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AN EXTENSION OF KESTEN'S GENERALISED LAW
OF THE ITERATED LOGARITHM

R.A. MALLER

Let X. be independent and identically distributed random

variables with S = X + #„ + ... + X . We extend a classic

result of Kesten, by showing that if X. are in the domain of

partial attraction of the normal distribution, there are

sequences a and B(n) for which

-1 = lim inf (s -a )/B(n) < lim sup (s -a ) /B(n) = 1
n n n*+™ n n

almost surely, and the almost sure limit points of (5 -a )/B{n)

coincide with the interval t-1, l] • The norming sequence B{n)

is slightly different to that used by Kesten, and has properties

that are less desirable. The converse to the above result is

known to be true by results of Heyde and Rogoz i n.

Let X. be independent and identically distributed random variables

with distribution F , and let 5 = X + X + ... + X . In 1968 Heyde

[2] and Rogozin [S] showed that if F is not in the domain of partial

attraction of the normal distribution (cf. Levy [5], p. 113) then

necessarily lim sup \S -6 \/y(n) = +°° almost surely, or (S -6 )/y(n) •*• 0

almost surely, where 6 and Y ( " ) are constants. Kesten [4] in 1972

proved the converse to this, thus giving the following elegant
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generalisation of the classical law of the iterated logarithm: F is in

the domain of partial attraction of the normal distribution if and only if

there is a positive sequence yin) and constants 6 satisfying •

p(s 2 6 ) 2 ir , P(S 5 6 1 < TT for some TT i (0, l) such thatK n n1 K n nJ

-» < lim inf [s -6 )/yin) < lim sup [s -& )/y(n) < +<*>
nM<x>

 n n
 M*-+oo

 n
M-*-+oo

almost surely.

The purpose of the present paper is to give the following extended

version of the above result, which partially answers the problem on page

717 of 141.

THEOREM 1. F is in the domain of 'partial attraction of the normal

distribution if and only if there is a positive sequence B{n) + +°° such

that

-1 = lim inf [s -a )/B(n) < lim sup (s -ct )/B{n) = 1

almost surely, where a = n \ udF(u) . Furthermore the almost

J|M|5B(n)
sure limit points of [s -a )/B(n) are precisely the interval [-1, l] .

Our proof of Theorem 1 is based on the methods of Kesten but differs

in detail. The norming sequence Bin) we use, though derived from

Kesten's y(n) , is defined differently and, unlike y(n) , fails to have

—̂ ~+£

the property that n 2 Bin) is nondecreasing for 0 < e < % . We discuss

this point further following the proof of Theorem 1.

Our method does not depend on symmetrisation of the random variables

in an essential way. It can be shown as in [4] that the centering sequence

a may be replaced by any sequence 6 for which P[S > 6 ) 5 TT and

P[S £ 6 ) 5 TT for some IT t (0, l) . Thus a may be replaced by the

median of S
n

We derive the recurrence part of Theorem 1 from Lemma 1 below, which

is a modified version of the criterion of Binmore and Katz (Theorem 2 of

[3]) for the recurrence of S . Our result is given in a slightly more

general form than is required for the proof of Theorem 1, since i t is hoped
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that i t may have other applications.

We now prove Theorem 1. The statements and proofs of the lemma just

mentioned, and of a second lemma we use (which i s a version of Levy's

inequality 16, p. 25§]), follow th i s proof.

Proof of Theorem 1. We need only give the sufficiency part of the

proof, so suppose F i s in the domain of par t i a l a t t rac t ion of the normal

dis t r ibut ion . Thus there i s a sequence £, + +°° for which

where

V(x) = f u2dF{u) - | udF{u)\ .\
J

-2/eFixing £ with 0 < £ < h we can assume £, 2 k

Define a sequence r^ t -H*> by v^= l o g J ?^ ^fe^^fcH (^

denotes the integer part of x and log ? the logarithm to base 2 ) , so

that

2 k 5

and define B(n) by

5(n) = 2 *"V2 log kV\x.) when 2 * < n 5 2 K .
If

Since V i s ultimately nondecreasing, i t is no res t r i c t ion to assume that

B(n) i s nondecreasing for n > 1 . Now we truncate at x., : l e t

X*: = X. if \X.\ 5 x, , 0 otherwise, l e t
(s u is f\

h = EXi = f

and note that A. has variance
If
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x,

Hence i f S =XJ + xX+...+X,ve have by the Berry-Esseen theorem

(Fel ler [7, p . 5k2l), i f r > 1 , k > 1 , and *(ar) = (2ir)~* [ e " ^ c
' - 0 0

that

(1) sup
_oo<x<+co I V 2

-2rB, < xV2rv{x )[•-$(*)

say.

Suppose r7 - £ log0fe < r £ r, . Then since for some constants c_ ,
rC <- K. U

e > 0 ,

we have

so that , because e < % ,

f5 C I 2

Also if

= 2 fe/2l/2 log kV[xk) 2 i / / a log ^

so i t fo l lows from ( l ) wi th x = aV2 log k , a > 1 , t h a t
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2 1

-

V

log

log *)

using the approximation 1 - $(x) 2 2e , valid, when x > 2 . I t is

easy to check that

while since

we have

(2)

2VP[\X\ > x ) < 2
fe>i

= I ij = I *"1/2e <

E" lSuppose ?k_^ < r 5 rfe - £ l o g ^ . By Chebychev's inequality, if

a > 0 ,

https://doi.org/10.1017/S0004972700006249 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006249


398 R.A. Ma I I e r

y

because B (2 ) = 2 (2 log fcK(a;,)) when r , < r £ r, . Again since

Y. Y, 2 P[\x\ > X,) < +°° , we can ignore the truncation, and

together with (2) the inequali ty just derived gives

(3) I Z P\S -2rB, > 03(2^)} < +<» when a > 1 .

Now we need the following argument: replacing X. by -X. we see

from (3) that

-2rB. < -<iB(2r]| < -H» when a > 1 ,

— k-1

so

Z Z n 5 " ^ B , > aB(zT) \ < +°° when a > 1 .

Letting s be a symmetrisation of S in the usual way, th i s means

< -t°° , and hence by Lemma 2 of Kesten [ 4 ] ,

lim sup /B(n) S It almost surely. Applying Lemma to of [4] now gives

S^/B{n) -£• 0 , so (S - a j /B(«) -2+ 0 where a = « udF(u) by
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Loeve [6, p. 290]. Noting that 2 v[xA/x, > %?7 •* +°° shows that

B(2 )/X, •* +°° , and so for k large enough,

/B{2k) = 2 k f udF{u) /3{2k)

5 2 kP[\x\ > x ) S ? J - 0 ,

which means we can replace 2 $, by a in (2) and deduce that

2 K

£ P\S -a > aB(2 K) \ < -KO for a > 1 . Since [S -a )/B(w) - ^ 0 ,
K-± ^ 2 2 •'

we can apply a version of Levy's inequality (Lemma 2 below) to obtain from

th i s that for some k > 1 ,

Q-,7-2

(5 . - a . ) > aB{2 k) I < •*«.

for a > 1 . By the Borel-Cantelli lemma, then,

lim sup max (S.-a.)/B(2 ) 2
&-*-+°° v 3 3

almost su r e ly . Now, given any n > 1 , choose k = k{n) so t h a t

2 " 1 < n S 2 ; then F(n) = B(2 fe) , and so we ob ta in ha l f of what we

want:

lim sup (S -a )/B(n) 5 lim sup max (s . -a . ) /B(2
¥1VLl-Vt t » L 1^« « If tl

almost s u r e l y .

Now l e t a < 1 , e > 0 , a + e < 1 , a - e > 0 . Applying ( l ) for
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r = r^ gives

\Sk - a € ( a - E , a+z)J 2k2 l o g fe/(x ) I 2 ( 2 T I ) " % f a " * "
it u J r

I f
fey. Jj

where J = (a -e , a+e)V2 log k . Since £ I e du diverges for a
k>

and £ as defined, while Y, ^ < +00 , as shown ea r l i e r , we obtain (once
Zcil rk

again ignoring the truncation)

T PiS ^L i (a-

An application of Lemma 1 now will give that [S -a J/B(n) i s

recurrent a t a if 0 < a < 1 , providing we verify the conditions of the

lemma. If y > 1 and k i s large enough,

Y> Y> Yl

k\ —2

for k 2 k , since i t is clearly no loss of generality to assume

&+1 k
2 - 2 -»• +°° . Thus

x = yQ 5 1 and feQ i s so l a rge t h a t 2 * x < |2 ^MA| 5 2 * for

S[2 fey]/B(2 k) > e 2 for y > ux , fc 2 fcQ . I f

1 < [2\] -
2 % Q \/B{2 *) = 1 ; thus B[2 k\i]/B[2 k) = 1 for

uQ S y < 1 , fc 2 & Thus taking Z? (y) = 1 , b (y) > E~ , X = 2 ,

fci L , we deduce from Lemma 1 that (5 -a )/B(n) € (a-£, a+E) inf in i te ly

often with probabi l i ty 1 , so [S -a )/B(n) i s recurrent at a l l points ofS a )

(0, l) and hence lim sup (S_-a )/B(n) > 1 almost surely. We proved_a

earlier that lim sup (5 -a ) /B(n) 5 1 almost surely, so
n+t» n n

lim sup [S -a )/B(n) = 1 almost surely. Replacing X. by -X. shows
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t h a t [S -a )/B(n) i s r e c u r r e n t a t a l l p o i n t s of ( - 1 , 0) , andS a

lim inf (5 -a )/Bin) = -1 almost surely. The recurrence at 0 follows
n n
5 a
n n

since [S -a )/B{n) -£•+ 0 . This completes the proof of Theorem 1.

REMARKS, ( i ) The sequence B(n) we used in Theorem 1 i s defined

differently to Kesten's y(n) , and i t has properties which are less

desirable. Since i t i s constant on large subintervals, n ! Bin) i s not

nondecreasing for 0 < e < % , whereas n 2 y(n) i s nondecreasing for

0 < e < h . If we try to use y(n) in the proof of Theorem 1, we can only

obtain a par t ia l r e su l t . In fact , if x, and r, are the sequences

defined in the proof, define Y*(n) by

= ns 2 KVe , k_x k

Y*(n) = ns 2 KV2 log kV[xk) , when 2KX<n±2K ,

where 0 < z < h (Y(") has (3/2) log k , instead of 2 log k ). Then by

the method of Theorem 1 we can show, under the same assumptions, that

[S -a )/y*(n) is recurrent at all points of [-1, l] , and thus that

lim sup [S -a )/y*(n) t 1 almost surely; but we only obtain
n n

S a )
n n

l im sup \S -a )/y*{n) - 2 almost s u r e l y . I t seems a reasonab le con jec tu re
n n

that the resul t of Theorem 1 actually holds when Bin) i s replaced by

Y*(«) •

( i i ) If [X .) i s a sequence of ijitegers we introduce the notation
0

\k ., i 2 j] to mean the collection \X., X. . , . . . } , and we define

P{S^ -cxx € J^ inf in i te ly often}
3 3 3

= lim P{S -a € J for some n € (\ . , £ > « / ) }
j+4oo n n n %

where I are any in tervals .

Lemma 1 is a modification of Theorem 2 of [3] in which we allow for

centering of S , a wide class of nonning sequences, and the fact that

recurrence can be deduced from behaviour on a subsequence. We only need to

consider nondecreasing norming sequences.
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LEMMA 1 . Suppose a and B{n) are constants, with B(n) > 0 ,

B(n) + +°° , for which (i) of Lemma 2 holds. Let (A.) be a sequence of
3

integers satisfying X ,/X. > q . . , where q . •+ +°° as j -*• +°° , for which
3 I* 3-i- 3

B[\iX.]/B[x.) 2 1/b ( u ) for M € [u, l j and B[VX.]/B[X.) > & ( y ) for
3d ^ 3 3 ~

\i £ 1/MO 51 1 J /oi" some y € ( 0 , 1) a«^ some real valued functions b

and b . Then if b > a > 0 , (i) implies (ii) and (ii) implies (Hi):

(i) P{SX -a^ (. (a, b)B(X.) infinitely often) = 1 ;
3 3 °

(ii) Y P{S, -a, € (a, b)B(x.)} = +~ ;

(Hi) p\sn-an € [a-z-b/b_[£~X), bb+(l-e)+e)B(n) infinitely often\

= 1 for every e i [o, 1-MQ) .

Proof of Lemma 1. It is easy to see that (i) implies (ii) , so let

(ii) hold. Fix e > 0 , e < 1 - vi_ , and let I = (a, b) ,

I' = (a-z-b/b (e~ ) , bb+(l-e)+e) . If s > 1 is an integer, (ii) implies

I P{S - a SIB[\)}

8-1
I I HSX -ax € JB(X )}

so there is a t € [0, s) for which

-a
A

Fix s so large that <? - l i e " , and define the disjoint sets
o

so that
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P[*d) - } u € r P[Sn-*n * IB{n) for n

By independence and stationarity, the probability in the integrand equals

(5) PK_X. -VX. /K-A. , " W J
JS+t JS+t JS+t JS+t

for n € (A ( i + l ) s + t , i > j)}

How when n is one of the numbers A, . •. . , i 5 j ,

1 Zn • a n d

which means Z?S(n) - UB[\ . g + t ) S fcfe+(l-e)s(n-X . g + t ) when M 2: a > 0 .

Similarly, n > \ d + l ) s + t means n - A j s + t > ( ^ - l ) ^ ^ > *~\8+t ,

which means

oB{n) - uB

By (i) of Lemma 2, there are integers n , j ' , for which

s(n-A. ) ^sfe^A. .] > ft (E^BTA. J

KX. n-k. +l-e) SeB(n-X )
js+t js+t J

if n > X . > j , n > n , and n is one of the numbers A,. *

i - j . Thus we see that if s and j are larger than some fixed

integers, the probability in (5) is

A . . ^
js+c

* ( ^ f o r w 2

n B * J'B(n) for „ ,

> P{Sn-an $ I'B(n) for n >

This means
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P(E.) P{Sn-an f I'BM for „ >. g j

s a * XB(n) for „ > V l } P { S x . -a € IB ( X )

and since the B1. are disjoint, summing over j gives
3

J'B(n) for n > ^ - l } | P{sx -ax _ € i3(X )

which implies, by (h), that P{S -a $ I'B(n) for n > q -l) = 0 . Since

qs -*- +°° as s •+ +°° , we now have P{S -a 6 I'B(n) infinitely often} = 1 ,

as required.

REMARKS. (i) Lemma 1 simplifies if, for example, the Bin) are

assumed to be regularly varying with positive index, that is,

g
B[n\i]/B(n) •*• p (n •* +°°) for p > 0 for some 3 > 0 . Then X. can be

3

taken to be the geometric subsequence [X ] , where X is any number

greater than 1 , and (Hi) simplifies by omitting b and b altogether

(equivalently, putting b_(e~ ) = +°° , b+(l-e) = 1 , which can be achieved

at the expense only of replacing e by 2e in (Hi)) .

( i i ) The restriction a S 0 can be easily removed from Lemma 1, but

i t does not seem that (ii) can be replaced by the slightly weaker

condition

(ii') Y p{s
w-°t

n
 € <a> b)B(n) for some n € [X ., X ) } = +°°

unless the sequence X . grows at most as rapidly as a geometric sequence.
3

LEMMA 2. Suppose [s -a }/B{n) -&-+ 0 , where a and B(n) are

constants with Bin) > 0 , B{n) + +°° . IZTzen /or1 eueri/ e > 0 , e < 1/6 ,

there are constants nQ( e), kA z) , n > k , for which n > n implies

for every real x ,

(i) max |« - a , - a 7 | < hcB(n) , and

(ii) (l-e)P{ max ( s , - a j > xB(n)} 5 PJ5 -a 2 (a:-6e)B(n)} .
fe<fes K K n n
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Proof o f Lemma 2 . Le t 0 < £ < 1/6 and cons ider

5 P{S -a < -zB{n)} + P{sv-a >
Yl Yh K. K.

where T 7 = S - S - S , . Since [S -a )/B(n) -2->- 0 there is a
rik n k n-k *• n n'

k(z) 2 1 for which P{|S,-a, | > %eB(k)} < e if k > k . Hence when

n - k 5 k , the first two probabilities in the last expression are each

less than e . The third probability is also, if n - k > kQ , less than

E , while if n - k - k , it can be made less than e by taking n 5 «_.

for some WQ(£) - 1 (whatever the value of k £ n ) since only a finite

number of the X. are being summed. Finally by stationarity

= p( ^ h ~ % h > e B ( n ) } 5
*-i=w-fe+l i = l J

if n > k > k . Thus we have shown that P{a -a,-a , > heB(n)} < 6 E < 1
U Yl K YL~K

for k - fc < w , n - M- , so this probability is actually zero. A

symmetrical argument gives similarly a - a7 - a , 2 -heB(n) , and these

two together prove (i).

To prove (ii) we proceed as in the proof of Levy's inequality. Using

(i), we have for n t n ,

an > (x-6e)B(n)}

n
> P U { max (S.-a.) < xB(n), S.-a.Z xBW} n {S S.-OL . > -2£B(n)}

fc k^isj-x % ^ J J n 3 n-3

= E say.

Note that

fy } > P ^ ^ . ^ ^ . > -2EB{n-j)} > 1 - e
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i f n - 3 > kQ , while i f 3 5 n S kQ + 3 , p{s ^ - a ^ > -2eB(n)} > 1 - e

for n > n since only a f in i t e number of the X. axe being summed.

Hence

n
P{S-a > (ar-6e)B(n)} > (l-e) I P{A.) = (l-e)P{ max

" " jk 3 k

completing the proof. (See [7] for another version of Levy's inequality.)
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