-II.7 is the key assumption for identification of γ when v̂i is
replaced by vi, for example, it excludes the case where g3 (v;ψ) takes a linear form
in ψ and implicitly assumes δ′

βE
[
xix′

i|q
]
δβ > 0. It guarantees the uniqueness of

argminθplim(Sn (θ)) at θ0; it is actually the form of the identification assumptions
in nonlinear least squares (see, e.g., Section 2.2.2 of Newey and McFadden, 1994)
required in nonlinear TR models, where linear and nonlinear TR models refer to
the models where the conditional mean of yi in each regime is linear and nonlinear
in parameters, respectively.

Lemma 1. Under Assumption C-II, θ̂
p−→ θ0.
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3.2. Identification of γ and Linear Endogeneity Forms

From the analysis in Section 3.1, we can see three drawbacks of the nonlinear
specification of endogeneity forms. First, different from linear TR models, it is
hard to find general primitive conditions for consistency of γ̂ , that is, we need
check C-II.7 case by case. Second, there is typically no guideline for the nonlinear
specification and the functional form of g3 (·;·) is often arbitrary. On the other
hand, linear TR models introduce nonlinearity into the system only through the
threshold effect, thereby providing a class of parsimonious models; and, as shown
in Petruccelli (1992), linear threshold autoregressive models can approximate
a general class of time series processes (e.g., exponential autoregressive and
invertible bilinear processes) almost surely. In other words, use of the linear TR
model reduces the need to introduce nonlinearity in each regime. Third, and most
importantly, optimization when the endogeneity takes nonlinear forms can be
troublesome in practice. In particular, we need first concentrate on

(
ψ ′,γ

)′
and

then on γ to find γ̂ ; and when the dimension of ψ is large, numerical minimization
is burdensome. These three drawbacks go some way to explain why the literature
seldom considers nonlinear TR models.

To ease discussion and provide the most practical estimation procedures, we
assume that endogeneity takes linear forms in both approaches. In CF-I, we further
assume that E

[
vi|vqi

]= ϕvqi and E
[
ui|vqi

]= κvqi. Then

E [yi|Fi−1,qi] = [β ′
1gi +κ1vqi

]
1(qi ≤ γ0)+ [β ′

2gi +κ2vqi
]

1(qi > γ0), (20)

where we note that when q ∈ x and is endogenous, the last element of ϕ is 1, and
κ� = β ′

�ϕ +σ�κ . Different from the nonlinear endogeneity case, ϕ and κ cannot be
identified separately. In fact, we must exclude the cases where g1 (·;·) and g2 (·;·)
take linear forms in (16) to identify ϕ and κ . Since our main interest lies in θ =(
γ,β ′)′, absorbing ϕ and κ in the nuisance parameter κ = (κ1,κ2)

′ is not critical.
Now, γ is estimated by minimizing

Sn (θ) =
n∑

i=1

[
yi −

(
β ′

1̂gi +κ1̂vqi
)

1(q ≤ γ )− (β ′
2̂gi +κ2̂vqi

)
1(qi > γ )

]2
:=

n∑
i=1

[
yi −̂̆x′

iβ11(qi ≤ γ )−̂̆x′
iβ21(qi > γ )

]2
, (21)

where θ = (θ ′,κ ′)′ =: (γ,θ ′)′, θ ′ = (β ′,κ ′) =:
(
β

′
1,β

′
2

)
with β

′
� = (β ′

�,κ�

)
, and̂̆x′

i = (̂g′
i,̂vqi

)
is the generated regressor of x̆′

i = (g′
i,vqi

)
.

Although the objective function (21) is based on the conditional mean
E [yi|Fi−1,qi], (21) carries some threshold effect information in the conditional
variance because δκ := κ1 −κ2 = δ′

βϕ + δσ κ involves δσ . In contrast, the usual LS
estimator (without endogeneity) and CH’s 2SLS estimator (with endogenous xi

but exogenous qi) explore only the threshold effect information in the conditional
mean even though a threshold effect in the conditional variance may be present
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(i.e., δσ �= 0). Note that, were δσ = 0, we would still have κ1 �= κ2 unless ϕ = 0.
But when qi ∈ zi, ϕ = 0 and κ = 0, so we return to the framework of CH. Also,
different from KST, κ is assumed to be fixed rather than to shrink to zero (i.e., we
allow for strong endogeneity) and vqi need not follow N (0,1).

In CF-II, we assume that E [ui|vi] = ψ ′vi = ψ ′
xvxi +ψqvqi with ψ ′ = (ψ ′

x,ψq
)

.
Then

E [yi|Fi−1,xi] = (x′
iβ1 +σ1ψ

′vi
)

1(qi ≤ γ0)+ (x′
iβ2 +σ2ψ

′vi
)

1(qi > γ0) . (22)

So γ can be estimated by minimizing

Sn (θ) =
n∑

i=1

[
yi −

(
x′

iβ1 +σ1ψ
′̂vi
)

1(qi ≤ γ )− (x′
iβ2 +σ2ψ

′̂vi
)

1(qi > γ )
]2

=:
n∑

i=1

[
yi −

(
x′

iβ1 +κ ′
1̂vi
)

1(qi ≤ γ )− (x′
iβ2 +κ ′

2̂vi
)

1(qi > γ )
]2

=:
n∑

i=1

[
yi −̂̆x′

iβ11(qi ≤ γ )−̂̆x′
iβ21(qi > γ )

]2
, (23)

where the nuisance parameter κ = (κ ′
1,κ

′
2

)′
with κ� = σ�ψ , β

′
� = (β ′

�,κ
′
�

)
, and̂̆x′

i =(
x′

i,̂v
′
i

)
is the generated regressor of x̆′

i = (x′
i,v

′
i

)
. Note here that we express the

objective function of CF-II in the same format as in CF-I by redefining ̂̆x′
i and

β
′
�. Like (19), we can discuss the relationship between the parameters in CF-I and

CF-II. Now, E
[
ui|vqi

] = E
[
E [ui|vi] |vqi

] = ψ ′ϕvqi, that is, ψ ′ϕ plays the role of
κ in CF-I. So the coefficients of vqi in the conditional mean of ui in these two
approaches (κ in CF-I and ψq in CF-II) are not equal unless either ψx or ϕx is zero,
that is, either xi is exogenous or xi ⊥ qi|Fi−1.

As in CF-I, ψ cannot be identified separately, and the identification of ψ

excludes the linear specification of g3(·;·) in (18); the threshold effect information
in the conditional variance is also explored through δκ := κ1 −κ2 = δσψ ; ψ is fixed,
that is, CF-II also allows for strong endogeneity. Different from CF-I, even if q is
exogenous (i.e., in CH’s setup), the threshold effect information in the conditional
variance is still explored. When q is exogenous, ψ ′vi = ψ ′

xvxi, and we need only
control for the endogeneity of x. If δσ = 0, then κ1 = κ2 and the model is simpler.
As shown in Perron and Qu (2006), the asymptotic distribution of the estimator of
γ based on (23) is not affected when some constraints on the slope parameters in
the two regimes are imposed as long as the true model satisfies these constraints.
The intuition is simple: the constraints can affect only the efficiency (i.e., the
asymptotic variance) of the slope estimator, while as long as the slope estimator is√

n-consistent, the asymptotic distribution of the γ estimator is the same, which
is in turn due to the asymptotic independence between the slope estimator and
the γ estimator. In Section SD.4 of the Supplementary Material, we develop the
asymptotic theory for γ and β estimators when the model satisfies some constraints
such as part of β1 and β2 are the same since such constraints are imposed in our
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simulations and empirical application. The CF-II approach is not considered in the
ETR literature.

As in CMT, we can extend vqi in (20) and vi in (22) to some functions of
them and meanwhile maintain the linear TR forms. To save space, we focus
on CF-II here. For one example, if ui ∼ N (0,1), and

(
ui,v′

i

)′
has a Gaussian

copula, then by Proposition 2 of CMT, E [ui|vi] = ψ∗′v∗
i which reduces to ψ ′vi

when (ui,v′
i)

′ follows a jointly normal distribution, where v∗
i = (v∗

1i, . . . ,v
∗
d−1,i,v

∗
q)

′

with v∗
ji = 
−1(Fvj(vji)), and ψ∗′ = P′� with P′ = Corr(ui,v∗′

i ) and � being the
correlation matrix of v∗

i . For another example, if ui ∼ tνu , and (ui,v′
i)

′ has a t
copula, then E[ui|vi] = ψ∗′v∗

i , where v∗
i = (v∗

1i, . . . ,v
∗
d−1,i,v

∗
qui)

′, v∗
ji = T−1

νu
(Fvj(vji))

with T−1
νu

being the quantile function of tνu will reduce to vji/σj when vji ∼ σjtνu ,
v∗

qui = T−1
νu

(
Fvq

(
vqi
))

, and ψ∗ takes the same form as above.5 In other words,
instead of assuming E [ui|vi] = g3 (vi;ψ), we can assume E [ui|vi] = ψ∗′g3 (vi)

for some nonlinear function g3 implied from copula theory. Now, the analysis in
this paper goes through, just replacing vi (or v̂i) in CF-II by g3 (vi) (or ĝ3 (̂vi))
everywhere. In short, the linear endogeneity forms are not as restrictive as they
might seem to be.

The above extensions require that all components of v are continuous. When
xi contains some discrete regressors, it seems to us that the linear endogeneity
assumption in CF-II is more robust than in CF-I. In such a case, assuming E

[
vi|vqi

]
to be linear in vqi in CF-I seems questionable. For such discrete regressors,
assuming E [xi|Fi−1] = �′zi also seems questionable. This is why CH assumes
E [xi|Fi−1] = g(zi;�) for some possibly nonlinear (e.g., logit or probit) function
of zi. In other words, in such scenarios, we must use an objective function like
(16). On the other hand, assuming E [ui|vi] = ψ ′

xvxi +ψqvqi seems reasonable even
if some components of xi are discrete. When xi is discrete, it is better to replace
vxi by the generalized error of Gouriéroux, Monfort, Renault and Trognon (1987).
For example, if xi ∈ R satisfies the reduced form equation xi = 1(�′

xzi + vxi > 0),
then we can replace vxi in E

[
ui|vxi,vqi

] = ψxvxi + ψqvqi by rxi = xiλ
(
�′

xzi
)−

(1− xi)λ
(−�′

xzi
)
. However, we cannot replace vxi by rxi in CF-I to calculate

E
[
vi|vqi

]
. As in CH, we can also assume the first-stage reduced form is unstable,

E [xi|Fi−1] = �′
1zi1(z1i ≤ ρ) + �′

2zi1(z1i > ρ), and then gi = E [xi|Fi−1] and
vi = xi − E [xi|Fi−1], where �1 − �2 is fixed and z1i is a component of zi.
For all these specifications of E [xi|Fi−1], as long as E [ui|vi] (or E

[
ui|rxi,vqi

]
)

is linear, our consistency proof of γ̂ in CF-II in the next subsection can still
go through if �̂ (or the parameters in the first-stage equation) is

√
n-consistent

5Different from CMT, we calculate E [ui|vi] rather than E [ui|xi]. If we impose similar assumptions on
(
ui,x′

i

)′
rather than

(
ui,v′

i

)′, then we can similarly have E [ui|xi] = ψ∗′x∗
i . However, x∗

i =
(

x∗
1i, . . . ,x

∗
d−1,i,q

∗
i

)
with x∗

ji =

−1

(
Fxj

(
xji
))

or T−1
νu

(
Fxj

(
xji
))

and q∗
i = 
−1

(
Fq (qi)

)
or T−1

νu

(
Fq (qi)

)
, so when Fxj = 
 or Tνu , x∗

ji = xji, and
when Fq = 
 or Tνu , q∗

i = qi, we have the multicollinearity problem given that xji or qi itself is a regressor. Although
Fxj and Fq are unknown so that x∗

i need be estimated, that is, x∗
i and xi are not perfectly multicollinear in finite

samples, they are indeed so asymptotically. As a result, the asymptotic distributions of γ̂ and β̂, which are not stated
in CMT, cannot be well developed. On the other hand, an advantage of CMT’s specification is that no instruments
are required.
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and the asymptotic distribution of γ̂ takes the same form with the meaning of
notations appropriately adjusted.6 Because CF-II is our favored approach and the
linear endogeneity assumption is reasonable in CF-II, we will maintain such an
assumption in CF-II in the rest of the paper. As to CF-I, we also impose the linear
endogeneity assumption to avoid technical difficulties, that is, it is better to assume
the endogenous regressors in xi to be continuous if practitioners wish to use CF-
I. Finally, note that the existing literature such as CH, KST, and CMT does not
explicitly consider discrete xi scenarios.

In the semiparametric framework, we need to replace κ1̂vqi and κ2̂vqi by h1
(̂
vqi
)

and h2
(̂
vqi
)

in CF-I and replace κ ′
1̂vi and κ ′

2̂vi by h1 (̂vi) and h2 (̂vi) (or by
h1x (̂vxi) + h1q

(̂
vqi
)

and h2x (̂vxi) + h2q
(̂
vqi
)
) in CF-II, where h1 and h2 can be

any (smooth) functions. It seems that the first approach does not suffer from the
curse of dimensionality compared with the second approach. Following this paper,
Kourtellos et al. (2022) do the semiparametric extension of CF-I, and their method
may be applied to the extension of CF-II. We will not discuss semiparametric
approaches in this paper because the key advantage of the CF approaches above
is their parametric setup. If the setup does contain nonparametric components
(e.g., E [xi|zi], E

[
vi|vqi

]
, E
[
ui|vqi

]
and E [ui|vi]), nonparametric estimators such

as the IDKE in YP and YLP seem preferable because they do not require any
instruments.7 In summary, the parametric setup in this paper is not only preferable
practically (not requiring series expansion on h1

(̂
vqi
)

and h2
(̂
vqi
)

as in Kourtellos
et al. (2022)), but also preferable theoretically when instruments are employed
(given that nonparametric methods do not require instruments).

Because we are interested only in γ in this section, we can concentrate out β and
κ in both approaches to get a concentrated objective function Sn (γ ). Specifically,
for any γ , let Y, X̂γ , and X̂⊥ denote the matrices of stacked vectors yi,̂̆x′

i1(qi ≤ γ ),

and̂̆x′
i1(qi > γ ) in both approaches. Then Sn (γ ) is the LS residual sum of squared

errors from a regression of Y on X̂γ and X̂⊥. Our two CF estimators for γ are the
minimizers of the sum of squared errors:

γ̂ = argmin
γ∈�

Sn (γ ) .

There is an interval of γ , [γ̂−,γ̂+), minimizing Sn (γ ). Following Yu (2012; 2015),
we therefore take the mid-point of the interval as our estimator of γ because the
mid-point γ̂−+γ̂+

2 is more efficient than the left-endpoint γ̂− in most cases.

6Boldea, Hall and Han (2012) and Hall, Han and Boldea (2012) also study the unstable reduced form in the context
of structural change models and allow both fixed and shrinking (at potentially different rates from n−α ) �1 −�2,
but note that in structural change models, the threshold variable is the time index and so it cannot be endogenous
(see also Perron and Yamamoto, 2014, for related discussions). Note also that although the form of γ̂ ’s asymptotic
distribution will not change, the form of β̂’s asymptotic variance matrix critically depends on the formation of the
first-stage regression.
7Of course, if dim(vi) < dim(xi), CF-II suffers less curse of dimensionality because the IDKE needs to estimate
E [yi|xi,qi = γ±].
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In the following two subsections, we will discuss the asymptotic properties of
the CF-II estimator of γ above. Compared with usual threshold regression estima-
tion such as that of Chan (1993) and Hansen (2000), the only new component in
the objective function (23) is the presence of the generated regressors from the first
step.

3.3. Asymptotic Theory for γ̂

First, define some further notation to ease the exposition. Let e0
i = e1i1(qi ≤ γ0)+

e2i1(qi > γ0) with e�i = σ�

(
ui −ψ ′vi

)
. an = n1−2α , and δn := β1 −β2 =

(
δ′
β,δ

′
κ

)′
.

Write M = E
[
x̆ix̆′

i

]
, Mγ = E

[
x̆ix̆′

i1(qi ≤ γ )
]
, M0 = Mγ0 , Dγ = E

[
x̆ix̆′

i|qi = γ
]
,

D0 = Dγ0 , V−
γ = E

[
x̆ix̆′

ie
2
1i|qi = γ−], V+

γ = E
[
x̆ix̆′

ie
2
2i|qi = γ+], V−

0 = V−
γ0

and
V+

0 = V+
γ0

.
We impose the following assumptions which somewhat strengthen Assumption

C-II so notations such as wi and f (·) used there apply here. Like the label “C-II,”
we use the label “II” for our assumptions here since the label “I” has been used for
CF-I in Section SD.2 of the Supplementary Material.

Assumption II:

1. {wi}n
i=1 are strictly stationary and ergodic with ρ mixing coefficients that

satisfy
∑∞

m=1 ρ
1/2
m < ∞; γ ∈ � = [γ,γ ] with � being compact and γ0 is in

the interior of �.
2. E [vi|Fi−1] = 0, and E [ui|Fi−1,xi] = E [ui|vi] = ψ ′vi.
3. E

[
ziz′

i

]
> 0, E

[‖zi‖4
]
< ∞, and E

[‖vi‖4
]
< ∞.

4. E

[∥∥x̆i

∥∥4
]

< ∞ and E

[∥∥x̆ie0
i

∥∥4
]

< ∞.

5. For all γ ∈ �, E
[∥∥x̆i

∥∥4 |qi = γ
]

≤ C and E

[∥∥x̆ie0
i

∥∥4 |qi = γ
]

≤ C for some

0 < C < ∞.
6. For all γ ∈ �, f (γ ) ≤ f < ∞.
7. f (γ ),Dγ , and V±

γ are continuous at γ = γ0.

8. δn =
(
δ′
β,δσ

)′ =
(

c′
β,cσ

)′
n−α = cn−α with c �= 0 and 0 < α < 1/2.

9. c′D0c > 0,c′V±
0 c > 0 and f > 0, where c =

(
Id 0
0 ψ

)
c.

10. M > Mγ > 0 for all γ ∈ �.

Conditions II.1,8 strengthen C-II.1, II.2-4 strengthen C-II.2-4 when xi includes
1, II.6,7,9,10 imply C-II.5 (especially, II.10 implies that � cannot include the
boundary region of q’s support), II.2,3 imply C-II.6 when � is compact, and II.9,10
play the role of (but are not limited to) C-II.7 in the linear endogeneity scenario.
This is understandable because Assumption II is used to derive the asymptotic
distribution of γ̂ while Assumption C-II is only used to prove its consistency
(although in the nonlinear endogeneity scenario). We next provide more expla-
nation on the conditions in Assumption II beyond those in Assumption C-II. The
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assumptions on {wi}n
i=1 in II.1 imply the same assumptions on

{(
zi,x̆i,vi,ui

)}n

i=1
because the latter is a function of the former. II.3 implies �̂ is Op

(
n−1/2

)
. II.4-

10 parallel Assumption 1.4-1.10 of CH, and we indicate the differences below.

Note that II.3 implies E
[∥∥x̆i

∥∥4
]

< ∞ in II.4, but to make our assumptions

comparable with CH, we still state this explicitly in II.4. Note also that II.4,5

imply E

[∥∥zie0
i

∥∥4
]

< ∞, and supγ∈� E

[∥∥zie0
i

∥∥4 |qi = γ
]

≤ C, which are used in

our proof. Different from CH, II.7 allows regime-dependent heteroskedasticity.
II.8 is the small threshold effect assumption in the original TR model (1), where
the quantity c represents the threshold effect and among which cβ is the quantity
required in CH; it implies small threshold effect assumptions in the augmented
TR model defined by (22), where c in II.9 represents the threshold effect and
is the quantity required in this paper. II.7,9 implicitly assume that Dγ and V±

γ

are well defined in a neighborhood of γ0. The assumption c′D0c > 0 in II.9
excludes the continuous threshold regression (CTR) of Chan and Tsay (1998) (see
also Hansen, 2017) in the augmented regression. When cσ = 0, the CTR in the
original regression implies the CTR in the augmented regression asymptotically.

Specifically, c′D0c = E

[(
x′cβ

)2 |q = γ0

]
= c′

βE
[
xx′|q = γ0

]
cβ , so the original

CTR implies the augmented CTR. When cσ �= 0, however, even if the original
regression is a CTR, the augmented regression need not be, given that c′D0c =
c2
σE

[(
ψ ′v
)2 |q = γ0

]
is positive in general. Since the discontinuous threshold

regression has more identification information than the CTR, the threshold effects
in conditional variance can actually improve identification power. Also, D0 > 0
implies that dim(zi) ≥ dim(xi) = d. This is because the rank of

D0 = E

[(
xi

vi

)(
x′

i,v
′
i

)∣∣∣∣qi = γ0

]
is the same as the rank of(

Id −Id

0 Id

)
D0

(
Id 0

−Id Id

)
= E

[(
gi

vi

)(
g′

i,v
′
i

)∣∣∣∣qi = γ0

]
,

and thus E
[
gig′

i|qi = γ0
]= �′

E
[
ziz′

i|qi = γ0
]
� > 0 implies dim(zi) ≥ d.

Theorem 1. Under Assumption II,

an (γ̂ −γ0)
d−→ ω · ζ(φ),

where

ω = c′V−
0 c(

c′D0c
)2

f
and ζ(φ) = argmax

r

{
W1(−r)− |r|

2 ,√
φW2(r)− |r|

2 ,

if r ≤ 0,
if r > 0,

with φ = c′V+
0 c/c′V−

0 c and W�(r), � = 1,2, being two independent standard Wiener
processes on [0,∞).
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The density of ζ(φ) is reported in Appendix B of Bai (1997). If δσ = 0, then

c =
(

Id

0

)
cβ is simplified; we can replace the x̆′

i in both D0 and V±
0 by x′

i and c

by cβ , so the endogeneity level ψ does not affect the asymptotic distribution of γ̂ .
From Section SD.2 of the Supplementary Material, the asymptotic distribution of
the CF-I γ̂ takes the same form with ω and φ reinterpreted.

It is helpful to compare the efficiency of the two CF estimators with the
LS estimator without endogeneity. There is no clear result unless some sim-
plifications are assumed. If E

[
x̆ix̆′

ie
2
1i|qi = γ0−

] = E
[
x̆ix̆′

i|qi = γ0
]
E
[
e2

1i

]
and

E
[
x̆ix̆′

ie
2
2i|qi = γ0+

] = E
[
x̆ix̆′

i|qi = γ0
]
E
[
e2

2i

]
, then φ = E

[
e2

2i

]
E

[
e2

1i

] and ω = E

[
e2

1i

]
c′D0cf .

In LS, if E
[
xix′

iu
2
i |qi = γ0±

] = E
[
xix′

i|qi = γ0
]
E
[
u2

i

]
, then φ = σ 2

2
σ 2

1
and ω =

σ 2
1 E
[
u2

i

]
c′
βE[xix′

i|qi=γ0]cβ f
. In Section SD.2 of the Supplementary Material, we show that

it is hard to compare the efficiency of CF-I with LS. However, in CF-II, its value

of φ = σ 2
2

σ 2
1

is the same as that of LS, and its value of ω = σ 2
1 E
[
(ui−ψ ′vi)

2
]

c′D0c′f should be

less than that of LS because E

[(
ui −ψ ′vi

)2]≤ E
[
u2

i

]
and

c′D0c = (c′
β,cσψ ′)( E

[
xix′

i|qi = γ0
]

E
[
xiv′

i|qi = γ0
]

E
[
vix′

i|qi = γ0
]

E
[
viv′

i|qi = γ0
] )( cβ

ψcσ

)

should be larger than c′
βE
[
xix′

i|qi = γ0
]

cβ given that the threshold information on
the conditional variance is also explored (when cσ = 0, they are the same). It is
interesting here to observe that endogeneity actually provides useful information
in CF-II (in the sense that when there is no endogeneity, that is, ψ = 0, both φ

and ω of CF-II are the same as those of LS even without the simplifications at the
beginning of this paragraph); the extra efficiency beyond LS originates from the
extra variables zi.

Interestingly, extra randomness in the generated regressors would not affect the
asymptotic distribution of γ̂ . This is different from the results for usual regularly
estimable parameters (see Theorem 2 or recall the Heckit model). From Yu (2012;
2015), this outcome arises because the extra randomness affects γ̂ only locally so
the effect does not accumulate sufficiently to influence estimation of γ . From the
proof of Theorem 1, when we replace the true regressors x̆′

i by ̂̆x′
i, an extra term

ẽi = r̂′
iκ2 is added to the original error term e0

i , and this extra term is Op(n−1/2),
where r̂′

i = v′
i − v̂′

i = (�̂−�
)′

zi. For regular parameters, a positive proportion of
ẽi would contribute; since

∑n
i=1 ẽi ≈ Op(1), the effect of ẽi would not disappear.

For γ̂ , however, only an order O(1/an) portion of ẽi would contribute; then, since∑n/an
i=1 ẽi ≈ Op(

√
n/an ·1/n) = Op(

√
1/an) = op(1), the effect of ẽi disappears

asymptotically.
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3.4. Likelihood Ratio Tests

As a by-product of estimation, we obtain natural test statistics for hypotheses
concerning γ such as H0 : γ = γ0. As emphasized in Hansen (2000), the following
LR-like statistic has better finite-sample performance than a typical t-like statistic
when the threshold effect is small:

LRn (γ ) = Sn (γ )−Sn (γ̂ )

2η̂2
,

where η̂2 is a consistent estimator of η2 = c′V−
0 c/c′D0c. Also, LRn (γ ) avoids

having to estimate f in the asymptotic distribution of γ̂ , as is apparent in the
following result (see also Theorem 2 in KST, noting the correction given in the
proof of the corollary in Appendix A).

Corollary 1. Under the assumptions in Theorem 1,

LRn (γ0)
d−→ ξ(φ),

where ξ(φ) = sup
r

{
W1 (−r)− |r|

2 ,√
φW2 (r)− |r|

2 ,

if r ≤ 0,
if r > 0,

has the distribution

P(ξ(φ) ≤ x) = (1− e−x)(1− e−x/φ).

From Section SD.2 of the Supplementary Material, the CF-I LR statistic takes
the same form and has the same asymptotic distribution with φ reinterpreted. If
the model is homoskedastic, then φ = 1 and η̂2 in LRn (γ ) can be replaced by an
estimate of E

[
e02

i

]
, such as Sn (γ̂ )/n as in CH. However, the model is generally

heteroskedastic. For example,

V−
0 = σ 2

1 E

[
x̆ix̆′

i

(
ui −ψ ′vi

)2 |qi = γ0−
]
,

V+
0 = σ 2

2 E

[
x̆ix̆′

i

(
ui −ψ ′vi

)2 |qi = γ0+
]

.

Even if E
[
x̆ix̆′

i

(
ui −ψ ′vi

)2 |qi = γ
]

is continuous at γ0, V−
0 �= V+

0 if σ1 �= σ2. In

fact, even in CH’s setup, V−
0 is likely to be unequal to V+

0 , as we now explain. In
their setup, e0

i = β ′
1vi1(qi ≤ γ0)+β ′

2vi1(qi > γ0)+ui,

V−
0 = E

[
gig′

i

(
e0

i

)2 |qi = γ0−
]

= E

[
gig′

i

(
β ′

1vi +ui
)2 |qi = γ0−

]
,

V+
0 = E

[
gig′

i

(
e0

i

)2 |qi = γ0+
]

= E

[
gig′

i

(
β ′

2vi +ui
)2 |qi = γ0+

]
,

where v does not include vq because their x is just our x and their q is exogenous
so is included in z. Obviously, V−

0 is unlikely to equal V+
0 .

For inference based on LRn (γ ), we need to estimate η2 and φ. Following Hansen
(2000), we can use the following procedure. Let r1i = (δ

′
nx̆i)

2e2
1i, r2i = (δ

′
nx̆i)

2e2
2i
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and r3i = (δ
′
nx̆i)

2. Then

η2 = E [r1i|qi = γ0]

E [r3i|qi = γ0]
and φ = E [r2i|qi = γ0]

E [r1i|qi = γ0]

are ratios of two conditional expectations. Since r1i,r2i and r3i are unobserved, let

r̂1i = (̂δ
′
n̂x̆i)

2̂e2
1i,̂r2i = (̂δ

′
n̂x̆i)

2̂e2
2i and r̂3i = (̂δ

′
n̂x̆i)

2 denote their sample counterparts,

where ê1i = yi −̂̆x′
iβ̂1 is defined only for i ∈ I1 := {i|qi ≤ γ̂ }, and ê2i = yi −̂̆x′

iβ̂2
is defined only for i ∈ I2 := {i|qi > γ̂ } with some consistent estimators of β� in
Section 4. We can then estimate η2 and φ by kernel regression, for example,

η̂2 =
∑

K−
h (qi − γ̂ ) r̂1i∑

Kh (qi − γ̂ ) r̂3i
and φ̂ =

∑
K+

h (qi − γ̂ ) r̂2i∑
K−

h (qi − γ̂ ) r̂1i
,

where K±
h (·) = h−1K±(·/h) and Kh(·) = h−1K(·/h) for some bandwidth h and

(boundary) kernel functions K± (·) and K (·). Alternatively, we can use a poly-
nomial regression, such as a quadratic by fitting OLS regressions of the form

r̂1i = μ̂10 + μ̂11qi + μ̂12q2
i + ε̂1i,i ∈ I1,

r̂2i = μ̂20 + μ̂21qi + μ̂22q2
i + ε̂2i,i ∈ I2,

r̂3i = μ̂30 + μ̂31qi + μ̂32q2
i + ε̂3i,i ∈ I1 ∪I2 = {1,2, . . . ,n},

and setting

η̂2 = μ̂10 + μ̂11γ̂ + μ̂12γ̂
2

μ̂30 + μ̂31γ̂ + μ̂32γ̂ 2
and φ̂ = μ̂20 + μ̂21γ̂ + μ̂22γ̂

2

μ̂10 + μ̂11γ̂ + μ̂12γ̂ 2
.

If E

[
x̆ix̆′

i

(
ui −ψ ′vi

)2 |qi = γ
]

is continuous at γ0, then φ = σ 2
2 /σ 2

1 can be

estimated in a simpler way. For example, if the homoskedasticity assumption

E

[(
ui −ψ ′vi

)2 |qi

]
=E

[(
ui −ψ ′vi

)2]
holds, then a suitable estimate is φ̂ = σ̂ 2

2 /σ̂ 2
1

where σ̂ 2
� = |I�|−1∑

i∈I�
ê2
�i is a consistent estimator of σ 2

� E

[(
ui −ψ ′vi

)2]
. If

E

[
x̆ix̆′

i

(
ui −ψ ′vi

)2 |qi = γ0−
]

= E
[
x̆ix̆′

i|qi = γ0
]
E

[(
ui −ψ ′vi

)2]
, which holds

under the homoskedasticity assumption Var (u|x,z) = Var (u|v) = E [Var (u|v)]
because

E

[
x̆ix̆′

i

(
ui −ψ ′vi

)2 |qi

]
= E

[
E

[
x̆ix̆′

i

(
ui −ψ ′vi

)2 |xi,zi

]
|qi

]
= E

[
x̆ix̆′

iVar (ui|vi) |qi
]

= E
[
x̆ix̆′

i|qi
]
E [Var (ui|vi)] = E

[
x̆ix̆′

i|qi
]
E

[(
ui −ψ ′vi

)2]
,

then η2 = σ 2
1 E[(ui −ψ ′vi)

2] can be estimated by σ̂ 2
1 under the above homoskedas-

ticity assumption.
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Given these components, the (1 −α) LR-CI for γ follows by inversion of the
statistic from{
γ : LRn (γ ) ≤ ĉrit

}
,

where ĉrit is the (1−α) quantile of ξ with φ being replaced by φ̂.

4. ESTIMATION OF SLOPE PARAMETERS

Having obtained γ̂ , we propose two approaches for estimating β. The first is to
estimate β as a by-product of the two CF approaches above, that is, we estimate
β by β̂ = (β̂1 (γ̂ )′ ,β̂2 (γ̂ )′

)′
, where β̂ (γ ) = (β̂1 (γ )′ ,β̂2 (γ )′

)′
is the concentrated

estimator of β given γ . We label these two estimation methods of β (with either the
CF-I estimator of γ or the CF-II estimator of γ as γ̂ ) as CF-I and CF-II, and jointly
as CF. The second approach is to estimate β by setting up moment conditions
as in CH and KST. However, we show in Section SD.3 of the Supplementary
Material that the estimates based on the moment conditions in CH and KST are
in general inconsistent when q is endogenous. We therefore provide two new
sets of moment conditions that generate consistent estimates of β. The resulting
estimation methods of β are labeled GMM-1 and GMM-2, respectively; when the
CF-I estimator of γ is used as γ̂ , the corresponding estimation methods of β using
these two sets of moment conditions are labeled as GMM-I1 and GMM-I2, and
when the CF-II estimator of γ is used as γ̂ , labeled as GMM-II1 and GMM-
II2, respectively. Since GMM-II2 is the most efficient among all methods in our
simulation studies, we will discuss CF/GMM-1 and GMM-II1 only briefly in the
main text and leave the detailed discussions concerning asymptotic properties to
Sections SD.3 and SD.2 of the Supplementary Material, respectively.

4.1. CF and GMM-1 Estimators

In the CF estimators, we estimate β� by

β̂� = (X̂′
�X̂�

)−1
X̂′

�Y, (24)

and estimate δn by δ̂n = β̂1 − β̂2, where X̂1 = X̂γ̂ , and X̂2 is X̂⊥ with γ replaced by

γ̂ . Given β̂�, we can estimate β� by extracting the corresponding components of

β̂�, say, β̂�, and estimate δβ by β̂1 − β̂2. This type of estimate essentially employs
the moment conditions

E
[
x̆ie1i1(qi ≤ γ0)

]= 0 and E
[
x̆ie2i1(qi > γ0)

]= 0 (25)

to estimate β1 and β2 separately.
Before introducing the GMM-1 estimators, we first show in Section SD.3 of the

Supplementary Material that the moment conditions in CH (the resulting GMM
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is labeled as CH’s GMM) and KST will not generate consistent estimates of β in
general when q is endogenous. Although the moment conditions used in CH,

E [ziui1(qi ≤ γ0)] = 0 and E [ziui1(qi > γ0)] = 0, (26)

may not hold, E [ziui] = 0 seems reasonable, where we assume δσ = 0 and absorb
σ2 in u as mentioned in the Section 1. As a result, we can estimate β by the
following minimization

β̂ = argmin
β

n ·mn (β)′ Wnmn (β),

where Wn
p−→ W > 0, and

mn (β) = 1

n

n∑
i=1

zi
(
yi −x′

i,≤γ̂ β1 −x′
i,>γ̂ β2

)
,

in which γ̂ is the CF-I/CF-II estimator of γ in GMM-I1/GMM-II1. In other words,
the GMM-1 estimator of β is

β̂ = [(X∗′Z
)

Wn
(
Z′X∗)]−1 [(

X∗′Z
)

Wn
(
Z′Y
)]

,

where X∗ stacks (x′
i,≤γ̂ ,x

′
i,>γ̂ ), and Z stacks z′

i.
Compared with the CF estimators of β, the GMM-1 estimates of β suffer two

drawbacks. First, the CF estimates require only d instruments, while the GMM-1
estimates require 2d instruments; 2d instruments are required because we estimate
β1 and β2 jointly. When q is exogenous, we can estimate β1 and β2 separately as
in CH’s GMM, in which case only d instruments are required. It is well known
that good instruments are often hard to find and justify in practical work, making
this a relevant consideration. Second, the GMM-1 estimates are hard to extend to
the δσ �= 0 case although not impossible (see Section SD.3 of the Supplementary
Material for detailed analysis).

4.2. GMM-2 Estimators

The two drawbacks of GMM-1 estimators of β above originate from the fact that
they estimate β1 and β2 jointly. To avoid these drawbacks, we can estimate β1

and β2 separately as in CH’s GMM. Specifically, we use the following moment
conditions to estimate β1 and β2:

E
[
z̆ie1i1(qi ≤ γ0)

]= 0 and E
[
z̆ie2i1(qi > γ0)

]= 0, (27)

where

z̆i = (z′
i,qi
)′

in CF-I and z̆i = (z′
i,x

′
i

)′
in CF-II.

When some elements of xi are exogenous, then they can be included in zi and xi

is correspondingly shortened. The moment conditions (27) hold because of the
analysis in Section 3, especially (20) and (22). Although we can use any function
of z̆i as instruments, we do not pursue this particular moment selection problem
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in the current paper. Interestingly, although qi and xi may be endogenous, they are
used as instruments because the error terms here are e�i rather than ui. Actually, the
CF estimators of β are special cases of this kind of GMM estimator as is evident
by noting that

x̆i =
(

�′ 0
−π ′ 1

)
z̆i in CF-I and x̆i =

(
0 Id

−�′ Id

)
z̆i in CF-II.

We list the CF estimators of β separately because they are natural byproducts of
CF estimation of γ .

Solving the minimization problem

min
β�

n ·m�n
(
β�

)′
W�nm�n

(
β�

)
,

we have

β̂� = [(X̂′
�Ẑ�

)
W�n

(̂
Z′

�X̂�

)]−1 [(
X̂′

�Ẑ�

)
W�n

(̂
Z′

�Y
)]

,

where W�n
p−→ W� > 0, X̂� is defined in (24), Ẑ1 and Ẑ2 are the matrices obtained

by stacking z̆′
i1(qi ≤ γ̂ ) and z̆′

i1(qi > γ̂ ), and

m1n
(
β1

)= 1

n

n∑
i=1

z̆i

(
yi −̂̆x′

iβ1

)
1(qi ≤ γ̂ ),

m2n
(
β2

)= 1

n

n∑
i=1

z̆i

(
yi −̂̆x′

iβ2

)
1(qi > γ̂ ).

It might seem that GMM-I2 is an extension of CH’s GMM method. However, even
if q is exogenous, they are different because e�i rather than ui are used as the error
terms in (27). The limit theory of GMM-II2 is given in the following result.

Theorem 2. Under Assumption II,

n1/2(β̂� −β�)
d−→ N (0,��),

where

�� = (G′
�W�G�)

−1(G′
�W���W�G�)(G

′
�W�G�)

−1.

In ��, G1 = E[z̆ix̆′
i,≤γ0

], G2 = E[z̆ix̆′
i,>γ0

], G′
�W�G� > 0, and

�� = ��
1 +��

2

with

�1
1 = E[z̆iz̆′

i,≤γ0
e2

1i] > 0,�2
1 = E

[
z̆iz̆′

i,>γ0
e2

2i

]
> 0,

�1
2 = E

[
z̆iz′

i,≤γ0

]
E
[
ziz′

i

]−1
E
[
ziz′

i

(
κ ′

1viv′
iκ1
)]
E
[
ziz′

i

]−1
E

[
ziz̆′

i,≤γ0

]
,

�2
2 = E

[
z̆iz′

i,>γ0

]
E
[
ziz′

i

]−1
E
[
ziz′

i

(
κ ′

2viv′
iκ2
)]
E
[
ziz′

i

]−1
E

[
ziz̆′

i,>γ0

]
.
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When W� = �−1
� , �� reduces to (G′

��
−1
� G�)

−1. The asymptotic covariance matrix

between n1/2(β̂1 −β1) and n1/2(β̂2 −β2) is

CGMM = (G′
1W1G1

)−1
G′

1W1�12W2G2
(
G′

2W2G2
)−1

with �12 = E

[
z̆iz′

i,≤γ0

]
E
[
ziz′

i

]−1
E
[
ziz′

i

(
κ ′

1viv′
iκ2
)]
E
[
ziz′

i

]−1
E

[
ziz̆′

i,>γ0

]
. The

N (0,��) limit distribution is independent of ζ(φ) in Theorem 1.

Note that the components ��
2 stem from contributions by the generated regres-

sors. If the first-stage regression is homoskedastic, that is, Var (vi|zi) = Q, then the
��

2 simplify as follows:

�1
2 = κ ′

1Qκ1 ·E
[
z̆iz′

i,≤γ0

]
E
[
ziz′

i

]−1
E

[
ziz̆′

i,≤γ0

]
,

�2
2 = κ ′

2Qκ2 ·E
[
z̆iz′

i,>γ0

]
E
[
ziz′

i

]−1
E

[
ziz̆′

i,>γ0

]
;

and, similarly, the limit covariance matrix structure is

CGMM = κ ′
1Qκ2 · (G′

1W1G1
)−1

G′
1W1E

[
z̆iz′

i,≤γ0

]
E
[
ziz′

i

]−1
E

[
ziz̆′

i,>γ0

]
×W2G2

(
G′

2W2G2
)−1

.

Note that the extra randomness from the generated regressors is not correlated

with the original error term. Take β̂1 as an example: the random component of
the influence function from the original error term is z̆i,≤γ0 e1i and that from the
generated regressors is ziv′

iκ1. Obviously,

E
[
z̆i,≤γ0 z′

ie1iv′
iκ1
]= E

[
E
[

z̆i,≤γ0 z′
ie1iv′

iκ1

∣∣xi,zi
]]

= σ1E
[
z̆i,≤γ0 z′

iv
′
iκ1E

[
ui −ψ ′vi

∣∣vi
]]= 0.

In Section SD.2 of the Supplementary Material, we show that the asymptotic
variance matrix of GMM-I2 takes a similar form as in GMM-II2 but there are two
extra terms in �� beyond ��

1 and ��
2; this is because the two random components

in the influence functions are correlated now. Although ��
1 > 0 is assumed, ��

2 is
not positive definite because dim(zi) < dim

(
z̆i
)
. Of course, �� = ��

1 +��
2 > 0 and

so �� > 0; this is because G′
�W�G� > 0 and W� > 0 imply G� is full column rank

(necessarily, dim
(
z̆i
)≥ dim

(
x̆i
)

or dim (zi) ≥ d). Unlike LS estimation, β̂1 and β̂2
are not asymptotically independent because the generated regressors v̂i involve all
data points; this is why CGMM �= 0. As a result, the asymptotic variance matrix of

δ̂n = β̂1 − β̂2 is �1 +�2 −CGMM −C′
GMM rather than �1 +�2 as in LS estimation.

As for estimation of ��, we just replace the population mean by the sample
mean, population random vectors by their sample analogs (i.e., x̆i by ̂̆xi, vi by v̂i,
and e�i by ê�i), and the population parameters by their estimates (i.e., θ0 by θ̂ ).
In practice, we can set W�n = Ẑ′

�Ẑ� to get an initial estimator of β�, and then set
W�n as a consistent estimator of �−1

� to obtain the optimal estimator. Given �̂�,
we can construct CIs for each component of θ by inverting the t-statistic; we can
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also test some interesting hypotheses, for example, by testing whether κ1 = κ2 = 0
in CF-II to check whether there is endogeneity (such a test cannot be applied to
CF-I because whether or not κ� = β ′

�ϕ +σ�κ = 0 does not indicate the existence
of endogeneity when zi does not contain xi in the first-stage equation). Also, the
usual nonparametric bootstrap should be valid for inference on θ although it is
questionable for γ (see Yu, 2014, for further discussion on this point).

As distinct from GMM-1, only d instruments (both included and excluded) are
needed in GMM-2 estimation irrespective of whether q is endogenous. On the
other hand, the asymptotic distributions of GMM-2 rely on first-stage specification
such as stable or unstable reduced forms, which is similar to CF but different from
GMM-1. To be specific, both CF and GMM-2 require v̂i which is generated from
the first-stage estimation, while GMM-1 relies on moment conditions E [ziui] = 0
that do not involve vi; this is an advantage of GMM-1. Of course, we can use the
nonparametric bootstrap to conduct inferences on θ to avoid explicit formulas of
the asymptotic variances of θ̂ .

Because GMM-2 employs more moment conditions than CF, the resulting
estimators are expected to be more efficient than the CF estimators.8 However, it is
hard to compare the efficiency of CF and GMM-2 with GMM-1. This is because, as
distinct from GMM-1, CF and GMM-2 take advantage of the triangular structure
of the simultaneous equations and also restrictions such as E

[
v|vq

] = ϕvq and
E
[
u|vq

] = κvq in CF-I and GMM-I2 and E [u|x,z,q] = ψ ′v in CF-II and GMM-
II2. Roughly speaking, GMM-1 explores a different part of model information
from that of CF and GMM-2. In summary, it is fair to claim that GMM-2 is the
most preferable method to practitioners because GMM-1 suffers from the two
drawbacks discussed above and CF is less efficient. Between GMM-I2 and GMM-
II2, GMM-II2 seems more attractive because it usually uses a more efficient γ̂ (i.e.,
CF-II) and more instruments than GMM-I2 (i.e., dim(xi) ≥ dim(qi)). Of course,
GMM-II2 usually estimates more parameters.

Finally, the asymptotic independence between n1/2
(̂
θ − θ

)
and an (γ̂ −γ0)

occurs because the global information explored in the former and the local
information explored in the latter are independent (see Yu (2012; 2015) for more
discussion on this point). This information independence also implies that γ̂ will
not affect the asymptotic variance of θ̂ (as verified in the theorem) although γ̂ need
not be op

(
n−1/2

)
.

5. SIMULATIONS

This section reports the results of three simulation experiments conducted to assess
the performance of the various estimates of γ and β and their corresponding
CIs when q is endogenous and instruments are employed. Simulation 1 seeks to
reveal the bias of the STR estimator of KST in finite samples when endogeneity

8Because generated regressors are involved, we can add the same group of moment conditions to (25) and (27), as in
Newey (1984) and Murphy and Topel (1985), to see that GMM-2 indeed employs more moment conditions than CF.
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is severe, and to compare the 2SLS estimator of YLP and the two CF estimators
in this paper for γ . Under the DGP of this simulation, the two CF estimators are
the same; also, the efficient GMM estimator of γ in YLP is the 2SLS estimator.
Simulation 2 compares the two CF estimators of γ under a DGP for which they
differ. Simulation 3 compares the performances of seven estimators of θ , viz.,
the 2SLS estimator of YLP, the two CF estimators in Section 4.1, and the four
GMM estimators in Sections 4.1 and 4.2. Similar to Simulation 1, the efficient
GMM estimator of θ in YLP is the 2SLS estimator. In Section SD.5 of the
Supplementary Material, we also report the risk of the integrated difference kernel
estimator (IDKE) of γ in YP where no instruments are employed and compare the
performance of the two CF approaches when q is exogenous.

Simulation 1 uses the following simple setup which generates the same DGP as
in (11),

yi = δ1(qi ≤ γ0)+ui,

qi = π ′zi + vqi,

where zi = (1,zi)
′, ui = κvqi +eui,

(
zi,vqi,eui

)′ ∼N (0,I3), β2 = 0 is known, γ0 = 0,
and π = (0,−1)′. Since x = 1 is exogenous, the two CF approaches are exactly the
same. In Simulations 2 and 3,

yi = xiδ1(qi ≤ γ0)+ui,

xi = �′
xzi + vxi,

qi = π ′zi + vqi,

where zi = (1,zi)
′, ui = ψxvxi + ψqvqi + eui =: ψ ′vi + eui, vxi = ϕvqi + exi,(

zi,vqi,eui,exi
)′ ∼ N (0,I4), β2 = 0 is known, γ0 = 0, ψ = (

ψx,ψq
)′ = κ (1,1)′,

ϕ = 1 and π = �x = (0, −1)′. We label these two DGPs as DGP1 and DGP2,
respectively; in both DGPs, the data are randomly sampled. In DGP1, x̆i =

(
1,vqi

)′
,

κ1 = κ2 = κ , and e1i = e2i = eui =: e0
i for both CF-I and CF-II. In DGP2, x̆i =(

�′
xzi,vqi

)′
, κ1 = (δ +ψx)ϕ +ψq, κ2 = ψxϕ +ψq, δκ = δϕ, e1i = (δ +ψx)exi +eui,

and e2i = ψxexi + eui if CF-I is employed, and x̆i = (
xi,vxi,vqi

)′
, κ1 = κ2 = ψ ,

δκ = 0, and e1i = e2i = eui =: e0
i if CF-II is employed; z̆i =

(
z′

i,qi
)′

in GMM-I2 and

z̆i = (z′
i,xi,qi

)′
in GMM-II2.

In both DGPs, we consider three δ values, 0.5, 1, and 2, indicating small,
medium, and large threshold effects, and two κ values, 0.2δ and δ, indicating weak
and strong endogeneity, respectively. The parameter space � is taken as the interval
between the 5% and 95% quantiles of q. We consider N = 1,000 replications with
sample size n = 200 and 800 for all simulations. All CIs are constructed using the
asymptotic critical values except YLP’s 2SLS where the nonparametric bootstrap
is applied since the asymptotic variance matrix involves density as in quantile
regression. When the nonparametric bootstrap is used, the resampling times are
B = 399 when n = 200, and B = 199 when n = 800.
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5.1. Comparison of Three Estimators of γ

For the 2SLS estimator of YLP, we use the moment conditions
E [zi (yi − δ1(qi ≤ γ0))] = 0 to estimate δ and γ0 jointly. From YLP,(

n1/2 0
0 n1/2−α

)(
δ̂ − δ

γ̂ −γ0

)
d−→ N

(
0,E

[
u2
]

G−1W−1G′−1
)
, (28)

where E
[
u2
]= κ2 +1,

G = (E[zi,≤γ0

]
,E [zi|qi = γ0]cβ f

)
with cβ = nαδ and W = E

[
ziz′

i

]−1
.

In KST,

yi = [δ +κ ·λ1
(
γ0 −π ′zi

)]
1(qi ≤ γ0)+κ ·λ2

(
γ0 −π ′zi

)
1(qi > γ0)+ e∗

i

= δ ·1(qi ≤ γ0)+κ�i (γ0)+ e∗,

where �i (γ ) := λ1
(
γ −π ′zi

)
1(qi ≤ γ )+λ2

(
γ −π ′zi

)
1(qi > γ ), and in our CF

approaches,

yi = [δ +κvqi
]

1(qi ≤ γ0)+κvqi1(qi > γ0)+ eui

= δ ·1(qi ≤ γ0)+κvqi + e0
i .

From Section 2, the limit STR objective function is symmetric and its minimizer
is not unique, so we use the mean absolute deviation (MAD) as a measure of risk.
In our two CF estimators, φ and η2 can be simplified as follows:

φ = 1 and η2 = E
[
e2

ui

]= 1.

In the STR estimator of KST, we set φ = 1 and η2 = E
[
e∗2
]

for comparison.
Table 1 summarizes the MAD outcomes for the three estimates of γ . Some

conclusions can be drawn from the results. First, when endogeneity is weak, that is,
κ = 0.2δ, the MAD of the STR estimator lies between those of our CF estimators
and the 2SLS estimator; when endogeneity is strong, that is, κ = δ, the MAD of
the STR estimator is the largest. This is because, as is apparent from Figure 1, the
STR estimator is consistent in the former case but inconsistent in the latter case.
Actually, in the latter case, when δ = 0.5, 1, and 2, the absolute asymptotic biases
are 0.797, 0.775, and 0.778, respectively. Correspondingly, the MAD increases
according to this scale. Second, the 2SLS estimator is the most inefficient among
these three estimators (for the STR estimator, consider only the κ = 0.2δ case).
This is because its convergence rate is n1/2−α from YLP, which is much slower than
the convergence rate n1−2α of the other two estimators. Third, our CF estimators
are the most efficient among these three estimators in all cases. Fourth, for all
estimators, endogeneity is evidently harmful, that is, the κ = δ case has a larger
MAD than the κ = 0.2δ case. Fifth, comparing the cases where n = 200 and
n = 800, we see that the convergence rate for the 2SLS estimator is roughly

√
n,
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Table 1. MAD for three estimators of γ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 0.900 0.928 0.458 0.617 0.246 0.494 0.417 0.471 0.216 0.290 0.118 0.232

STR 0.511 1.104 0.093 1.006 0.019 0.966 0.074 0.987 0.015 0.944 0.005 0.925

CFs 0.258 0.277 0.066 0.086 0.019 0.021 0.058 0.066 0.015 0.015 0.005 0.005

Table 2. Coverage of nominal 95% confidence intervals for γ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 0.674 0.672 0.918 0.856 0.957 0.919 0.965 0.934 0.962 0.976 0.952 0.963

STR 0.959 0.576 0.995 0.369 0.996 0.220 0.997 0.334 0.993 0.190 1.00 0.097

CFs 0.974 0.959 0.983 0.974 0.988 0.982 0.977 0.969 0.972 0.980 0.991 0.991

whereas for our CF estimators, it is roughly n.9 Sixth, when the STR estimator is
consistent, it may be exactly the same as our CF estimators. For example, when
κ = 0.2δ, n = 200, δ = 2 or κ = 0.2δ, n = 800, δ = 1 and 2, their MADs are exactly
the same; this is because the estimators in almost all simulations are the same. In
Table 12 in Section SD.5 of the Supplementary Material, we also report the MAD
of the IDKE in YP (which reduces to the DKE since q is the only covariate). From
Table 12 in Section SD.5 of the Supplementary Material, we can see that the risk of
the IDKE is between that of the CF estimators and the 2SLS estimator in all cases.
This result is expected because the CF estimators have the same convergence rate
as the IDKE but use more data (i.e., zi’s) while the 2SLS estimator has a slower
convergence rate than the IDKE.

Tables 2 and 3 summarize performance of the CIs. Table 2 reports coverage and
Table 3 reports average length. From Table 2, we draw the following conclusions.
First, when the STR estimator is consistent, the corresponding CI has good
coverage (mostly over-coverage); but when it is inconsistent, the CI undercovers
and the coverage can be lower than 10%. Second, the 2SLS-CI coverage is good
when nδ is large; when nδ is small (especially when endogeneity is strong), the CI
suffers from under-coverage. Third, our CF-CI coverage is excellent in all cases
and is unaffected by the severity of endogeneity.

From Table 3, we draw these conclusions. First, our CF-CI has the shortest
length in all cases, followed by the STR-CI, and the 2SLS-CI which is longest. This

9As emphasized in CH, letting 0 < α < 1/2 is only a device for the construction of a useful asymptotic approximation
rather than a behavioral assumption. In this simulation, α = 0 gives a better approximation for the MAD.
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Table 3. Length of nominal 95% confidence intervals for γ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 3.656 3.847 2.449 3.023 1.372 2.591 2.285 2.522 1.096 1.542 0.599 1.195

STR 2.639 2.143 0.690 1.318 0.147 0.889 0.657 1.138 0.124 0.637 0.036 0.398

CFs 1.748 1.879 0.362 0.387 0.097 0.100 0.346 0.355 0.079 0.081 0.025 0.025

outcome matches the efficiency results in Table 1. Combined with the results in
Table 2, the findings show that CF-CI is shortest and has the best coverage. Second,
the STR-CI is much longer than the CF-CI when endogeneity is strong but, even
so, the coverage is very low. This outcome is of course due to the inconsistency
of the STR estimator. Third, comparing the cases where n = 200 and n = 800, it
is apparent that the length of the 2SLS-CI when n = 800 is roughly 1/2 of that
when n = 200, whereas for the CF-CI it is roughly 1/4. These findings match the
convergence rate findings in Table 1. Finally, from Tables 1 and 3, it is clear that
larger δ tends to be more beneficial, that is, larger δ implies lower risk and shorter
CIs.

5.2. Comparison between Two CF Estimators of γ

From Section SD.2 of the Supplementary Material, φ and η2 in CF-I can be
simplified as follows:

φ = E
[
e2

2i

]
E
[
e2

1i

] = E
[
(ψxexi + eui)

2
]

E
[
((δ +ψx)exi + eui)

2
] = ψ2

x +1

(δ +ψx)
2 +1

,

and

η2 = E
[
e2

1i

]= E
[
((δ +ψx)exi + eui)

2
]= (δ +ψx)

2 +1.

In CF-II, φ and η2 can again be simplified as

φ = 1 and η2 = E
[
e2

ui

]= 1.

Tables 4–6 summarize performance of the two CF estimators and corresponding
CIs. For completeness, we also report performance of the 2SLS estimator based on
the moment conditions E [zi (yi − xiδ1(qi ≤ γ0))] = 0. From YLP, the asymptotic
distribution of this 2SLS estimator takes the same form as in (28) except that G
is redefined as G = (E[zixi,≤γ0

]
,E [zixi|qi = γ0]cβ f

)
. From these three tables, the

following conclusions are drawn. First, CF-II dominates the other two methods
with lowest risk, highest coverage and shortest length. Second, and different from
Simulation 1, the 2SLS estimator can be more efficient than the CF-I estimator,
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Table 4. MAD for three estimators of γ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 0.670 0.736 0.511 0.685 0.458 0.665 0.424 0.508 0.343 0.509 0.283 0.488

CF-I 0.756 0.830 0.527 0.688 0.410 0.625 0.453 0.515 0.331 0.421 0.277 0.391

CF-II 0.269 0.280 0.070 0.075 0.030 0.032 0.059 0.063 0.019 0.019 0.008 0.008

Table 5. Coverage of nominal 95% confidence intervals for γ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 0.707 0.698 0.770 0.712 0.747 0.723 0.783 0.763 0.776 0.736 0.741 0.732

CF-I 0.960 0.961 0.952 0.952 0.953 0.955 0.967 0.959 0.963 0.960 0.952 0.960

CF-II 0.976 0.970 0.978 0.979 0.988 0.981 0.972 0.982 0.981 0.981 0.990 0.986

Table 6. Length of nominal 95% confidence intervals for γ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 3.814 4.052 3.058 3.922 2.560 3.831 2.844 3.320 2.060 3.092 1.602 3.015

CF-I 2.669 2.996 1.802 2.432 1.564 2.233 1.526 1.744 1.099 1.433 0.951 1.338

CF-II 1.307 1.387 0.370 0.377 0.130 0.136 0.320 0.336 0.092 0.093 0.033 0.033

especially when nδ is small; also, the respective CIs always undercover. Third, for
all methods, endogeneity is harmful and larger δ is beneficial (stronger endogeneity
and smaller δ implies higher risk and longer CIs). Fourth, comparing the risks and
CI lengths when n = 200 and n = 800, we see that the convergence rates of the
2SLS and CF-I estimators are slower than

√
n, while the convergence rate of the

CF-II estimator is roughly of order n. In summary, the performance of CF-II is
extremely good and the other two methods are not recommended. In Table 13
in Section SD.5 of the Supplementary Material, we also report the MAD of the
IDKE in YP. From Table 13 in Section SD.5 of the Supplementary Material, we
can see that the risk of the IDKE is between that of the CF-II estimator and the CF-
I estimator (also the 2SLS estimator) in all cases. Although it is expected that the
IDKE is less efficient than the CF-II estimator since the latter uses more data (i.e.,

https://doi.org/10.1017/S0266466623000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000014


36 PING YU ET AL.

zi’s), it is surprising to see that the CF-I estimator is worse than the IDKE given
that it also uses the same set of additional data (zi’s). This result corroborates the
discussion in Section 3 where we argue that CF-II is the preferable CF approach
compared with CF-I.

5.3. Comparison among Seven Estimators of δ

For the estimation of δ, we can use the moment conditions
E [zi (yi − xiδ1(qi ≤ γ0))] = 0 to estimate δ and γ0 jointly as in the 2SLS procedure
of YLP. Note that under our DGP

E [zi (yi − xiδ)1(qi ≤ γ0)] = E[ziui1(qi ≤ γ0)]

= E[zi
((

ψxϕ +ψq
)

vqi +ψxexi + eui
)

1(π ′zi + vqi ≤ γ0)]

= (ψxϕ +ψq
)
E
[
zivqi1(vqi ≤ γ0 −π ′zi)

]
= −(ψxϕ +ψq

)
E
[
ziλ
(
γ0 −π ′zi

)] �= 0.

So the moment E [zi (yi − xiδ)1(qi ≤ γ0)] cannot be used to estimate δ in our case.
Instead, we will use the six estimators in Section 4, that is, CF-I, GMM-I1, GMM-
II1, CF-II, GMM-I2, and GMM-II2, to estimate δ. Since δ is a regular parameter,
we use the usual root-mean-square error (RMSE) criterion to evaluate its risk.
Except for YLP’s 2SLS, where the nonparametric bootstrap is used to construct
CIs, we invert the t-statistics using the asymptotic critical values to construct CIs
for the other six estimators.

In CF-II and GMM-II2, we can estimate δ and ψ jointly to improve the
efficiency of δ estimation. The details of the asymptotic variances can be found
at the end of Section SD.4 of the Supplementary Material. Due to the special
setup of our DGP2, the asymptotic variances of the CF-I, GMM-1, and GMM-I2
estimators can also be simplified; we detail these simplifications in Section SD.3
of the Supplementary Material after the discussion on the general results.

The performance of these seven estimators of δ are summarized in Tables 7–9.
From these tables, the following conclusions are drawn. First, the rank of the risk
from lowest to highest among these seven estimators in all cases is GMM-II2, CF-
II, GMM-II1, GMM-I1, CF-I, GMM-I2, and 2SLS. So the methods based on CF-II
γ̂ are generally better than those based on CF-I γ̂ . The superiority of GMM-II1
compared with GMM-I1 can be explained by the more precise estimation of γ in
CF-II. But the superiority of CF-II and GMM-II2 compared with CF-I and GMM-
I2 cannot be explained solely by this factor. It seems that the former two methods
themselves have some intrinsic advantages given that their risks can be less than
one half of the latter two methods. GMM-I2 is a little worse than CF-I, while
GMM-II2 is better than CF-II especially when endogeneity is severe. Second,
although the 2SLS estimator is the most inefficient, the corresponding CIs have
the best coverage uniformly for all cases. The superiority of the 2SLS coverage
may be explained by the fact that δ is estimated jointly with γ so, different from
the other methods, the uncertainty of γ̂ is incorporated. On the other hand, the
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Table 7. RMSE for four estimators of δ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 0.187 0.224 0.286 0.388 0.419 0.782 0.094 0.145 0.090 0.251 0.108 0.452

CF-I 0.166 0.242 0.183 0.366 0.275 0.615 0.063 0.092 0.076 0.142 0.110 0.242

GMM-I1 0.119 0.168 0.125 0.282 0.157 0.483 0.053 0.075 0.054 0.118 0.068 0.208

GMM-I2 0.167 0.244 0.184 0.369 0.277 0.625 0.063 0.093 0.076 0.144 0.111 0.245

CF-II 0.073 0.092 0.078 0.139 0.087 0.242 0.036 0.047 0.037 0.070 0.042 0.119

GMM-II1 0.098 0.142 0.106 0.240 0.134 0.439 0.049 0.072 0.051 0.118 0.062 0.207

GMM-II2 0.073 0.088 0.078 0.098 0.083 0.104 0.036 0.044 0.037 0.049 0.040 0.052

Table 8. Coverage of nominal 95% confidence intervals for δ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 0.965 0.965 0.969 0.966 0.978 0.957 0.970 0.951 0.976 0.966 0.982 0.977

CF-I 0.895 0.875 0.905 0.874 0.922 0.895 0.923 0.908 0.917 0.911 0.939 0.942

GMM-I1 0.942 0.939 0.939 0.920 0.951 0.949 0.940 0.948 0.939 0.952 0.951 0.965

GMM-I2 0.895 0.873 0.896 0.864 0.911 0.889 0.925 0.905 0.913 0.906 0.934 0.938

CF-II 0.948 0.946 0.938 0.940 0.952 0.952 0.953 0.941 0.951 0.942 0.954 0.964

GMM-II1 0.949 0.950 0.957 0.944 0.949 0.959 0.947 0.955 0.947 0.946 0.959 0.959

GMM-II2 0.947 0.947 0.933 0.951 0.949 0.948 0.950 0.935 0.949 0.952 0.954 0.956

2SLS CI is much longer than the other methods. Third, CF-I and GMM-I2 suffer
from some under-coverage especially when nδ is small,10 whereas the coverage
of GMM-1, CF-II and GMM-II2 is excellent or near perfect in all cases. Fourth,
as expected, the rank of the CI length matches the rank of risk. Fifth, similar to
γ estimation, endogeneity is harmful to all methods; again stronger endogeneity
implies more risk and longer CIs (but in larger magnitudes than for γ estimation).
Sixth, comparing the risks and CI lengths when n = 200 and n = 800, we see that
the convergence rates of all estimators are roughly

√
n. In summary, the GMM-

II2 estimator performs best, and after balancing coverage and length, GMM-II2
delivers the best CI.

10As in CH, we could use Bonferroni-type methods to improve coverage for these CIs. Because there is as yet no
rigorous procedure to select the coverage level of γ in this Bonferroni-type CI construction, we will not investigate
it in this paper.
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Table 9. Length of nominal 95% confidence intervals for δ

n → 200 800

δ → 0.5 1 2 0.5 1 2

κ → 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ 0.2δ δ

2SLS 0.969 1.146 1.401 2.062 2.101 3.946 0.512 0.680 0.479 1.188 0.518 2.271

CF-I 0.488 0.660 0.582 1.063 0.870 1.961 0.220 0.302 0.266 0.486 0.399 0.907

GMM-I1 0.435 0.643 0.458 1.032 0.583 1.891 0.198 0.293 0.214 0.472 0.275 0.880

GMM-I2 0.488 0.659 0.580 1.061 0.864 1.957 0.220 0.302 0.265 0.486 0.395 0.906

CF-II 0.284 0.362 0.294 0.544 0.336 0.978 0.140 0.181 0.146 0.272 0.168 0.488

GMM-II1 0.392 0.573 0.412 0.923 0.503 1.710 0.189 0.278 0.202 0.452 0.248 0.848

GMM-II2 0.284 0.334 0.293 0.386 0.322 0.428 0.140 0.168 0.146 0.192 0.161 0.207

In Section SD.5 of the Supplementary Material, we also compare the per-
formance of the two CF approaches when q is exogenous. All the results in
Simulations 2 and 3 follow as above (especially the CF-II (GMM-II2) estimators
and associated CIs of γ (δ) are found to perform best). When q is exogenous, we
can also estimate δ based on the moment conditions E [zi (yi − xiδ)1(qi ≤ γ0)] = 0,
as in CH. It turns out that the corresponding estimator is more efficient than that
based on the moment conditionsE [zi (yi − xiδ1(qi ≤ γ0))] = 0 both asymptotically
and in finite samples. This is because δ is only related to the data points with
qi ≤ γ0, whereas the moment conditions E [zi (yi − xiδ1(qi ≤ γ0))] = 0 also use
data points with qi > γ0, which introduces some redundancy in the estimation of δ

and thereby blunts the sharper information in the former moment conditions. Note
further that CH’s GMM has the lowest risk among the four estimators of δ that
are associated with CF-I γ̂ , that is, CF-I, CH’s GMM, GMM-I1, and GMM-I2. In
other words, if we use CH’s γ̂ , their GMM estimator of δ is indeed the best.

6. EMPIRICAL APPLICATION

As in CMT, we estimate a threshold model of the foreign-trade multiplier relation-
ship, quantifying the effects of exports on real output growth, where the level of
the real exchange rate volatility is used as the threshold variable. Specifically, we
employ the following TR model:

yi = (x′
iβ1 +σ1ui

)
1(qi ≤ γ )+ (x′

iβ2 +σ2ui
)

1(qi > γ )+ρyi−1,

where yi is the real GDP growth rate, xi = (1,xi)
′ with xi being the export growth

rate of goods and services, and qi is a measure of the real effective exchange
rage volatility (REER). Adding yi−1 into the system is to control for the effects
of persistent shocks in yi, but we assume such effects do not exhibit any threshold
effect. As noted in Tenreyro (2007), the two regimes defined by REER may reflect
differences between flexible and stable (or pegging) exchange rate regimes, and
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the threshold variable REER qi is correlated with both xi and ui. Following CMT,
we do not consider the endogeneity of xi because their test cannot reject that
xi is exogenous. In this case, our CF-I and CF-II estimators of γ are the same.
The method of CMT does not require any instruments. For our methods, we use
zi = (1,xi,yi−1,qi−1)

′ as instruments, that is, we use qi−1 as the only excluded
instrument, and specify the first-stage equation as

qi = π ′zi + vqi,

and assume E
[
ui|vqi

] = ψvqi. The linear form of E
[
ui|vqi

]
can be justified as

follows. The determination of GDP growth yi and exchange rate volatility qi

involves many factors beyond xi and zi, and all these factors combine to influence
ui and vqi. By a commonly used central limit argument the resulting variables
ui and vqi in aggregating these influences would approximately follow normal
distributions, which in turn implies a linear form of E

[
ui|vqi

]
. The primary

purpose of this empirical application is to show the difference between KST’s STR
estimator and our two CF estimators in this setting.

The data of CMT contain seven OECD countries: Canada (CA), France (FR),
Italy (IT) Japan (JP), United Kingdom (UK), United States (US), and Netherlands
(NL), from 1966 to 2014.11 Since the tests in CMT cannot reject that CA and
FR do not exhibit any threshold effects, we consider the remaining five countries.
Table 10 reports the estimates of model parameters γ and θ based on CF-II and
GMM-II2 (which are the same as CF-I and GMM-I2 in this application) since
they are the most efficient in our simulations. From Table 10, we can draw the
following conclusions. First, the percentages of observations in the high volatility
regime “2” are bounded away from 0 and 1, which indicates that there are sufficient
observations in each regime for our estimation. Second, ρ is bounded away from
1, that is, there is no unit root problem, which indicates that our assumption of
stationarity is reasonable in this application. Third, for IT, JP, and US, we can reject
δκ = 0 (i.e., κ1 = σ1ψ = σ2ψ = κ2), which implies σ1 �= σ2 when ψ �= 0 (this is the
case at least for IT and JP from the CIs for κ�). In other words, our specification
of a threshold effect in the variance of error term is necessary in this application.
Fourth, all CIs (whether for γ or β) are quite wide, which is due to the small
sample size n = 49. As a result, the CIs of γ in our CF approach cover the KST
and CMT estimators. Fifth, our γ̂ ’s for IT and JP are very different from the KST
and CMT estimators, while for UK, US, and NL, the three estimators are similar
or even the same. This can be explained from the testing results for κ1 = κ2 = 0.
For IT and JP, this endogeneity test rejects the null at the 5% level; in other words,
the endogeneity level is comparable to the jump size. In this case, the KST and
CMT estimators are inconsistent, as explained in Section 2. On the other hand, for
the remaining three countries, the endogeneity test cannot reject or only marginally
rejects the null at the 5% level, that is, the endogeneity level is negligible compared
to the jump size. In this case, all three estimators are consistent. Note that our

11Our data start from 1966 rather than 1965 as CMT because we use qi−1 as an instrument.
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endogeneity test results differ from those in CMT where the null is rejected for all
five countries. Sixth, we check the effects of xi on yi via the coefficients β12 and
β22. It turns out that our results are qualitatively similar to CMT. On the one hand,
β12 is significantly positive for IT, US, and NL, which supports the view that low
real exchange rate volatility favors exports and economic growth (e.g., Grier and
Smallwood, 2013). On the other hand, β22 is significant and greater than 1 for JP
and the UK, that is, high real exchange rate volatility favors exports and growth
(e.g., Egert and Morales-Zumaquero, 2008); see CMT for more references on this
phenomenon.

7. CONCLUSION

We conclude this paper by providing a summary of the strengths and weaknesses
of the available estimators of γ and β in ETR. Table 11 lists the number of
instruments required by each estimator. YLP’s 2SLS estimator requires the most
instruments in estimating both γ and β and has a slower convergence rate in
estimating γ . Although we can use transformations of z as instruments when
more than dim(z) instruments are required, such instruments provide information
only through nonlinearity and seem unattractive for practical use. The CI for β

(but not γ ) has good coverage (but not length) because this method estimates
γ and β jointly so it takes into account the randomness in estimating γ . The
joint property of this estimation method differs from all the other methods. CH’s
2SLS cannot be used to estimate γ and CH’s GMM cannot be used to estimate β

when q is endogenous. In such cases, we can use CF-I or GMM-I1 to substitute
for CH’s 2SLS or CH’s GMM. In this sense, our CF-I estimate of γ combined
with the GMM-I1 estimate of β may be viewed as an extension of CH’s 2SLS
combined with CH’s GMM. However, GMM-I1 requires more instruments than
CH’s GMM and cannot handle the δσ �= 0 case easily. GMM-I2 is an extension of
CF-I; both differ from GMM-I1 and do not suffer the problems of GMM-I1. The
CF-II estimator of γ combined with the corresponding estimators of β are parallel
developments of the CF-I estimators.

Compared with CF-I, CF-II estimation of γ and β has advantages in both its
theory foundation and its finite sample performance. Among all estimators and
CIs for β, the GMM-II2 estimator and CI have the best finite sample performance.
After balancing all dimensions of each method, we suggest the use of CF-II to
estimate and construct CIs for γ and use of GMM-II2 for estimation of β when
instruments are available. When instruments are absent, we may use YP’s IDKE
method to estimate γ . Of course, we can use YP’s IDKE even when instruments
are available. However, the method is nonparametric so may suffer from the curse
of dimensionality and requires bandwidth selection in practice which may be
troublesome when dim(x) is large. For β, YP’s IDKE can estimate δβ when δσ = 0
and E [u|x] is smooth, but in general instruments are required to estimate β. The
latter is not unexpected in view of endogeneity in the regression.
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Table 10. Estimates of model parameters of γ and θ

IT JP UK US NL

KST 0.040 0.030 0.051 0.045 0.022

CMT 0.024 0.086 0.054 0.045 0.027

CF
0.055

(0.019,0.081)

0.047

(0.014,0.080)

0.051

(0.021,0.087)

0.045

(0.043,0.068)

0.022

(0.012,0.026)

β12
1.296

(0.920,1.672)

−1.699

(−4.422,1.024)

0.079

(−0.490,0.648)

1.492

(0.339,2.645)

0.841

(0.699,0.983)

β22
0.312

(−0.149,0.774)

1.227

(0.646,1.808)

1.587

(1.082,2.093)

0.544

(−1.903,2.990)

0.431

(0.266,0.596)

ρ
0.467

(0.237,0.697)

0.423

(0.167,0.679)

0.183

(−0.106,0.471)

0.400

(0.118,0.571)

0.455

(0.322,0.587)

κ1
1.127

(0.330,1.923)

−3.464

(−4.900, −2.027)

−0.213

(−0.754,0.328)

0.813

(−0.023,1.649)

0.858

(−0.078,1.795)

κ2
−0.458

(−0.827, −0.088)

0.059

(−0.102,0.220)

−0.080

(−0.626,0.466)

−0.590

(−1.348,0.167)

0.000

(−0.524,0.525)

δκ = 0 0.000 0.000 0.740 0.016 0.118

κ1 = κ2 = 0 0.006 0.000 0.955 0.047 0.259

%obs“2” 24.49 85.71 57.14 28.57 77.55

Note: The first three rows report different γ estimators, β�2 is the coefficient of xi in each regime, 95% CIs are reported in the parentheses, δκ = 0 and κ1 = κ2 = 0
report the p-values for the two tests, and %obs“2” reports the percentages of observations in regime “2.”
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Table 11. Number of instruments required in estimation of γ and β by each
method

Parameters → γ β

Endogeneity of q → q ∈ z q /∈ z q ∈ z q /∈ z

CH’s 2SLS d NA CH’s GMM d NA

CF-I d d CF-I d d

GMM-I1 (δσ = 0) 2d 2d

GMM-I2 d d

CF-II d d CF-II d d

GMM-II1 (δσ = 0) 2d 2d

GMM-II2 d d

YLP’s 2SLS 2d +1 2d +1 YLP’s 2SLS 2d +1 2d +1

YP’s IDKE 0 0 YP’s IDKE NA NA

Appendix A. Proofs

Notation is collected together here for convenient reference in the proofs. The letter C is used
as a generic positive constant, which need not be the same in each occurrence, an = n1−2α,

and � signifies weak convergence over a compact metric space. The matrices X, Xγ , X⊥, X̆,
X̆γ , X̆⊥, V, X̂, X̂γ , X̂⊥, V̂ , V̂γ , Z, e0 and u are defined by stacking x′

i, x′
i,≤γ

, x′
i,>γ

, x̆′
i, x̆′

i,≤γ
,

x̆′
i,>γ

, v′
i,
̂̆x′

i, ̂̆x′
i,≤γ , ̂̆x′

i,>γ , v̂′
i, v̂′

i,≤γ
, z′

i, e0
i and ui, X̆0 = X̆γ0 , X̂0 = X̂γ0 , X̂∗

γ = (X̂γ ,X̂⊥
)
,

θ = (γ,θ ′)′ =
(
γ,β

′
1,β

′
2

)′
or equivalently

(
γ,β

′
2,δ

′
n

)′
with β� = (β ′

�
,κ ′

�

)′, � = 1,2, and

δn =
(
δ′
β,δ′

κ

)′
, where the upper bar on the parameters and the breve over the variables

mean “augmented.” c =
(

nαδ′
β,nαδσ ψ ′)′ =( Id 0

0 ψ

)
c. êi = r̂′iκ2 +e0

i , and ê = r̂κ2 +e0

stacks êi, where r̂′i = v′
i − v̂′

i = z′
i

(
�̂−�

)
, and r̂ = V − V̂ stacks r̂′i.

Proof of Lemma 1. First, we show that Sn (θ) and S̃n (θ) have the same probability limit,
where S̃n (θ) is the same as Sn (θ) except replacing v̂i by vi. Since

n−1 (Sn (θ)− S̃n (θ)
)= −2n−1

n∑
i=1

[
yi −

(
x′

iβ1 +σ1g3,i,ψ +σ1�̂g3,i,ψ/2
)

1(qi ≤ γ )

−(x′
iβ2 +σ2g3,i,ψ +σ2�̂g3,i,ψ/2

)
1(qi > γ )

]
· [σ1�̂g3,i,ψ1(qi ≤ γ )+σ2�̂g3,i,ψ1(qi > γ )

]
= −2n−1

n∑
i=1

[
yi −

(
x′

iβ1 +σ1g3,i,ψ
)

1(qi ≤ γ )− (x′
iβ2 +σ2g3,i,ψ

)
1(qi > γ )

]
× [σ1�̂g3,i,ψ1(qi ≤ γ )+σ2�̂g3,i,ψ1(qi > γ )

]
+n−1

n∑
i=1

[
σ1�̂g3,i,ψ1(qi ≤ γ )+σ2�̂g3,i,ψ1(qi > γ )

]2
,
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where g3,i,ψ = g3 (vi;ψ), and

�̂g3,i,ψ = g3 (̂vi;ψ)−g3 (vi;ψ) ≤ C ‖̂vi −vi‖ ≤ C
∥∥�̂−�

∥∥‖zi‖ = op (1)‖zi‖,

with the first inequality from C-II.6, the second inequality from v̂i −vi = (�− �̂
)′ zi, and

the last equality from C-II.2-3, we need only show that

n−1
n∑

i=1

∣∣yi −
(
x′

iβ1 +σ1g3,i,ψ
)

1(qi ≤ γ )− (x′
iβ2 +σ2g3,i,ψ

)
1(qi > γ )

∣∣‖zi‖ = Op (1),

(A.1)

uniformly in θ, and

n−1
n∑

i=1

‖zi‖2 = Op(1). (A.2)

(A.2) is straightforward by the ergodic theorem and C-II.3. As for (A.1), we can apply
Lemma 2.4 of Newey and McFadden (1994). Although Lemma 2.4 of Newey and McFadden
(1994) is stated for i.i.d. observations, the result requires only application of a weak law of
large numbers, which holds under C-II.1 by the ergodic theorem. The almost sure continuity
condition in Lemma 2.4 of Newey and McFadden (1994) is implied by the continuity of
g3,i,ψ in ψ (C-II.6) and the distribution of q (C-II.5). To check the summand is dominated

by a function of wi with finite first moment, we need only showE

[
y2

i

]
< ∞,E

[
‖xi‖2

]
< ∞

and E

[
g2

3,i,ψ0

]
< ∞ by the Cauchy–Schwarz inequality and

E

[
g2

3,i,ψ

]
≤ C

(
E

[
g2

3,i,ψ0

]
+‖ψ −ψ0‖2

)
for any ψ (which is implied by C-II.6). E

[
‖xi‖2

]
< ∞ is implied by C-II.3, E

[
g2

3,i,ψ0

]
<

∞ is assumed in C-II.4, andE
[
y2

i

]
< ∞ is implied by these two results andE

[(
e0

i

)2
]

< ∞
(C-II.4).

Second, we prove the consistency of θ̂ by applying Theorem 2.1 of Newey and McFadden
(1994). For this purpose, we need only show that S̃n (θ) converges uniformly in probability
to S (θ) which is continuous and minimized uniquely at θ0. By Lemma 2.4 of Newey and
McFadden (1994) and the analysis above, S̃n (θ) converges uniformly in probability to

S (θ) = E

[{
yi −

(
x′

iβ1 +σ1g3,i,ψ
)

1(qi ≤ γ )− (x′
iβ2 +σ2g3,i,ψ

)
1(qi > γ )

}2
]
,

which is continuous in θ . From Section 2.2.2 of Newey and McFadden (1994), S (θ)

is minimized uniquely at θ0 if g(w;θ) = g(w;θ0) implies θ = θ0, where g(w;θ) :=(
x′β1 +σ1g3 (v;ψ)

)
1(q ≤ γ ) − (x′β2 +σ2g3 (v;ψ)

)
1(q > γ ). If not, then there are two

cases: γ �= γ0 and γ = γ0. For γ �= γ0, there are three subcases:

Case (i): γ �= γ0, θ = θ0, where θ := (γ,θ ′)′. By C-II.5, P(γ < q ≤ γ0) > 0, where
we assume without loss of generality that γ < γ0. So C-II.1 and C-II.7 imply
P(g(w;θ) �= g(w;θ0)) > 0, a contradiction, and thus γ = γ0.
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Case (ii): γ > γ0, θ �= θ0, θ1 = θ20 or γ < γ0, θ �= θ0, θ2 = θ10. From C-II.5, P(q < γ ) >

0 and P(q > γ ) > 0. Then by C-II.1 and C-II.7, P(g(w;θ) �= g(w;θ0)) > 0, so γ =
γ0;

Case (iii): γ > γ0, θ1 �= θ20 or γ < γ0, θ2 �= θ10. Similar arguments as in Case (i) lead
to γ = γ0.

So γ = γ0. With γ = γ0, by C-II.7, θ� = θ�0. In summary, g(w;θ) = g(w;θ0) implies
θ = θ0. �

Proof of Theorem 1. By Proposition B.2 in Appendix B, an (γ̂ −γ0) = argmaxν

Qn (ν) = Op(1) and by Proposition B.3 in Appendix B,

Qn (ν) �

⎧⎨⎩ 2
√

c′V−
0 cf W1(−ν)− c′D0cf |ν|,

2
√

c′V+
0 cf W2(ν)− c′D0cf |ν|,

if ν ≤ 0,
if ν > 0,

=:

{
2
√

λ−W1(−ν)−μ |ν|,
2
√

λ+W2(ν)−μ |ν|,
if ν ≤ 0,
if ν > 0,

where the limit functional is continuous with a unique maximum almost surely. Appealing
to Theorem 2.7 of Kim and Pollard (1990), we have

an (γ̂ −γ0)
d−→ argmax

ν

{
2
√

λ−W1(−ν)−μ |ν|,
2
√

λ+W2(ν)−μ |ν|,
if ν ≤ 0,
if ν > 0.

Making the change-of-variables ν = λ−
μ2 r, noting the distributional equality W�(a

2r) =d

aW�(r), and setting ω = λ−/μ2, we can rewrite the asymptotic distribution as

argmax
ν

{
2
√

λ−W1(−ν)−μ |ν|,
2
√

λ+W2(ν)−μ |ν|,
if ν ≤ 0,
if ν > 0,

= λ−
μ2

argmax
r

⎧⎨⎩ 2
√

λ−W1

(
−λ−

μ2 r
)

− λ−
μ |r|,

2
√

λ+W2

(
λ−
μ2 r
)

− λ−
μ |r|,

if r ≤ 0,
if r > 0,

= ωargmax
r

⎧⎨⎩ 2 λ−
μ W1 (−r)− λ−

μ |r|,
2
√

λ+
λ− λ−

μ W2 (r)− λ−
μ |r|,

if r ≤ 0,
if r > 0,

= ωargmax
r

{
W1 (−r)− |r|

2 ,√
φW2 (r)− |r|

2 ,

if r ≤ 0,
if r > 0.

�

Proof of Corollary 1. By the CMT,

Sn (γ0)−Sn (γ̂ )
d−→ sup

v

{
2
√

λ−W1(−ν)−μ |ν|,
2
√

λ+W2(ν)−μ |ν|,
if ν ≤ 0,
if ν > 0,

= sup
r

⎧⎨⎩ 2 λ−
μ W1 (−r)− λ−

μ |r|,
2
√

λ+
λ− λ−

μ W2 (r)− λ−
μ |r|,

if r ≤ 0,
if r > 0,
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= 2λ−
μ

sup
r

{
W1 (−r)− |r|

2 ,√
φW2 (r)− |r|

2 ,

if r ≤ 0,
if r > 0,

= 2λ−
μ

max {ξ1,ξ2 (φ)} = 2λ−
μ

ξ (φ),

where ξ1 = supr≤0

{
W1 (−r)− 1

2 |r|
}

, ξ2 (φ) = supr>0

{√
φW2 (r)− 1

2 |r|
}

, and ξ1 and ξ2

are independent. From Bhattacharya and Brockwell (1976), ξ1 has a standard exponential
distribution, and ξ2 (φ) has an exponential distribution with mean φ. We deduce that

P(ξ (φ) ≤ x) = P(ξ1 ≤ x,ξ2 (φ) ≤ x) = P(ξ1 ≤ x)P(ξ2 (φ) ≤ x) = (1− e−x)(1− e−x/φ),

and12 the required result follows by Slutsky’s theorem. �

Proof of Theorem 2. Take β̂1 as an example since β̂2 can be similarly analyzed. Note
that

n1/2(β̂1 −β1)

= n1/2 [(X̂′
1Ẑ1
)

W1n
(̂
Z′

1X̂1
)]−1

[(
X̂′

1Ẑ1
)

W1nẐ′
1

(
X̆β2 + X̆0cn−α − X̂1β1 + e0

)]
=
[(

1

n
X̂′

1Ẑ1

)
W1n

(
1

n
Ẑ′

1X̂1

)]−1

×
[(

1

n
X̂′

1Ẑ1

)
W1n

1√
n

Ẑ′
1

((
X̆1 − X̂1

)
β1 − X̆1β1 + X̆1β2 + X̆0cn−α + e0

)]
=
[(

1

n
X̂′

1Ẑ1

)
W1n

(
1

n
Ẑ′

1X̂1

)]−1

×
[(

1

n
X̂′

1Ẑ1

)
W1n

1√
n

Ẑ′
1

((
X̆1 − X̂1

)
β1 − X̆bcn−α + e0

)]
=
[(

1

n
X̂′

1Ẑ1

)
W1n

(
1

n
Ẑ′

1X̂1

)]−1 [(1

n
X̂′

1Ẑ1

)
W1n

1√
n

Ẑ′
1

(̂
rκ1 − X̆bcn−α + e0

)]
,

where X̆1 and X̆b are matrices stacking x̆′
i1(qi ≤ γ̂ ) and x̆′

i (1(qi ≤ γ̂ )−1(qi ≤ γ0)),

respectively. By the proof of Lemma C.1 in Appendix C, the continuity of E

[
x̆iz̆′

i,≤γ

]
in γ, and the consistency of γ̂ , 1

n X̂′
1Ẑ1

p−→ E

[
x̆iz̆′

i,≤γ0

]
= G′

1. So we concentrate on

the asymptotic distributions of 1√
n

Ẑ′
1̂r1κ1, n−α√

n

∑n
i=1 z̆ix̆′

ic(1(qi ≤ γ̂ )−1(qi ≤ γ0)) and
1√
n

Ẑ′
1e0. First,

1√
n

Ẑ′
1̂rκ1 = 1√

n
Ẑ′

1Z
(
�̂−�

)
κ1 = 1√

n
Ẑ′

1Z
(
Z′Z
)−1 Z′Vκ1

=
(

1

n
Ẑ′

1Z

)(
1

n
Z′Z
)−1 1√

n
Z′Vκ1,

12The distribution in Theorem 2 of KST is incorrect:
√

ϕ should be replaced by 1/ϕ.
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where 1
n Ẑ′

1Z
p−→ E[z̆iz′

i,≤γ0
], 1

n Z′Z p−→ E[ziz′
i], and 1√

n
Z′Vκ1

d−→ N (0,E[ziz′
i(v

′
iκ1)2])

with the influence function ziv′
iκ1. Second, by Lemma A.10 of Hansen (2000), uniformly

on ν ∈ [−v,v],

n−2α
n∑

i=1

z̆ix̆
′
i1(qi ≤ γ0 +ν/an)−1(qi ≤ γ0) = Op(1).

Since an (γ̂ −γ0) = Op(1), we have

1√
n

n∑
i=1

z̆ix̆
′
icn−α (1(qi ≤ γ̂ )−1(qi ≤ γ0)) = n−1/2Op

(
n2α
)

n−α = Op(a−1/2
n ) = op(1).

Third, by Lemma A.4 of Hansen (2000),

1√
n

Ẑ′
1e0 d−→ N

(
0,E

[
z̆iz̆

′
i,≤γ0

e2
1i

])
with the influence function z̆i,≤γ0 e1i. Because the two influence functions ziv′

iκ1 and

z̆i,≤γ0 e1i are uncorrelated, the asymptotic variance of n1/2
(
β̂1 −β1

)
is �1.

To study the asymptotic covariance matrix between β̂1 and β̂2, note that the influence

function for β̂1 is(
G′

1W1G1
)−1 G′

1W1

(
E

[
z̆iz

′
i,≤γ0

]
E
[
ziz

′
i
]−1 ziv

′
iκ1 + z̆i,≤γ0 e1i

)
and for β̂2(
G′

2W2G2
)−1 G′

2W2

(
E

[
z̆iz

′
i,>γ0

]
E
[
ziz

′
i
]−1 ziv

′
iκ2 + z̆i,>γ0 e2i

)
.

The second parts of the two influence functions are uncorrelated, so we need only consider
the correlation between the first parts. Specifically, the covariance matrix is(

G′
1W1G1

)−1 G′
1W1E

[
z̆iz

′
i,≤γ0

]
E
[
ziz

′
i
]−1

E
[
ziz

′
i
(
v′

iκ1
)(

v′
iκ2
)]
E
[
ziz

′
i
]−1

E

[
ziz̆

′
i,>γ0

]
×W2G2

(
G′

2W2G2
)−1 .

The asymptotic independence between N (0,��) and ζ(φ) follows from Proposition B.3 in
Appendix B. �

Appendix B. Propositions

Proposition B.1. γ̂
p−→ γ0, nα

(
β̂2 −β2

)
= op(1) and nα

(̂
δn − δn

)
= op(1).

Proof. It is convenient to write the model as

yi = x̆′
iβ2 + x̆′

i,≤γ0
δn + e0

i ,

and in matrix notation

Y = X̆β2 + X̆0cn−α + e0.
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Define P∗
γ = X̂∗

γ

(
X̂∗′

γ X̂∗
γ

)−1
X̂∗′

γ . Note that P∗
γ = Pγ + P⊥ with Pγ = X̂γ

(
X̂′

γ X̂γ

)−1
X̂′

γ

and P⊥ = X̂⊥
(
X̂′⊥X̂⊥

)−1 X̂′⊥ since X̂′
γ X̂⊥ = 0. Because X̆ = X̂ + (0,̂r), and X̂ is in the span

of X̂∗
γ ,(

I −P∗
γ

)
Y =

(
I −P∗

γ

)(
X̆0cn−α + r̂κ2 + e0

)
=:
(

I −P∗
γ

)(
X̆0cn−α + ê

)
,

where ê stacks êi = r̂′iκ2 + e0
i . The concentrated objective function is

Sn (γ ) = Y ′ (I −P∗
γ

)
Y =

(
n−αc′X̆′

0 + ê′)(I −P∗
γ

)(
X̆0cn−α + ê

)
=
(

n−αc′X̆′
0 + ê′)(X̆0cn−α + ê

)
−
(

n−αc′X̆′
0 + ê′)P∗

γ

(
X̆0cn−α + ê

)
.

Because the first term in the last expression does not depend on γ , and γ̂ minimizes Sn (γ ),
we see that γ̂ maximizes

S∗
n (γ ) = n2α−1

(
n−αc′X̆′

0 + ê′)P∗
γ

(
X̆0cn−α + ê

)
= n−1c′X̆′

0P∗
γ X̆0c+nα−12c′X̆′

0P∗
γ ê+n2α−1̂e′P∗

γ ê.

For γ ∈ [γ0,γ
]
, P⊥X̆0 = 0, so

S∗
n (γ ) = n−1c′X̆′

0Pγ X̆0c+nα−12c′X̆′
0Pγ ê+n2α−1̂e′ (Pγ +P⊥

)
ê.

By Lemma C.1 in Appendix C, uniformly in γ ∈ [γ0,γ
]
,

1

n
X̆′

0Pγ X̆0 = 1

n
X̆′

0X̂γ

(
1

n
X̂′

γ X̂γ

)−1 1

n
X̂′

γ X̆0

= 1

n
X̆′

0X̂0

(
1

n
X̂′

γ X̂γ

)−1 1

n
X̂′

0X̆0
p−→ M0M−1

γ M0,

nα−1X̆′
0Pγ ê = nα−1/2 1

n
X′

0X̂0

(
1

n
X̂′

γ X̂γ

)−1 1√
n

X̂′
γ ê

= nα−1/2Op (1)Op (1)Op (1) = op(1),

n2α−1̂e′Pγ ê = n2α−1 1√
n

ê′X̂γ

(
1

n
X̂′

γ X̂γ

)−1 1√
n

X̂′
γ ê

= n2α−1Op (1)Op (1)Op (1) = op(1),

n2α−1̂e′P⊥ê = n2α−1 1√
n

ê′X̂⊥
(

1

n
X̂′⊥X̂⊥

)−1 1√
n

X̂′⊥ê

= n2α−1Op (1)Op (1)Op (1) = op(1).

In summary, uniformly in γ ∈ [γ0,γ
]
, we have

S∗
n (γ )

p−→ c′M0M−1
γ M0c,

which is uniquely maximized at γ0, as shown in the proof of Lemma A.5 of Hansen (2000).

Symmetrically, on γ ∈
[
γ,γ0

]
, S∗

n (γ ) converges uniformly to a limit function uniquely
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maximized at γ0. Because γ̂ maximizes S∗
n (γ ), it follows that γ̂

p−→ γ0 by Theorem 2.1 of
Newey and McFadden (1994).

Now,

nα

[(
β̂

′
2,̂δ

′
n

)′ −(β ′
2,δ

′
n

)′]= nα
(
X̂∗′X̂∗)−1 X̂∗′(X̆β2 + X̆0cn−α − X̂∗(β

′
2,c

′n−α)′ + e0)

=
(

1

n
X̂∗′X̂∗

)−1 1

n
X̂∗′((X̆ − X̂)nαβ2 + (X̆0 − X̂γ̂ )c+nαe0)

=
(

1

n
X̂∗′X̂∗

)−1 1

n
X̂∗′ [nα r̂κ2 + (X̆0 − X̂γ̂ )c+nαe0

]
,

where X̂∗ = (X̂,X̂γ̂

)
. From Lemma C.1 in Appendix C,

nα

n
X̂∗′̂rκ2 = nα−1/2 1√

n
X̂∗′̂rκ2 = nα−1/2Op (1) = op(1),

nα

n
X̂∗′e0 = nα−1/2 1√

n
X̂∗′e0 = nα−1/2Op (1) = op(1).

Also, by Lemma C.1 in Appendix C, the continuity of Mγ and the consistency of γ̂ ,

1

n
X̂∗′ (X̆0 − X̂γ̂

) p−→
(

M0
M0

)
−
(

M0
M0

)
= 0,

and

1

n
X̂∗′X̂∗ p−→

(
M M0
M0 M0

)
.

The determinant of the limit matrix of is |M0| |M −M0| > 0 by Assumption II.9. So by the

CMT,
(

1
n X̂∗′X̂∗)−1 p−→

(
M M0
M0 M0

)−1
> 0. In summary, nα

[(
β̂

′
2,̂δ

′
n

)′ −(β ′
2,δ

′
n

)′]=
Op(1)op(1) = op(1). �

Proposition B.2. an (γ̂ −γ0) = Op(1).

Proof. First, note that

Sn (γ )−Sn (γ0)

n1−2α (γ −γ0)
=

ê′ (P∗
0 −P∗

γ

)
ê

n1−2α (γ −γ0)
+2

ê′ (P∗
0 −P∗

γ

)
X̆0c

n1−α (γ −γ0)
+

c′X̆′
0

(
P∗

0 −P∗
γ

)
X̆0c

n(γ −γ0)
.

From Lemma C.2 in Appendix C, uniformly on v/an ≤ |γ −γ0| ≤ B for a sufficiently large

v,
c′X̆′

0

(
P∗

0−P∗
γ

)
X̆0c

n(γ−γ0)
≥ 5

6 d,

∣∣∣∣∣ ê′
(

P∗
0−P∗

γ

)
X̆0c

n1−α(γ−γ0)

∣∣∣∣∣ ≤ d
12 , and

∣∣∣∣∣ ê′
(

P∗
0−P∗

γ

)̂
e

n1−2α(γ−γ0)

∣∣∣∣∣ ≤ d
6 for some positive

constant d with probability approaching 1, where B is a suitably chosen small positive
constant from Proposition B.1 above, so

Sn (γ )−Sn (γ0)

n1−2α (γ −γ0)
≥ d

2

on v ≤ |γ −γ0| ≤ B. Because Sn (γ̂ )−Sn (γ0) ≤ 0, this implies that P(an |γ̂ −γ0| > v) can
be made arbitrarily small for n large enough. �
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Proposition B.3. On any compact set [−v,v],

Qn (ν) = Sn (γ0)−Sn (γ0 +ν/an) �

⎧⎨⎩ 2
√

c′V−
0 cf W1(−ν)− c′D0cf |ν|,

2
√

c′V+
0 cf W2(ν)− c′D0cf |ν|,

if ν ≤ 0,
if ν > 0,

where the W�(ν) are two independent standard Wiener processes on [0,∞) which are
independent of N (0,��).

Proof. Note that

Qn (ν) = ê′ (P∗
ν −P∗

0
)

ê+2n−αc′X̆′
0
(
P∗

ν −P∗
0
)

ê+n−2αc′X̆′
0
(
P∗

ν −P∗
0
)

X̆0c,

where P∗
ν = Pγ0+ν/an is the localized P∗

γ . Similarly, define X̆ν = X̆γ0+ν/an and �i (ν) =
�i (γ0 +ν/an) = 1(qi ≤ γ0 +ν/an)−1(qi ≤ γ0). By Lemma C.3 in Appendix C,

Qn (ν) = −n−2α
n∑

i=1

(
c′x̆i
)2 |�i (ν)|+2n−αc′

n∑
i=1

x̆ie
0
i �i (ν)+op(1),

uniformly on ν ∈ [−v,v]. First, by Lemma A.10 of Hansen (2000),

sup
ν∈[−v,v]

∣∣∣∣∣∣n−2α
n∑

i=1

(
c′x̆i
)2 |�i (ν)|− sign(ν)c′

∫ ν

0
Dγ0+ν/an f (γ0 +ν/an)dνc

∣∣∣∣∣∣ p−→ 0.

So by the continuity of Dγ and f (γ ) at γ0, we have

sup
ν∈[−v,v]

∣∣∣∣∣∣n−2α
n∑

i=1

(
c′x̆i
)2 |�i (ν)|− c′D0cf |ν|

∣∣∣∣∣∣ p−→ 0.

We now show n−αc′∑n
i=1 x̆ie

0
i �i (ν) �

⎧⎨⎩
√

c′V−
0 cf W1(−ν),√

c′V+
0 cf W2(ν),

if ν ≤ 0,
if ν > 0,

and is asymp-

totically independent of θ̂ . The weak convergence is shown in Lemma A.11 of Hansen
(2000), so we focus on the asymptotic independence below.

For ν1 < 0 and ν2 > 0, define

Si = (S1i,S2i,S
′
3i
)′

,

with

S1i = n−αc′x̆ie
0
i �i (ν1), S2i = n−αc′x̆ie

0
i �i (ν2),

S3i = 1√
n

(
κ ′

1viz
′
i,e1iz̆

′
i,≤γ0

,κ ′
2viz

′
i,e2iz̆

′
i,>γ0

)′ =:
1√
n

s3i,

where S3i is the asymptotic random component in θ̂ . By Taylor expansion, for x small,
log(1+ x) ∼ x− x2/2. Taking exponentials and rearranging, we obtain the approximation,

exp(x) ∼ (1+ x)exp
(

x2/2
)

. Fix t := (t1,t2,t′3)′. Define

Tn =
∏n

i=1

[
1+√−1t′Si

]
, Vn =

∑n

i=1
SiS

′
i and Vjn =

∑n

i=1
SjiS

′
ji,j = 1,2,3,
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where by the ergodic theorem,

Vn −E [Vn]
p−→ 0.

Note that

E[Tn] = E
[
E
[
Tn|Fi−1,xi

]]
= E

[
Tn−1E

[
1+√−1t′Sn|Fi−1,xi

]]
= E

[
Tn−1

]= ·· · = E [T1] = 1.

Now,

E

[
exp
{√−1t′

∑n

i=1
Si

}]
= E

⎡⎣ n∏
i=1

exp
{√−1t′Si

}⎤⎦
≈ E

⎡⎣ n∏
i=1

(
1+√−1t′Si

)
exp

{
−1

2
t′SiS

′
it

}⎤⎦
= E

[
Tn exp

{
−1

2
t′Vnt

}]
≈ E

[
Tn exp

{
−1

2
t′E [Vn] t

}]
= E

[
exp

{
−1

2
t′E [Vn] t

}]
,

where for a rigorous justification of the second approximation, see the proof of Theorem
3.2 of Hall and Heyde (1980). Note that

−1

2
t′E [Vn] t = − t21

2
c′
E

[
x̆ix̆

′
ie

2
1i|qi = γ0−

]
cf |ν1|

− t22
2

c′
E

[
x̆ix̆

′
ie

2
2i|qi = γ0+

]
cf ν2 − 1

2
t′3E
[
s3is

′
3i
]

t′3 +o(1),

where the cross term between S3i and S1i(S2i) is n×O(n−1/2n−αa−1
n ) = o(1). As a result,

n−αc′∑n
i=1 x̆ie

0
i �i (ν1), n−αc′∑n

i=1 x̆ie
0
i �i (ν2), and θ̂ are asymptotically independent.

�

Appendix C. Lemmas

Lemma C.1. Uniformly in γ ∈ �,

1

n

n∑
i=1

vîr
′
i1(qi ≤ γ ) = Op(n−1/2),

1

n

n∑
i=1

xîr
′
i1(qi ≤ γ ) = Op(n−1/2),

1

n

n∑
i=1

r̂îr
′
i1(qi ≤ γ ) = Op(n−1),

1

n

n∑
i=1

r̂ie
0
i 1(qi ≤ γ ) = Op(n−1),

which implies that, uniformly in γ ∈ �,

1

n
X̂′

γ X̂γ
p−→ Mγ ,

1

n
X̂′

0X̆0
p−→ M0 and

1√
n

X̂′
γ ê = Op(1). (C.1)
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Proof. First, note that v̂i = xi − �̂′zi = xi −�′zi −
(
�̂−�

)′ zi = vi −
(
�̂−�

)′ zi, that

is, r̂i = (�̂−�
)′ zi. So

1

n

n∑
i=1

vîr
′
i1(qi ≤ γ ) = 1

n

n∑
i=1

viz
′
i1(qi ≤ γ )

(
�̂−�

)

=
⎡⎣1

n

n∑
i=1

viz
′
i1(qi ≤ γ )

⎤⎦Op(n−1/2) = Op(n−1/2),

where �̂ − � = Op(n−1/2) if E
[
zz′] > 0, E

[
‖z‖4

]
< ∞, and E

[
‖v‖4

]
< ∞ by the

martingale difference (MD) CLT (see, e.g., Billingsley, 1961), and 1
n
∑n

i=1 viz′
i1(qi ≤ γ ) =

Op(1) from Lemma 1 of Hansen (1996). Similarly,

1

n

n∑
i=1

xîr
′
i1(qi ≤ γ ) = Op

(
n−1/2

)
and

1

n

n∑
i=1

zîr
′
i1(qi ≤ γ ) = Op

(
n−1/2

)
.

Next,

1

n

n∑
i=1

r̂îr
′
i1(qi ≤ γ ) = (�̂−�

)′ 1

n

n∑
i=1

ziz
′
i1(qi ≤ γ )

(
�̂−�

)

= Op(n−1/2)

⎡⎣1

n

n∑
i=1

ziz
′
i1(qi ≤ γ )

⎤⎦Op(n−1/2) = Op

(
n−1

)
.

Finally,

1

n

n∑
i=1

r̂ie
0
i 1(qi ≤ γ ) = (�̂−�)′ 1

n

n∑
i=1

zie
0
i 1(qi ≤ γ ) = Op(n−1/2)Op(n−1/2) = Op(n−1),

where 1√
n

∑n
i=1 zie

0
i 1(qi ≤ γ ) = Op(1) uniformly in γ ∈ � is from Lemma A.4 of Hansen

(2000).
The statements in (C.1) are implied by

1

n
V̂ ′

γ V̂γ
p−→ E

[
vv′1(q ≤ γ )

]
,

1

n
X′

γ V̂γ
p−→ E

[
xv′1(q ≤ γ )

]
,

1

n
X′

γ Xγ
p−→ E

[
xx′1(q ≤ γ )

]
,

and

1√
n

V̂ ′
γ ê = Op(1),

1√
n

X′
γ ê = Op(1).
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Now,

1

n
V̂ ′

γ V̂γ = 1

n

n∑
i=1

v̂îv
′
i1(qi ≤ γ )

= 1

n

n∑
i=1

viv
′
i1(qi ≤ γ )− 1

n

n∑
i=1

(̂
riv

′
i +vîr

′
i
)

1(qi ≤ γ )+ 1

n

n∑
i=1

r̂îr
′
i1(qi ≤ γ )

= 1

n

n∑
i=1

viv
′
i1(qi ≤ γ )−Op(n−1/2)+Op(n−1)

p−→ E
[
viv

′
i1(q ≤ γ )

]
,

where the convergence is from Lemma 1 of Hansen (1996). By a similar argument, we can
show

1

n
X′

γ V̂γ = 1

n

n∑
i=1

xîv
′
i1(qi ≤ γ )

= 1

n

n∑
i=1

xiv
′
i1(qi ≤ γ )− 1

n

n∑
i=1

xîr
′
i1(qi ≤ γ )

p−→ E
[
xiv

′
i1(qi ≤ γ )

]
.

The convergence 1
n X′

γ Xγ
p−→ E

[
xx′1(q ≤ γ )

]
is implied by Lemma 1 of Hansen (1996).

Finally,

1√
n

V̂ ′
γ ê = 1√

n

n∑
i=1

(vi − r̂i)
(̂

r′iκ2 + e0
i

)
1(qi ≤ γ )

= 1√
n

n∑
i=1

vie
0
i 1(qi ≤ γ )−√

n

⎡⎣1

n

n∑
i=1

vîr
′
i1(qi ≤ γ )

⎤⎦κ2

−√
n

⎡⎣1

n

n∑
i=1

r̂îr
′
i1(qi ≤ γ )

⎤⎦κ2 −√
n

⎡⎣1

n

n∑
i=1

r̂ie
0
i 1(qi ≤ γ )

⎤⎦
= Op (1)−Op (1)−Op

(
n−1/2

)
−Op

(
n−1/2

)
= Op (1),

where the result 1√
n

∑n
i=1 vie

0
i 1(qi ≤ γ ) = Op (1) uniformly in γ ∈ � in the last equality

is from Lemma A.4 of Hansen (2000). Similarly,

1√
n

X′
γ ê = 1√

n

n∑
i=1

xi

(̂
r′iκ2 + e0

i

)
1(qi ≤ γ )

= √
n

⎡⎣1

n

n∑
i=1

xîr
′
i1(qi ≤ γ )

⎤⎦κ2 + 1√
n

n∑
i=1

xie
0
i 1(qi ≤ γ )

= Op(1)+Op(1) = Op (1) .

�
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Lemma C.2. With probability approaching 1, inf
v/an≤|γ−γ0|≤B

c′X̆′
0

(
P∗

0−P∗
γ

)
X̆0c

n(γ−γ0)
≥ 5

6 d,

sup
v/an≤|γ−γ0|≤B

∣∣∣∣∣ ê′
(

P∗
0−P∗

γ

)
X̆0c

n1−α(γ−γ0)

∣∣∣∣∣ ≤ d
12 and sup

v/an≤|γ−γ0|≤B

∣∣∣∣∣ ê′
(

P∗
0−P∗

γ

)̂
e

n1−2α(γ−γ0)

∣∣∣∣∣ ≤ d
6 , where d is a

positive constant.

Proof. The proof is exactly the same as the proof of (A.33), (A.34), and (A.35) of CH;
just note that X̆′

0,X̂γ ,X̂⊥, and c play the roles of their G0,Ẑγ ,Ẑ⊥, and c, respectively. Note

also that the proof of CH requires nα
(
β̂2 −β2

)
= op(1) and nα

(̂
δn − δn

)
= op(1) which

are shown in Proposition B.1 of Appendix B. �

Lemma C.3. Uniformly for ν ∈ [−v,v],

n−2αc′X̆′
0
(
P∗

0 −P∗
ν

)
X̆0c = n−2α

n∑
i=1

(
c′x̆i
)2 |�i (ν)|+op(1),

n−αc′X̆′
0
(
P∗

0 −P∗
ν

)
ê = −n−αc′

n∑
i=1

x̆ie
0
i �i (ν)+op(1),

ê′ (P∗
0 −P∗

ν

)
ê = op(1).

Proof. The proof is the same as that of Lemma 5 of CH; just note that x̆i, êi and e0
i

play the roles of their gi,̂vi and vi, respectively. Be careful that ν is assumed to be positive

in Lemma 5 of CH; for ν < 0, n−2αc′X̆′
0

(
P∗

0 −P∗
ν

)
X̆0c = −n−2α

∑n
i=1
(
c′x̆i
)2

�i (ν), so
here we use |�i (ν)| instead of �i (ν). �
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