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AN EXTENSION OF KESTEN’S GENERALISED LAW
OF THE ITERATED LOGARITHM

R.A. MALLER

Let Xi be independent and identically distributed random

variables with Sn = Xl + X2 + ...+ Xn . We extend a classic

result of Kesten, by showing that if Xi are in the domain of
partial attraction of the normal distribution, there are

sequences 0O, and B(n) for which

-1 = 1lim inf (Sn—an)/B(n) < lim sup (Sn—an)/B(n) =1
n>+o N>+

almost surely, and the almost sure limit points of (Sn—an)/B(n)

coincide with the interval [-1, 1]} . The norming sequence B(n)
is slightly different to that used by Kesten, and has properties
that are less desirable. The converse to the above result is

known to be true by results of Heyde and Rogozin.

Let Xi be independent and identically distributed random variables
with distribution F , and let S =X + X, + ... + X, . In 1968 Heyde
(2] and Rogozin [8] showed that if F is not in the domain of partial
attraction of the normal distribution (ef. Lévy [5], p. 113) then

necessarily lim sup ISn—6n|/Y(n) = 42 galmost surely, or (Sn-én)/Y(n) >0
almost surely, where Gn and vY(n) are constants. Kesten [4] in 1972

proved the converse to this, thus giving the following elegant
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generalisation of the classical law of the iterated logarithm: F 1is in
the domain of partial attraction of the normal distribution if and only if

there is a positive sequence Y(n) and constants 6n satisfying -

> < <
P(Sn = 6n) zm, P(Sn = Gn] <=7 for some T € (0, 1) such that

— < 1lim inf (S -8 )/y(n) < lim sup (S -8 )/y(n) < +o
400 non oo non

almost surely.

The purpose of the present paper is to give the following extended
version of the above result, which partially answers the problem on page

717 of [4].

THEOREM 1. F <s in the domain of partial attraction of the normal

distribution i1f and only if there is a positive sequence B(n) + +» such

that
-1 = 1im inf {S -a_)/B{n) < lim sup (S -o }J/B(n) =1
almost surely, where a =n J udF(u) . Furthermore the almost
lul|<B(n)

sure limit points of [Sn—an)/B(n) are precisely the interval [-1, 1] .

Our proof of Theorem 1 is based on the methods of Kesten but differs
in detail. The norming sequence B(n) we use, though derived from

Kesten's y(n) , is defined differently and, unlike +vy(n) , fails to have

-%+e . . .
the property that = B(n) 1is nondecreasing for 0 < € < % . We discuss

this point further following the proof of Theorem 1.

Our method does not depend on symmetrisation of the random variables
in an essential way. It can be shown as in [4] that the centering sequence
o, may be replaced by any sequence 6n for which P(Sn > 6n) > 7 and
PLSn < Sn) s m for some Tm € (0, 1) . Thus o, may be replaced by the
median of S .

n

We derive the recurrence part of Theorem 1 from Lemma 1 below, which

is a modified version of the criterion of Binmore and Katz (Theorem 2 of

[3]) for the recurrence of Sn . Our result is given in a slightly more

general form than is required for the proof of Theorem 1, since it is hoped
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that it may have other applications.

We now prove Theorem 1. The statements and proofs of the lemma just
mentioned, and of a second lemma we use (which is a version of Lévy's

inequality [6, p. 2591), follow this proof.

Proof of Theorem 1. We need only give the sufficiency part of the
proof, so suppose F is in the domain of partial attraction of the normal

distribution. Thus there is a sequence xk + 40  for which

2
g, = o P(1X] > = ) /v(z) >0,
where
2
T, X
V(x) = J u“drF(u) - J udF{u)
-z -z
. R -2/¢
Fixing & with 0 < ¢ < % we can assume Ek < k

Define a sequence ry + 42 Dby r, = [}082{C23/u32/v(xk)I] ([x]
denotes the integer part of x and log2 the logarithm to base 2 ), SO

that

r r
-3/bf 2 £
2 k< CkB/ ka/V(xk)) = gk/P(|X| > xk] <22k,

and define B(n) by

r

r
B(n) = 2 k/zVQ log kV]xil when 2 K1 <<k

Since V is ultimately nondecreasing, it is no restriction to assume that

B(n) 1is nondecreasing for n = 1 . Now we truncate at z let

xﬁ =X, if lXil S @ , O otherwise, let

T
- EA}; = j wdr(u)
_xk

and note that Xﬁ has variance

https://doi.org/10.1017/50004972700006249 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006249

396 R.A. Maller
x
2 k
2 2 2
E[A};] - B = J_x wodr(u) - B = V(z) .
k

Hence if Sz = X;f + X]2( + ... + Xs , we have by the Berry-Esseen theorem

X 2
(Feller [1, p. 5k2]), if =21, k=21, and &(x) = (211)_}5J e gy

that -
(1) sup P{Skr-Zer < xV QPV(xk) }-é(x) l
—oo< <4 P
< 3E|{;—Bk|3/2”/zv3/2(xk) =X,
say.
Suppose rk - e-llogzk <r= 7 - Then since for some constants e »
ec >0,
x
E‘Xﬁ—ﬁi ’ < cOE”Xi? ’ s ey J_:: uzdF(u) < czka(xk) ,
k
we have
Lf, = c{xi/fV[xk] }% = cE(Pk—r)/g{xi/;kV(xk) }% < c[;k-rﬂcz/h)%
< c[zkl/eci’/h)% < cf /e
so that, because € < %
v Yy tksede? ¥ k‘l/l‘elogzk < 4 .

k=1 1

- k=1
r, -€ "log 2k<r$rk

Also if 7 - e'llogzk <r=p ,

r
B(2r] =2 k/ V2 log lexk| = \/2112 log kV[:L'k) ’

so it follows from (1) with x =avV2log k , a > 1 , that
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k=1 rk-e’llog2k<r§rk 2
=2
k=1

A

>

k=1
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28, > aB(2” )}
. ¥ P{Skzp-ersk > af 22 log kV(xk)}
r,-€ log2k<r§rk
¥ {L§+1-¢(a 2 log k)}

rk-e-llog 2k<r§rk

2
< 4o+ 2¢7T Y k™ logk <+,
k=1
_ 2
using the approximation 1 - &(zx) < 2e , valid when x = 2 . It is

easy to check that
P{szr_e”sk > aB(ZP]}

while since

A

p{s;_zrsk > aB(Zr)} + 2ZP(Jx] > =) ,

) Y FR(lx] >x) =2 ¥ 2 kp(|x] > z,)
<<
k=1 T _ Ty k=1
% -1/2¢
=y g = ¥ Kk <
k=1 k=1
we have
(2) Y y pis -2'B >a3(2"]}<+m.
K1 e iog kersr 2" «
k5 OBy

Suppose rk—l <r:= Pk - e-llogek By Chebychev's inequality, if

a>0

b
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% Y P{Sk _2'g, > aB(Zr)}
L, e e iog k2 ¢
k=1 TR TOB2
a2 Y Y 872 (2")2" (=;)
Lo, pmr e Mog k
k-1 "k €2
r-r
=a? ¥ ) 2 ¥(10g 1)
k= -1
= Py <r=r-€ log2k
<2472 Y (log k)t l/e < +®
k=1
2(,r "k
because B (2 ) =2 (2 108 kV(xk)) when r, , <r =r, . Again since
Z: z: ZPP(fXI > xk] < +® | we can ignore the truncation, and
kz1 r’k_l<r5rk

together with (2) the inequality just derived gives

(3) > Y P{SZP—ZPBk > aB[Ep)} < +o when q > 1 .

k=1 rk_l<rirk

Now we need the following argument: replacing Xi by —Xi we gee

from (3) that

5 ¥ P{szr-z”sk < _aB(z”)} < 40 when a>1 ,

k=1 Pk_l<r5rk

SO

>aB(2r)}<+°° when a > 1 .

& B,

Letting S‘: be a symmetrisation of Sn in the usual way, this means

Z

> 2aB(2r)} < #° _ and hence by Lemma 2 of Kesten [4],

11m sup |Ss| /B(n) = almost surely. Applying Lemma % of [4] now gives

SZ/B(n) £ 0, so (Sn-an) /B(n) £+ 0 where a, = udf(u) by

g
IuISB(n)
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"k 2 3/h
Logve [6, p. 290]. Noting that 2 V(xk) /xk > %C; -+ +o ghows that

r
3(2 k] /-’L’;< + +0 . and so for k large enough,

r r r r
2 kBk-a » 1/B(2 Ky = ok I udr(u) | /8(2 %)
2 k "k
xk5|u|EB(2 )
"k
= 2 “p(|x| >:x:k] =¢?+0,
"k
which means we can replace 2 Bk by a in (2) and deduce that
k
2

r
p{s o >aB(2X)} <4 for a>1 . Since (s - )/B(n) 2> 0,
I S S mon

we can apply a version of L&vy's inequality (Lemma 2 below) to obtain from

this that for some ko =1,

r
ZP{ max (S-a)>aB(2k) < 4o
k=1 L I’k
<4<
ko_J_Q
for a > 1 . By the Borel-Cantelli lemma, then,
"k
lim sup  max (S—a) /3(2 ) =1
k>4 ry J J
koijSZ

almost surely. Now, given any 7n = 1 , choose k = k(n) so that

Tk-1 "k "k
2 <m<2"; then B(n) = 3(2 ) , and so we obtain half of what we
want:
. Ty
lim sup (S = )/B(n) < lim sup max (S.-a) /B{2%) =1
nn i
N>+ N>40 r

. k
<<
kO.J_2
almost surely.

Now let a<1, €>0, a+€<1, a-¢>0. Applying (1) for
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r = rk gives

r 2
plsk & € (a-€, a+e)V/2 ky log kV(x )} > (2n)'% I e gy - ok
r r k r
27( 27{ I k

where I = (a-€, a+e€)V2 log k . Since Z J e_%u du diverges for a
k=1 T

and € as defined, while z: Lk < 4+®» , as shown earlier, we obtain (once

1 Tk

again ignoring the truncation)

r

( )
y PiS -t ¢ (a-e, a+e)B(2 ]5 = 4o
1 |,k Sk

An application of Lemma 1 now will give that (Sn—an)/B(n) is

recurrent at a if 0 < a < 1 , providing we verify the conditions of the

lemma. If M >1 and kO is large enough,
r r r r
+ -
[z “lme®) = s ¥ m(e k) 2
for k = ko , since it is clearly no loss of generality to assume

"k "k 2
2 -2% > 40 . Thus B[2 *W]/B(2%) 2™ for u= W, k=zky . If

l/ul = ¥, =1 and ko is so large that [ ] for

"k o Tk
kz kg, Bl:2 UC;I/B(2 ) =1 ; thus 3[2 k(2 %) =1 for

r
-2 k
< < = -
uo_u_l,kzko.fmmstakmg b(uw =1, b(u=ce ,Ak-z .
k = ko , we deduce from Lemma 1 that ( )/B n) € (a-e, a+c) infinitely
often with probability 1 , so [Sn—an)/B(n) is recurrent at all points of

(0, 1) and hence 1lim sup (Sn-an)/B(n) > 1 almost surely. We proved
N4

earlier that 1lim sup [Sn—an)/B(n) =1 almost surely, so
4o

lim sup (S - }/B(n) =1 almost surely. Replacing X. by -X. shows
400 non 7 i
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that (Sn—an)/B(n) is recurrent at all points of (-1, 0) , and

lim inf (Sn—an]/B(n) = -1 almost surely. The recurrence at O follows
7400

since (Sn-an]/B(n) L5 0 . mis completes the proof of Theorem 1.

REMARKS. (i) The sequence B(n) we used in Theorem 1 is defined

differently to Kesten's <vy(n) , and it has properties which are less
—%+e

desirable. Since it is constant on large subintervals, n B(n) is not
. ; -k+e . .

nondecreasing for 0 < € < ¥ , whereas n Y(n) 1is nondecreasing for

0<e<% . Ifwetry touse Yy(n) in the proof of Theorem 1, we can only

obtain a partial result. In fact, if xk and rk are the sequences

defined in the proof, define Y*(n) by

r

L o Er r,
y*(n) = n* €2 kV2 log lexkl , when 2 k-1 <ns=s2 k ,

where 0 < e < % (Y(n) has (3/2) log k , instead of 2 log k ). Then by
the method of Theorem 1 we can show, under the same assumptions, that
(Sn-an)/y*(n) is recurrent at all points of [-1, 1] , and thus that
lim sup [Sn—an)/Y*(n) = 1 almost surely; but we only obtain

N0

1lim sup [Sn-an)/Y*(n) < 2 almost surely. It seems a reasonable conjecture
nr40

that the result of Theorem 1 actually holds when B(n) is replaced by
y*(n) .

(ii) 1f (Xj) is a sequence of integers we introduce the notation

(Ai’ 12 j) to mean the collection {Aj’ A ...} , and we define

G4

Pls, =y €1,
i

infinitely often}

= lim P{Sn-an € I for some n € (Ai, iz 4)}
Graeo

where In are any intervals.

Lemma 1 is a modification of Theorem 2 of [3] in which we allow for

centering of Sn , a wide class of norming sequences, and the fact that

recurrence can be deduced from behaviour on a subsequence. We only need to

consider nondecreasing norming sequences.
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LEMMA 1. Suppose o, and B(n) are constants, with B(n) > 0,
B(n) + 4+ , for which (i) of Lemma 2 holds. Let (Aj) be a sequence of

integers satisfying xj/xi 2 q » Where qj +> 42 qgg j + + , for which

J-1
B[ukj]/B(Aj] 2 1/b () for u ¢ (uo, 1] and BEpXj]/B(Aj) = b (n) for
w=z1/uy > 1, for some w, € (0, 1) and some real valued functions b,
and b_ . Then if b >a =0, (i) implies (i1) and (ii) implies (iii):

(1) P{5, -0, .

€ (a, b)B(Aj) infinitely often} =1 ;
J J

(i) Y P{S, -, € (a, bIB(A)} = 4o ;
= . . Jd
Jz0 J d

(i21) P{Sn-an € (a—e—b/b_(e_l], bb+(l—e)+€]B(n) infinitely of%en}

=1 for every e € (0, 1—uo)

Proof of Lemma 1. It is easy to see that (%) implies ({i), so let

(ZZ) hold. Fix € >0, €< 1 - Mg » and let I = (a, b) ,
I' = (a-e-b/b_(e‘l), bb (1-e)+e) . If & 21 is an integer, (i%) implies

o

Y p{5, « eIB(Aj)}

P

Ty ow ()
= P{s - € 18(x, ..}}

£=0 721 Je+t Mjsat Jett

so there is a ¢ € [0, s) for which

() Yy ps - €B(A, )} =+ .
21 Njswt Mjs+e g8+t

Fix 8 so large that gq_ - 12 et , and define the disjoint sets

E.={5, < ¢ IB(n) for n € ( 124,58 - € 1B(A,
Jjs+t “gs+t J

J s+t)}

>‘(i+1)s+t A

so that
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P(E‘J.) = Ju&[ P{Sn_otn ¢ IB(n) for n ¢ (A(i+l)s+t’ A

s -a = uB () }ar{s

>‘j3+t Js+t js+t) A ) uB(A

A js+t)} )

Js+t  “Je+t
By independence and stationarity, the probability in the integrand equals

) P{Sn-kjs+t—an_}\js+t+ (an'}‘js+t_an+a js+t) ¥ IB(n)-us ()‘js+t)

for n € (A(i+l)s+t’ iz=4)} .

Now when 7 1is one of the numbers X(i+l)s+t , 124,

-1

< <
Ajs+t = 9 A(j+1)s+t =&, and

B(”')‘jsw) = B("(l')‘jsw/")) 2 B[(1-€)n] = B(n)/b (1-¢) ,

which means bB(n) - uB(A ) < bb+(l-€)B(n-Aj when u>a >0 .

Je+t s+t]
-1

PO > - . > - . .
Similarly, n Z A(j+l)s+t means n Ags+t (qs l)xgs+t > € xgs+t » SO

-1 -1
B(n-kjs+t) > B[e Ajs+t) 2 b (e )B(xjs+t)

which means
-1
aB(n) - uB(Ajs+t] = aB(n-)\J.s+t) - bB[)\js+t) > (a-b/b (e ))B[n_xjs+t)

By (Z) of Lemma 2, there are integers g jo , for which

la - | = eB(n)/b (1-€) < eB(n-r,_ )
n >‘j3+t "')‘js+t + Je+t
; > A, > 7 > i
if n jo+t Jdog» M7y, and n is one of the numbers A(i+l)s+t ,
12 j . Thus we see that if & and J are larger than some fixed

integers, the probability in (5) is

v
o
—~—
[}

n-A

I'B{n-A.
i T ) o € O

, iz g

A isat i+l)s+t’ )}

= p{s < ¢ 1'B(n-xr. ) for n=
n'Ajs+t n'xjs+t Je+t

P{Sn-an ¢ I'B(n) for n =

A(je1)set)

v

A (j+1)s +t-}‘js +t}
-1}

v
v

P{Sn-an ¢ I'B(n) for n

This means
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P(E.) P{s -o ¢ I'B(n) for n 2 q_-1} J dp{s -a <uB(x,
I non * dua Ajerr Ao Oase)}

-a € 1B(x;_ . .}}

= P{Sn-an ¢ I'B(n) for n = qs—l}P{S et

)‘js+t Js+t

and since the Ej are disjoint, summing over j gives

€ IB(x

A js+t)}

12P{s -a ¢ I'B(n) for n2q -1} Y P{s -a
G s m A Js+t

Js+t
which implies, by (4), that P{Sn-an ¢ I'B(n) for n = qs-l} = 0 . Since
g, > +° as s > +» , we now have P{Sn-an € I'B(n) infinitely often} =1 ,
as required.

REMARKS, (i) Lemma 1 simplifies if, for example, the B(n) are

assumed to be regularly varying with positive index, that is,

Blnul/B(n) ~» uB(n > @) for u >0 for some B >0 . Then Aj can be

taken to be the geometric subsequence [AJ] , where A 1is any number

greater than 1 , and (Z77) simplifies by omitting b+ and b altogether

(equivalently, putting b_[e—l] = 40 b+(l—€) =1 , which can be achieved
at the expense only of replacing € by 2¢ in (iii)).

(ii) The restriction a = 0 can be easily removed from Lemma 1, but
it does not seem that (7Z) can be replaced by the slightly weaker

condition

)} = e

ey €
(i1') jgg P{Sn—an {a, b)B(n) for some n € [Xj, xj+l
unless the sequence Aj grows at most as rapidly as a geometric sequence.

LEMMA 2, Suppose (Sn—an)/B(n) L5 0, where a, and B(n) are

constants with B(n) >0, B(n) + +o , Then for every ¢ >0, ¢ <1/6,

there are constants no(e), ko(e) s Mg > ko > for which n = N implies

for every real =x ,

(i)  max Ian-ak-a < heB(n) , and

|
kySk<n n-k

(22) (1-e)P{ max (S5,-a,) = zB(n)} = P{S —a. = (x~6€)B(n)} .
{kosksn ( X k] xB(n) } {s,-0, = (z-6e)B(n)}
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Proof of Lemma 2. Let O < & <1/6 and consider

P{an-ak_an_k > heB(n)}

P{ (sn_an) - (5o - (5, 1) -5,+5,+5, 4 < -heB(n)}
}

P{Sn-—un < -eB(n)} + P|

IA

50y > eB(n) }

+ P{Sn_k—an_k > eB(n)} + P{Tnk > eB(n)}

where Tnk = Sn - Sk - Sn—k . Since (Sn—an)/B(n) -2, 0 there is a
k () 21 for which P{ISk-akl > %eB(k)} < e if k= k, - Hence when

nzk= kO , the first two probabilities in the last expression are each

less than € . The third probability is also, if n - k 2 k less than

0

€ , while if n - k = ko , it can be made less than € by taking n = o

for some no(e) > 1 (whatever the value of k = #xn ) since only a finite

number of the Xi are being summed. Finally by stationarity

n k
P{Tnk > eB(n)} = P{ yoox. - Y X, > eB(n)} < 2p{ [sk-akl > %eB(n)} < 2¢

i=nk+l ©  i=1
it n>kz ko . Thus we have shown that P{an—ak—an_k > heB(n)} < 6e < 1
for ko fSk<n, n= Ny s SO this probability is actually zero. A
symmetrical argument gives similarly a 6 -op - ;2 -keB(n) , and these
two together prove (%).
To prove (Zi) we proceed as in the proof of Lévy's inequality. Using
(i), we have for n2n_ ,

0

P{Sn_an 2 (x-6g)B(n)}

v

. ]

c
—_

GS._ai) < xB(n), Sj—aj > zB(n)} n {5 -5

; n S % > -2eB{n)}

Note that

P(BJ.] = P{Snjj-an_j > _2eB(n)} 2 P{Sn.j“"n_j > -2B(n-j)} 2 1-¢
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if n-j=zky ,whileif jsnsky+J, Pi{s = -2eB(n)} =1 - ¢

.~ .
n-J n-g

for n = no since only a finite number of the Xi are being summed.

Hence

n
P{s -o_ = (x-6e)B(n)} = (1-€) Pla.) = (1-e)P{ max (S,-a,) = zB(n)} ,
(5, 4 e e, G

completing the proof. (See [7] for another version of Lévy's inequality.)
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