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Dewetting of a corner film wrapping a
wall-mounted cylinder
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In this study, we investigate the stability of a film that is attached to a corner between a
cylinder and a substrate, using a combination of theoretical and numerical approaches.
Notably, we place our focus on flat and thin films where the contact line is almost
perpendicular to the cylinder wall whereas a small angle forms between the contact line
and the substrate, and the film size is smaller than the cylinder radius. The film stability,
which depends on the film size and the wall wettability, is first predicted by a standard
linear stability analysis (LSA) within the long-wave theoretical framework. We find that
the film size plays the most important role in controlling the film stability. Specifically, the
thicker the film is, the less sensitive it becomes to the large-wavenumber perturbation. The
wall wettability mainly impacts the growth rates of perturbations and slightly influences
the marginal stability and postinstability patterns of wrapping films. We compare the LSA
predictions with numerical results obtained from a disjoining pressure model (DPM) and
volume-of-fluid (VOF) simulations, which provide more insights into the film breakup
process. At the early stage there is a strong agreement between the LSA predictions and
the DPM results. Notably, as the perturbation grows, thin film regions connecting two
neighbouring satellite droplets form which may eventually lead to a stable or temporary
secondary droplet, an aspect which the LSA is incapable of capturing. In addition, the VOF
simulations suggest that beyond a critical film size, merging between two neighbouring
drops becomes involved during the breakup stage. Therefore, the LSA predictions are able
to provide only an upper limit on the final number of satellite droplets.
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1. Introduction

The stability of liquid filaments, threads or films is an important branch of fluid
dynamics. The pioneering research dates back to the discovery of the Plateau–Rayleigh
instability, which describes the mechanism governing the breakup of falling fluid
streams into smaller droplets due to their surface-tension-driven tendency of minimising
their surface area (Plateau 1850). The instability problem becomes more challenging
when considering fluid–solid interactions, such as a liquid filament lying upon a solid
substrate (Benilov 2009) or within a groove (Sundin, Zaleski & Bagheri 2021), and
film dewetting on patterned surfaces (Kim & Kim 2018; Martin-Monier et al. 2021),
where complex interfacial dynamics involving topological breakup, coalescence, etc., are
present. A comprehensive understanding of these instabilities and their resulting interfacial
morphology is motivated by a wide range of engineering applications. For example,
the alteration of interfacial morphology induced by these instabilities has the potential
to drive various self- and directed-assembly mechanisms, offering support to advanced
manufacturing techniques in microreactors (Yasuga et al. 2021) and high-density data
storage (Xia & Chou 2009). In addition, knowledge concerning the control of droplet
breakup or coalescence resulting from these instabilities is pertinent to technological
applications such as bubble generation in microfluidics (Yasuga et al. 2021), enhanced
oil recovery (Olbricht 1996) and geological carbon storage (Singh et al. 2022).

The simplest situation to consider would be a liquid filament or rivulet partially
wetting a substrate or a groove, for which the related stability problem has been studied
extensively. In an early study, Langbein (1990) theoretically investigated the stability
of an elongated meniscus attached to solid edges at an arbitrary angle using solutions
of the Laplace equation and geometric constraints. He established a critical meniscus
length beyond which the meniscus becomes unstable. Similarly based on the Laplace
equation, Roy & Schwartz (1999) derived a more general stability criterion where the
filament stability is guaranteed if the capillary pressure is an increasing function of the
filament cross-sectional area. In other words, the stability criterion derived from Laplace
equation is also a measure of whether it is energetically favourable for a film to breakup
or not (Wilson & Duffy 2005). Assuming a shallow liquid film and a small Reynolds
number for the flow, the lubrication approximation has also been widely adopted to derive
time-dependent equations for film thickness evolution (Hocking 1990; Hocking & Miksis
1993). It has been shown that the lubrication approximation yields reasonable predictions
for film flows compared with Navier–Stokes solutions (Perazzo & Gratton 2004). This
approximation allows for the consideration of gravity and moving contact lines, enabling
the modelling of more complex interfacial dynamics. For instance, considering contact
angle hysteresis, researchers have thoroughly investigated the competing effects between
gravity and surface tension on the stability of an infinite rivulet interacting with an inclined
plane (Hocking & Miksis 1993; Benilov 2009). Furthermore, numerical frameworks
based on the disjoining pressure model (DPM) have been developed for filaments of
finite length (Diez & Kondic 2007; Diez, González & Kondic 2009). The results from
using this framework uncovered two dewetting patterns; either the filament shrinks and
eventually forms a single droplet if it is short and thick, or it breaks up into several
subdroplets. Importantly, a close connection to the Plateau–Rayleigh instability was
highlighted, suggesting the same underlying physical mechanisms. Studies employing
similar theoretical and numerical techniques but involving other configurations, such as
a liquid ring on a solid substrate (González, Diez & Kondic 2013; Edwards et al. 2021)
and irregular liquid structures (Huang et al. 2017), have also followed.
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At present, more research is focused on liquid structures interacting with confined
geometries, such as tubes and corners, owing to their ability to guide a specific fluid phase
in a controllable manner, especially in the fields of artificial surfaces and microfluidics.
Studies on the stability of liquid structures trapped within wedges and tubes have been
reported throughout the literature. For instance, Lv & Hardt (2021) explored the stability
of a liquid ring with an arbitrary contact angle in circular capillary tubes, deriving
an analytical stability limit determining whether the liquid ring would merge into an
axisymmetric sessile droplet or a non-axisymmetric liquid plug based on the liquid volume
and contact angle. Employing the lubrication approximation, Yang & Homsy (2007)
theoretically investigated the capillary-induced instability of liquid films attached to a
wedge with an emphasis on the effects of contact line dynamics. Similar studies, such
as that of Chen, Weislogel & Nardin (2006), focused on a wedge with an arbitrary round
corner. Despite these efforts, a more in-depth understanding of various aspects of such
configurations is still warranted.

2. Cylinder-wrapping corner film

The cylinder-plane-corner geometry is the focus of this work as cylinders are commonly
used or encountered in artificial porous media or microfluidic devices (Holtzman & Segre
2015; Zhao, MacMinn & Juanes 2016; Rabbani et al. 2018; Suo 2024). The fluid dynamics
in the corner regions of such geometries play an essential role in flow patterning. Relevant
work has mainly been focused on the process of film formation, i.e. the imbibition along
the corners. This so-called corner flow, which emerges as a specific pattern of fluid–fluid
displacement in porous media (Primkulov et al. 2021), occurs under strong imbibition
(Zhao et al. 2016; Hu et al. 2018) and is also known as the Concus–Finn condition
(Concus & Finn 1969). However, the dewetting process has seldom been given attention
to. Specifically, once beyond the Concus–Finn condition, capillary-induced instability may
occur in the formed wrapping films. The relevant knowledge is crucial for a practical
purpose as highlighted in our prior work (Suo et al. 2022). Artificial textured surfaces,
proposed for anti-icing and antifouling, often feature patterned microstructures within
which stagnant stain films are undesirable. Such capillary-induced instability is expected
to drive the trapped films to break up into distributed small drops, facilitating easy purging
of the stain liquid. Understanding the underlying mechanisms is essential for optimising
the design of functional surfaces.

A film–cylinder system is presented in figure 1(a). It shows a settled film on a flat surface
at a contact angle of 30◦ which is also wrapped around a cylinder at a contact angle of 90◦.
An example of how the breakup of such a film evolves, obtained using a volume-of-fluid
(VOF) simulation, is shown in figure 1(b). One can see how the perturbation in the film
grows over time and finally causes it to break up into four major satellite droplets labelled
on the final state in figure 1(b). Figure 2 depicts a conceptual examination of this instability
mechanism. The perturbation is assumed as a superposition of sinusoidal components with
various wavenumbers. Considering only a single component where the wavenumber is
five, in figure 2(a) the perturbed interface shows two types of regions which are convex and
concave with respect to the equilibrium state. At the convex region (crest), the curvature
(1/Rc

1) is positive, yielding a larger capillary pressure compared with that at the concave
region (neck) where the curvature (1/Rn

1) is negative. Consequently, the liquid tends to
be transported from the convex to the concave region, eventually returning the film to its
equilibrium state. However, the capillary pressure, as determined by the Young–Laplace
equation, also depends on the curvatures in the other principal direction, i.e. 1/Rc

2 in
figure 2(b) and 1/Rn

2 in figure 2(c), which are both positive. The curvature (1/Rc
2) in the
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Figure 1. (a) Numerical realisation of a liquid film wrapping a cylinder. (b) Top views of the morphology
evolution from the initial state to final breakup. The ratio of film size on the cylinder radius is 0.22; the contact
angle on the cylinder and the substrate is 90◦ and 30◦, respectively.
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Figure 2. Schematic of a perturbed corner film from two principal directions: (a) top view; (b) and (c) side
views corresponding to the convex and concave region, respectively.

convex region may become smaller whereas the curvature (1/Rn
2) in the concave region

may become larger due to the perturbation. Thus, the latter effect can counteract the former
and prevent the liquid from flowing from the convex to the concave regions. These two
effects are determined by the wavenumber, wettability conditions and film size. If they
cannot balance each other out, the perturbed component would grow or decay over time,
corresponding to a positive or negative growth rate. In general, the component with the
maximum growth rate would dominate the instability process and eventually pinch the
film into satellite droplets, the number of which can be predicted by the corresponding
wavenumber as shown in figure 1(b).

Modelling the development of this instability and predicting the consequent morphology
patterns would draw a quantitative picture of the combined effects on the film stability. As
such, our work focuses on two questions; first, under what conditions does the corner film
become unstable; and, second, how many satellite droplets are formed once the instability
occurs. In particular, the latter further determines the droplet size and distribution. The
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Figure 3. A schematic of a corner liquid film around a wall-mounted cylinder and the relevant geometric
parameters.

outcomes of this study will have implications for the design of artificial surfaces and other
engineering processes requiring the self-assembly of soft matters. The paper is organised
as follows. In § 3, the long-wave theory scheme is used to formulate the governing
equation of the film thickness and introduce the corresponding boundary conditions. The
equilibrium profile is solved for a certain corner condition, based on which we perform
a standard linear stability analysis (LSA) to obtain the growth rate. The dependence of
growth rate and characteristic wavenumbers on the corner conditions is then thoroughly
investigated. To gain more understanding of interfacial dynamics during the film breakup
process and validate the LSA predictions, a numerical scheme using the DPM for directly
tracking the evolution of film morphology is developed in § 4. In addition, numerical
simulations involving solutions of the Navier–Stokes equations for two-fluid systems using
the VOF method, which abandon the assumptions used in LSA and DPM, are conducted in
§ 5. We ultimately demonstrate to what extent the simplified theoretical model can explain
the phenomena observed in the VOF simulations and explain the applicability of the LSA
predictions.

3. Linear stability analysis

We first develop a mathematical model for describing the evolution of a flat and thin corner
film, obtain its equilibrium state and finally perform LSA. Figure 3 shows a schematic of
the problem under consideration, a liquid film wrapping a vertical cylinder, along with
the relevant geometric parameters including the cylinder radius r1, wetting radius rw and
height hw, contact angle on the cylinder θ1 and on the bottom wall θ2.

3.1. Governing equations
Limiting the configuration to a thin and flat film, we can describe the flow within
the long-wave theory framework, also known as the lubrication approximation, which
requires: (1) the film is thin (rw � r1); (2) the profile slope is small everywhere (θ1 → 90◦
and θ2 → 0◦). In the reported works (Perazzo & Gratton 2004; Mahady et al. 2013),
comparison with Navier–Stokes simulations indicates that the theoretical solution can
provide reasonable results for slope angles smaller than 45◦. Therefore, we limit the
parameter space to θ1 ∈ [75◦, 90◦], θ2 ∈ [15◦, 45◦] and rw/r1 ∈ [0.12, 0.30]. In addition,
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we assume that the characteristic size of the liquid film is smaller than the capillary length
lc = √

γ /ρg, where ρg is the specific weight of the liquid and γ is the surface tension,
so that gravity effects can be neglected. To address the so-called ‘contact-line singularity’
(Shikhmurzaev 2006; Savva & Kalliadasis 2011), we relax the no-slip condition at the
wall boundary by using the Navier-slip boundary condition, which allows the contact line
to slip, i.e.

ur,φ|z=0 = �

3
∂ur,φ

∂z
, (3.1)

where � is the prescribed slip length. Combined with this boundary condition, the
governing equation regarding the film thickness h is built in a cylindrical coordinate system
(r, φ, z). Non-dimensionalising the lengths with r1 and time with 6μr1/γ , a characteristic
time scale for the evolution of the liquid film breaking or recovering from a perturbation,
where μ is the liquid viscosity, gives (Hocking & Miksis 1993)

∂h
∂t

+ ∇ · [h2(h + �)∇∇2h] = 0. (3.2)

At the contact lines on the cylinder (r = r1) and bottom wall (r = r1 + rw), we impose the
Dirichlet boundary conditions expressed as

h(r1, t) = hw(φ, t), (3.3a)

h(r1 + rw(φ, t), t) = 0; (3.3b)

and the Neumann boundary conditions stemming from the wall wettability, i.e. the given
contact angles,

∂h
∂r

∣∣∣∣
r=r1

= − cot θ1, (3.4a)

∂h
∂r

∣∣∣∣
r=rw+r1

= − tan θ2. (3.4b)

The solution of (3.2)–(3.4) is assumed to be a superposition of an equilibrium solution
h0(r, φ) and a perturbation h1(r, φ, t),

h(r, φ, t) = h0(r, φ) + εh1(r, φ, t), (3.5)

where ε � 1. Substituting (3.5) into (3.2), we obtain the static equation for h0,

∇2h0 = −p, (3.6)

where p is a constant representing the capillary-induced pressure difference from the
surrounding gas pressure. Neglecting the higher-order term O(ε2), the perturbation
equation becomes

∂h1

∂t
+ ∇ · [h2

0(h0 + �)∇(∇2h1)] = 0. (3.7)
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Figure 4. Equilibrium interfacial profiles for: (a) rw0 = 0.26, θ2 = 30◦ and θ1 = 75◦, 82.5◦ and 90◦;
(b) rw0 = 0.26, θ1 = 82.5◦ and θ2 = 15◦, 30◦ and 45◦; and (c) θ1 = 90◦, θ2 = 30◦ and rw0 = 0.12, 0.21

and 0.30.

3.2. Equilibrium solution
Considering an axisymmetric solution to (3.6) gives

h0(r) = −pr2

4
+ c1 ln r + c2, (3.8)

where the unknown parameters c1, c2, p and hw0 are determined by the boundary
conditions (3.3) and (3.4), assuming rw0 is given. The parameters are given by

c1 = r2

r2
2 − 1

(tan θ2 − r2 cot θ1), (3.9a)

c2 = r2

2(r2
2 − 1)

[2 ln r2(r2 cot θ1 − tan θ2) + r2(r2 tan θ2 − cot θ1)], (3.9b)

p = 2
r2 tan θ2 − cot θ1

(r2
2 − 1)

, (3.9c)

hw0 = c2 − 1
4

p, (3.9d)

where r2 = r1 + rw0. The wettability condition (θ1 and θ2) and initial film size (rw0),
compose the corner condition, which completely determines the equilibrium interfacial
shape. Figure 4 compares the equilibrium profiles for different θ1, θ2, and rw0. With a
fixed rw0, θ1 and θ2 directly change the interfacial curvature. As shown in figures 4(a) and
4(b), the smaller θ1 and θ2 are (the more hydrophilic the solid walls are) the smaller the
curvature of the meniscus becomes. When the wettability condition is fixed, figure 4(c)
shows that with increasing rw0 the changes in hw0 are relatively smaller, resulting in flatter
corner films.
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3.3. Eigenvalue problem
The LSA is conducted using an equilibrium solution for a certain corner condition. Since
the circumferential length of the film is much larger than its length along the r and z axes
(rw ≈ hw � 2πr1), we can assume the perturbation is a periodic wave along the φ axis.
The perturbation h1 thus takes the following form:

h1(r, φ, t) = ĥ1(r) ei(nφ−λt). (3.10)

In (3.10), n is the azimuthal wavenumber. Importantly, though n is real, only the integer
values of n are physically meaningful as they correspond to the number of formed fingers
which is related to the satellite droplets in the final state. In addition, λ = iσ + ω is the
complex frequency composed of the growth rate σ and the phase speed ω. Consequently,
the perturbation at the boundaries has the following form:

hw(φ, t) = hw0 + εξ1 ei(nφ−λt), (3.11a)

rw(φ, t) = rw0 + εξ2 ei(nφ−λt), (3.11b)

where ξ1 and ξ2 are two coefficients determined by the boundary conditions. Substituting
(3.10) into (3.7), we obtain the eigenvalue problem,

L(ĥ1) = iλĥ1, (3.12)

where

L(ĥ1) = ĉ4(r, n)ĥ1,rrrr + ĉ3(r, n)ĥ1,rrr + ĉ2(r, n)ĥ1,rr + ĉ1(r, n)ĥ1,r + ĉ0(r, n)ĥ1.
(3.13)

The coefficients ĉ0–ĉ4 can be expressed explicitly as

ĉ4 = H0, (3.14a)

ĉ3 = 2H0/r + H0r, (3.14b)

ĉ2 = H0r/r − (2n2 + 1)H0/r2, (3.14c)

ĉ1 = (2n2 + 1)H0/r3 − (n2 + 2)H0r/r2 + H0r(h0rr/r + h0rrr)/h0r, (3.14d)

ĉ0 = H0rh0rrrr + (rH1h0r + 2H0r/h0r)h0rrr/r

+(rH1h0r − H0r/h0r)h0rr/r2 − 2H1(h0r/r)2

+(2n2 + 1)h0H0r/r3 + n2(n2 − 4)h2
0(h0 + 1)/r4, (3.14e)

where H0 = h2
0(h0 + �) and H1 = 2(3h0 + �). The boundary conditions on ĥ1 can be

implemented by substituting (3.10) and (3.11) into (3.3) and (3.4) and only keeping the
linear terms. Specifically, on the cylinder wall,

h0(r1) + εĥ1(r1) ei(nφ−λt) = hw0 + εξ1 ei(nφ−λt), (3.15a)

h′
0(r1) + ĥ′

1(r1) ei(nφ−λt) = − cot θ1; (3.15b)

and on the bottom wall,

h0(r2) + εξ2h′
0(r2) ei(nφ−λt) + εĥ1(r1 + rw) ei(nφ−λt) = 0, (3.16a)

h′
0(r2) + εξ2h′′

0(r2) ei(nφ−λt) + εĥ′
1(r1 + rw) ei(nφ−λt) = − tan θ2. (3.16b)
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The unknown amplitudes ξ1 and ξ2 can be eliminated by solving (3.15) and (3.16). The
explicit expression for the boundary conditions then become

ĥ′
1(r1) = 0, (3.17a)

ĥ′
1(r1 + rw) = ĥ1(r1 + rw)

h′′
0(r1 + rw)

h′
0(r1 + rw)

. (3.17b)

For a given n, to solve (3.12), we map the r space (r1 ≤ r ≤ r1 + rw) onto the ζ space
(−1 ≤ ζ ≤ 1) by

r = r1 + rw

2
(ζ + 1), (3.18)

and correspondingly ĥ1(r) is replaced by g(ζ ). This gives the eigenvalue problem (3.12)
in terms of ζ ,

L(g) = iλg, (3.19)

and g(ζ ) can be discretised as

g(ζ ) =
N∑

i=1

βiϕi, (3.20)

where ϕi are an orthogonal basis and βi are the spectral coefficients. To make ϕi satisfy
the boundary conditions at ζ = ±1, a linear combination of Chebyshev functions Ti is
adopted to form ϕi,

ϕi = T3i−3 + aiT3i−2 + biT3i−1, (3.21)

where the coefficient ai and bi can be determined by substituting (3.21) into boundary
conditions (3.17). The Gauss–Lobatto grid is adopted to discretise the radial space

ζi = cos
(

πi
N − 1

)
, i = 1, 2, . . . , N − 2. (3.22)

Finally, (3.12) is transformed into a generalised matrix eigenvalue problem,

Uβ = λVβ, (3.23)

where Ui,j = L(ζi, ϕj) and Vi,j = ϕj(ζi).

3.4. Perturbation dynamics
By solving the eigenvalue problem, the dependence of λ on n is obtained. Since the solved
phase speed ω of the dominating perturbation modes equals zero, indicating that they
are periodic structures that can grow or decay, we only discuss the growth rate σ for the
following. A resolution sensitivity test determined that N = 200 is required to guarantee
a convergent solution, as shown in figure 5(a). In the nonlinear regime, the interactions
between various modes would generally occur and, thus, further assessment of which
mode would dominate is needed. However, as shown in figure 5(b), the second largest σ

is negative and much smaller than the first one. It suggests that for this problem, only the
leading mode of the LSA would dominate and the largest σ is the one we should focus
on. For what follows, σ represents the largest growth rate unless otherwise specified.
The growth rate curve, σ vs n, quantifies the stability of the film–cylinder system to
various perturbations. Positive σ indicates exponential growth of a perturbation whereas a
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Figure 5. (a) Resolution sensitivity of the largest σ on the grid number N for rw0 = 0.26, θ1 = 90◦ and
θ2 = 30◦. (b) The corresponding largest and second largest growth rate, i.e. σ1 and σ2 vs n with N = 200.
(c) The comparison of the largest σ for various slip lengths.

negative growth rate means that the film is stable with respect to the imposed perturbation.
The rationale of the growth rate curve shape can be explained using figure 2. Overall,
with the wavenumber increasing, the in-plane curvatures, i.e. the stabilising effects
monotonically increases, while the out-of-plane curvatures, i.e. the destabilising effects
become significant only for a specific range of small-value wavenumbers. Therefore, for
the growth rate, a peak appears at a small-value wavenumber and it becomes negative
eventually with the increasing wavenumber. The cut-off (0, nzero) and peak (σmax, nmax)
azimuthal wavenumbers are used for the following to characterise the film stability.
Specifically, the cut-off point, nzero, corresponds to the maximum possible number of
fingers for a given baseflow. Should σ become negative and n > nzero, the corresponding
perturbation would become suppressed. As such, nzero defines the boundary between the
stable and unstable regime. The peak growth rate, σmax, corresponds to nmax and indicates
that the perturbation would grow the fastest and have the largest likelihood of dominating
the instability process. Therefore, nmax is approximately the expected number of emerging
fingers when the film is stimulated by a random perturbation containing a wide range of
wavenumbers. In addition, the growth rate curves for various slip lengths, i.e. � = 10−2,
� = 10−3 and � = 10−4, are compared as shown in figure 5(c). Though � impacts the
values of σ , it does not change the nmax and nzero. Moreover, the curves for � = 10−3 and
� = 10−4 are almost overlapped, suggesting that the effects of � can be neglected when �

is small enough. Thus, for what follows, we set � as 10−3 and focus on the effects of the
corner conditions. Figure 6 shows the growth rate curves for the corner conditions shown
in figure 4. Regarding the wettability effects, as θ1 increases from 75◦ to 90◦ in figure 6(a),
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Figure 6. Growth rate curves for: (a) rw0 = 0.26, θ2 = 30◦ and θ1 = 75◦, 82.5◦ and 90◦; (b) rw0 = 0.26,
θ1 = 82.5◦ and θ2 = 15◦, 30◦ and 45◦; and (c) θ1 = 90◦, θ2 = 30◦ and rw0 = 0.12, 0.21 and 0.30. The arrows
show the direction of increasing θ1 in (a), θ2 in (b) and rw0 in (c).

the growth rate curve tends to be flatter, suggesting that nmax and nzero increase while σmax
decreases.

In contrast to the effect of θ1, σmax increases with θ2, as shown in figure 6(b). González
et al. (2013) suggested an approximate scaling σ ∝ tan3 θ2 for a liquid ring on a solid
substrate, which applies to cases where θ1 = 90◦ as shown in figure 7(a). However,
figure 7(b) shows that this scaling does not hold once θ1 takes other values, e.g. 75◦. Since
the eigenvalue problem is governed by the coefficients ĉi in (3.13) and ĉi ∼ h3

0, the scaling
would require that h0 ∼ tan θ2. According to (3.9), this requirement will only be satisfied
when θ1 → 90◦ and therefore cot θ1 → 0.

Regarding the effect of the film size, as shown in figure 6(c), with increasing rw0,
both nmax and nzero decline, suggesting that a thick corner film is less susceptible to
high-wavenumber perturbations. Increasing rw0 would weaken the relative difference
between the curvatures at the crest, 1/Rc

2, and the neck, 1/Rn
2, which drives the film

to break up, since the corner film becomes flatter as the film size becomes larger (see
figure 4a). However, the curvature difference of 1/Rc

1 and 1/Rn
1, which suppresses the

instability, is comparatively less influenced by rw0. Thus, the thicker the film becomes, the
more stable it would be.

3.5. Characterisation of film stability
A complete picture for characterising the film stability in the parameter space θ1 ∈
[75◦, 90◦], θ2 ∈ [15◦, 45◦] and rw0 ∈ [0.12, 0.30] can now be provided to answer the
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Figure 7. Scaled growth rate σ/ tan3 θ2 for the cases with rw0 = 0.26: (a) θ1 = 90◦ and (b) θ1 = 75◦. The
peak and cut-off wavenumber are marked by black circles in (a).

questions posed at the beginning. Namely, under what conditions does the corner film
become unstable and how many satellite droplets are formed once the instability occurs.
Here, we assume that the number of fingers predicted from LSA is equal to the number of
satellite droplets in the final state.

We first investigate the marginal stability corresponding to the critical condition under
which the film would become unstable. This can be characterised by nzero and σmax. The
solid lines in figures 8(a), 8(c) and 8(e) depict nzero vs rw0 and distinguish the regions
of stability (upper) and instability (lower). The stable region is modified by the wall
wettability. As θ1 and θ2 decrease, the stable region becomes enlarged. In particular,
for θ1 = 90◦, the condition corresponding to nzero becomes independent of θ2 and the
curves for various θ2 collapse as one in figure 8(c) owing to the scaling law mentioned
previously in connection with figure 7(a). With increasing rw0, nzero decreases and
eventually approaches a value of n = 6 or n = 7. This seems to suggest that the corner
film tends to be more stable when it becomes thicker, but full stability cannot be achieved.
However, due to the assumption of the long-wave theory, i.e. rw0 � r1, the LSA may not
lead to accurate predictions if the corner film is too thick.

Focus is now placed on predictions of the expected number of satellite droplets, which
correspond to the perturbation mode with the maximum growth rate. Figure 9 shows the
contours of σmax and nmax, with the latter indicating the expected number of satellite
droplets. Note that σmax is mainly controlled by wall wettability and only slightly affected
by the film size. Figures 9(b), 9(d) and 9( f ) show that the expected number of satellite
droplets generally decreases with rw0 while ranging from 4 to 9.

Overall, the film stability can be characterised by the growth rate curve obtained
from the LSA. Specifically, the postinstability pattern, including the maximum and most
probable number of fingers, can be predicted by nzero and nmax, respectively. The film
size rw0 plays the most important role in determining the marginal stability and the
postinstability pattern of a corner film. The thicker the film is, the less susceptible it
becomes to perturbations of a higher wavenumber. The wall wettability including θ1 and θ2
mainly influence σmax while having a secondary influence on nzero and nmax. Importantly,
although the LSA is effective for predicting early stage nonlinear dynamics, specifically the
initial finger formation, a critical question arises: to what degree can the predicted fingers
accurately represent the satellite droplets of the final state? In the subsequent sections, we
compare the LSA prediction against the numerical results obtained using the DPM and

992 A13-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.416


Dewetting of a corner film wrapping a wall-mounted cylinder

14

12

10

8

6

4

2

0
0.15 0.20 0.25 0.30

Stable

Unstable

θ1 = 75°

n

0.30

0.25

0.20

θ2 = 15°

θ2

θ2 = 22.5°
θ2 = 30°
θ2 = 37.5°
θ2 = 45°

0.15

0.10

0.05

0
1.0 1.1 1.2 1.3

h0

Stable

Unstable

θ1 = 82.5°

14

12

10

8

6

4

2

0
0.15 0.20 0.25 0.30

n

0.30

0.25

0.20

0.15

0.10

0.05

0
1.0 1.1 1.2 1.3

h0

0.30

0.25

0.20

0.15

0.10

0.05

0
1.0 1.1 1.2 1.3

h0

r

14

12

10

8

6

4

2

0
0.15 0.20 0.25 0.30

Stable

Unstable

rw0

n

θ1 = 90°

(a) (b)

(c) (d )

(e) ( f )

Figure 8. Stability curves for θ1 = 75◦ (a,b), 82.5◦ (c,d) and 90◦ (e, f ). (a,c,e) Curves of nzero–rw0 with
various θ2 ∈ [15◦, 22.5◦, 30◦, 37.5◦, 45◦]. (b,d, f ) Equilibrium profiles with rw0 = 0.30 and various θ2.

VOF simulations to assess the LSA’s capability to predict the postinstability development,
particularly when nonlinear effects become involved in the breakup stage.

4. Disjoining pressure model

Rather than using the Navier-slip boundary condition to address stress singularity at the
contact line and directly applying contact angles, as was done in § 3, a precursor film is
assumed and the wettability condition on the walls can be represented via a disjoining
pressure Π(h) (Diez & Kondic 2007; Savva & Kalliadasis 2011; Kondic et al. 2020),

∂h
∂t

+ ∇ · [h3∇∇2h + h3∇Π(h)] = 0. (4.1)

992 A13-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.416


S. Suo, S.M. Habibi Khorasani and S. Bagheri

0 2 4 6 8 10

8

7
6

5

θ1 = 75°

4

σmax

45

40

35

30

25

20

15
0.15 0.20 0.15 0.20 0.25 0.300.25 0.30

45
9

7

8

6

5

θ1 = 82.5°

4

40

35

30

25

20

15
0.15 0.20 0.15 0.20 0.25 0.300.25 0.30

45

9 78 6 5

θ1 = 90°

4

40

35

30

θ 2
 (

d
eg

.)
θ 2

 (
d
eg

.)
θ 2

 (
d
eg

.)

25

20

15
0.15 0.20

rw0 rw0

0.15 0.20 0.25 0.300.25 0.30

(a) (b)

(c) (d )

(e) ( f )

Figure 9. Contours of σmax (a,c,e) and nmax (b,d, f ) for θ1 = 75◦ (a,b), θ1 = 82.5◦ (c,d) and θ1 = 90◦ (e, f ) in
the parameter space of θ2 and rw0. The values of contour lines in (a,c,e) are [1, 2, 3, 4, 5, 6, 7, 8].

The most commonly used form of Π(h) is adopted here (Mitlin & Petviashvili 1994;
Schwartz 1998),

Π(h) = Kf (h) = K
[ (

h∗
h

)a

−
(

h∗
h

)b ]
, (4.2)

where f (h) represents liquid–solid repulsion and attraction with exponents a > b > 1.
Throughout the literature, the dynamic effects of different exponent pairs (a, b) including
(9, 3), (4, 3) and (3, 2) have been discussed (Craster & Matar 2009; Kondic et al. 2020).
In this work, we adopt (3, 2) (Schwartz & Eley 1998). This liquid–solid interaction leads
to a thickness h∗ at which the repulsive and attractive forces are balanced. h∗ is related to
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Computation domain

Cylinder wall boundary

Domain boundary

rb

r1

Figure 10. Schematic of the numerical model for the DPM, including a computation domain lying between
the cylinder wall and the domain boundary. Here, r1 is the cylinder radius and rb defines the domain size.

a precursor film thickness (Savva & Kalliadasis 2011), which under realistic conditions
is of nanoscale thickness. Hence, h∗ should be extremely small. Computationally, the
grid spacing must also be close to h∗ to guarantee numerical convergence. To maintain
a reasonable level of computational cost, we adopt h∗ = 10−3. The constant K = 2(1 −
cos θ∗)/h∗, where θ∗ is related to the contact angle. Due to interface relaxation, the contact
angle measured from the equilibrium state would be smaller than θ∗. Finally, the governing
equation (3.2) becomes

∂h
∂t

+ ∇ · [h3∇∇2h] + K∇ · (h3f ′(h)∇h) = 0. (4.3)

Equation (4.3) is solved for the domain shown in figure 10 with the following boundary
condition on the cylinder wall:

∇h · n = − cot θ1, (4.4)

where n is the unit normal vector, and on the domain boundary

h = h∗. (4.5)

To prevent the outer boundary from affecting the film evolution, the domain size, rb, is set
two times larger than r1.

First, an equilibrium profile needs to be obtained. Specifically, a solution obtained from
(3.8) is elevated by h∗, thereby guaranteeing that h ≥ h∗. This modified solution is taken
as an initial profile. It evolves by solving (4.3) in an axisymmetric domain until a steady
state is achieved. The final steady state may be different from the assumed initial profile
from (3.8) because the contact line would slide along the precursor film. To match the LSA
and DPM, it is necessary to re-evaluate the corner condition used in the LSA to conform
to the steady solution from the DPM. We keep the liquid volume V , rw0 and θ1 fixed, then
adjust θ2 to fit the steady profile of the DPM. One case is shown in the inset of figure 11(b)
where initially rw0 = 0.27, θ1 = 90◦ and θ∗ = 60◦, but the final fitting yields θ2 = 33◦.
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Once the equilibrium profile is obtained, we add a perturbation εh1(φ)|t=0 and solve (4.3)
for

h(r, φ)|t=0 = h0(r) + εh1(φ)|t=0. (4.6)

Finally, we obtain the time evolution of h, from which the growth rate σ can be estimated
as

εh1(t) =
√∫

Ω

[h(r, φ, t) − h0(r)]2 dΩ. (4.7)

Here, Ω is the computation domain as shown in figure 10.

4.1. Single-mode perturbations
We start by investigating the dynamics of a corner film triggered by single-mode
perturbations, i.e.

εh1(φ)|t=0 = An cos(nφ). (4.8)

The perturbation amplitude An = 10−4 is small enough to guarantee that linearity
dominates in the initial stage. The evolution of εh1 for n = 1, . . . , 7 are shown in
figure 11(a). After a short oscillation period, the perturbation grows exponentially and,
thus, the growth rate for each wavenumber can be obtained by linear fitting. As shown
in figure 11(b), results of the LSA and DPM are in good agreement around nmax and
demonstrate a consistent trend. We do not expect a perfect quantitative agreement due to
the difference in modelling contact line movement. Specifically, in the DPM the ‘contact
line’ slides on the precursor film so that the interface near the wall surface appears as an
asymptotic slope rather than a sharp angle, whereas in the proposed theoretical model the
contact line movement is through wall slip.

The film instability process exhibits linear behaviour initially, with the number of
emerging fingers being consistent with the wavenumber n, as is shown in the first column
of figure 11(c). However, nonlinearity dominates the final phase of the evolution and
results in a more complex film morphology. Taking n = 3 as an example, a slim and long
film forms at each neck region which connects two neighbouring fingers. At t = 5, the
connecting film breaks up at its two ends and then forms a secondary droplet. Eventually,
in addition to three major droplets, three secondary droplets appear in between the major
ones. For n = 4, the connecting films become relatively shorter, resulting in smaller
secondary droplets. Thus, the Laplace pressure of the secondary droplet becomes much
larger than that of the neighbouring major droplet, and this pressure difference drives the
liquid to fast flow from the secondary droplets to the major ones. Eventually, secondary
droplets only appear temporally and are absorbed by neighbouring major ones. For n = 5,
the connecting film is too short to form a secondary droplet and only major satellite
droplets appear during the breakup.

4.2. Random perturbations
In general, perturbations are of a random nature covering a wide range of wavenumbers.
We consider a superposition of N individual single-mode perturbations,

εh1(φ)|t=0 =
N∑

n=0

An cos(nφ), (4.9)
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Figure 11. (a) The perturbation growth for the case with rw0 = 0.27, θ1 = 90◦ and θ∗ = 60◦. (b) The
comparison of growth rate between DPM and LSA. The inset in (b) shows the steady profile used in the DPM
and correspondingly the equilibrium solution with θ2 = 33◦ for the LSA. (c) The evolution of film morphology
from the instability occurrence to film breakup.

where An are random amplitudes within [−Amax, Amax] with Amax = 10−4 and N = 100.
Ten samples of εh1(φ)|t=0 are generated and superimposed on the baseflow shown in
the inset of figure 11(b). According to the LSA, the perturbation mode with n = 5 has
the maximum growth rate and thus five fingers are expected to formed. However, for
this case, the four-finger and the five-finger pattern are equally likely to occur since the
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Figure 12. (a) The perturbation growth for two typical random perturbations leading to the mode n = 4 and
n = 5. (b) The snapshots of the evolution of the film morphology.

difference between the first and second largest growth rate is small, i.e. σ = 1.16 for n = 4
whereas σ = 1.25 for n = 5. Perturbation energy obtained from the DPM is shown in
figure 12(a) for the two perturbations. Snapshots of the corner film evolving after being
perturbed are presented in figure 12(b). Due to randomness, the film breakup at the neck
regions is asynchronous, unlike single-mode perturbations, and therefore the final film
morphology loses symmetry. Consequently, the connecting films have different lengths,
which in turn causes the emerging secondary droplets to appear at random between two
major droplets. For example, as shown in the third column of figure 12(b) for n = 4,
only two secondary droplets temporarily appear as opposed to four appearing when the
perturbation is single mode. For n = 5, one temporary secondary droplet forms whereas
none appears for single-mode perturbation.

In summary, the DPM provides a direct insight into the dynamics of interfacial
evolution. The LSA is quantitatively validated with the DPM results at the early stage.
As the wrapping film approaches breakup, secondary droplets may appear between the
major ones due to the formation of connecting films, especially when the perturbation
wavenumber is small, such as n = 3 or n = 4, and connecting films are long. Therefore,
the LSA can provide a reliable prediction for the number of fingers while the emergence
of secondary droplets is beyond its capability.

5. VOF simulations

To further investigate the film breakup process and postinstability patterns, we conduct
numerical simulations solving the incompressible Navier–Stokes equations and which
eschew the assumptions employed in the LSA and DPM. The results of these simulations
serve as an important reference against which the LSA and DPM results can be gauged, and
will help assess how applicable the long-wave theory is to film stability issues. Specifically,
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Figure 13. (a) The final patterns of simulation cases with θ1 = 90◦, θ2 = 30◦ and varying film sizes rw0 ∈
[0.13, 0.26]. (b) Number of satellite droplets obtained from VOF compared against the LSA predictions.
(c) Growth rate curves of the corresponding cases.

we look for the critical film size for which the lubrication approximation gives good
predictions of the postinstability patterns of a wrapping film.

The finite-volume solver used to conduct the VOF simulations is the open-source code
FluTAS (Crialesi-Esposito et al. 2023). It employs the MTHINC algebraic VOF method
(Ii et al. 2012) for the numerical realisation and advection of the interface between two
immiscible fluids. To impose contact angles on solid geometries of arbitrary shape, the
code is combined with the ghost-cell immersed-boundary method of Shahmardi et al.
(2021), which allows us to use the extrapolation procedure proposed by Renardy, Renardy
& Li (2001) for prescribing contact angles. The setup used with this code, shown in
figure 1(a), consists of a domain with dimensions of [Lx, Ly, Lz] = [1.0, 1.0, 0.3] where a
cylinder is mounted on top of a flat wall. The domain boundaries are periodic along x and
y with no-slip and impenetrability imposed at the boundaries along z. The uniform grid
spacing is [�x, �y, �z] = [Lx/Nx, Ly/Ny, Lz/Nz] with [Nx, Ny, Nz] = [500, 500, 150]. In
its initial state, the liquid film rests on the flat wall and wraps around the cylinder, with
the shape of its profile defined using (3.8). The simulations were ran until a steady state
was achieved and the liquid film underwent no further evolution. Note that unlike the
artificial perturbation used in the DPM, the perturbation in the VOF simulations originates
from numerical sources. Specifically, this would be the ‘roughness’ of the cylinder wall,
due to the fact that the immersed boundaries in the Cartesian coordinate system are not
perfect representations of actual arcs. However, due to the fine grid resolution adopted, the
amplitude of the induced perturbation is low enough to guarantee the linear-perturbation
assumption. The grid-dependence results are gathered in the Appendix.

We conducted simulations with film sizes of rw0 ∈ [0.13, 0.26] and fixed θ1 = 90◦,
θ2 = 30◦. Since the LSA prediction effectively captures the early stage of instability
development, our primary focus is on its later stage. The postinstability patterns
are demonstrated in figure 13(a). Before the film breakup, connecting films between
neighbouring fingers appear, as observed in both DPM and VOF results. However, in
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rw0 = 0.25

rw0 = 0.15

Time

Potential breakup position

Real breakup

1

2

3

4

1

2
3
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(a)

(b)

Figure 14. The time evolution of two representative cases: (a) rw0 = 0.25 in the coalescence regime and
(b) rw0 = 0.15 in the predictable regime. For both cases, θ1 = 90◦ and θ2 = 30◦.

VOF simulations, the connecting films break up into more than one secondary droplet
distributed randomly (additional details are given in the Appendix). Here, we count only
the major satellite droplets directly transformed from fingers, ignoring secondary droplets
resulting from connecting film breakup. As the growth rates of nmax − 1, nmax and nmax +
1 are close, as shown in figure 13(c), the corresponding postinstability patterns have a
similar likelihood of appearing. Thus, the LSA prediction is considered as reasonable
when the corresponding VOF result lies in [nmax − 1, nmax + 1]. As shown in figure 13(b),
there exists a critical film size (rc

w0 ≈ 0.175 under the above wettability condition) and
highlighted by a dashed line. If rw0 < rc

w0, denoted the predictable regime, the LSA can
provide a reasonable prediction which is in line with the VOF result. Otherwise, for
rw0 > rc

w0 which we denote the coalescence regime, the number of major satellite droplets
is always smaller than that predicted by the LSA.

Figures 14(a) and 14(b) demonstrate the time evolution of two representative cases
belonging to the coalescence and predictable regime, respectively. For the case with
rw0 = 0.25 belonging to the coalescence regime, at the early stage, there appear four
fingers with four neck regions which are numbered in figure 14(a), indicating that
mode n = 4 dominates the early stages of the film evolution. This agrees with the LSA
prediction, as shown in figure 13(b). However, the curvatures of these four necks are not
uniform, resulting in different developing paces. Neck regions 1 and 2 which have a much
larger curvature (1/Rn

2) become significantly squeezed due to the rather stronger capillary
pressure and break up first. This is followed by neck region 4 breaking up, while the
curvature of neck region 3 diminishes and gradually disappears, leading to the coalescence
of the two neighbouring fingers on either side of this neck region. The asynchronous
breakup of necks can be clearly observed in the coalescence regime. This asynchronous
breakup induced by the different neck curvatures is also observed in the DPM results
(figure 12). Nevertheless, as the film becomes thinner, they fall into the predictable regime,
and the neck curvatures tend to be similar which results in shorter neck-breaking times. As
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Dewetting of a corner film wrapping a wall-mounted cylinder

a result, finger coalescence is avoided and eight fingers develop into eight satellite droplets
at the same time as shown in figure 14(b) for the case of rw0 = 0.15.

To conclude, the LSA can provide good predictions that agree with the results from VOF
simulations at the early stage. Furthermore, we find that there exists a critical film size rc

w0
which should vary with θ1, and θ2, e.g. rc

w0 ≈ 0.175 for θ1 = 90◦ and θ2 = 30◦. When the
film is thin enough, i.e. rw0 < rc

w0, the predicted number of fingers aligns with the number
of satellite droplets in the final state. However, for thick films, the final number of satellite
droplets may not agree with the predictions, since finger coalescence becomes involved
during the breakup of the neck regions. Most probably, the final number of satellite
droplets should be smaller than the LSA prediction due to this coalescence mechanism.
Therefore, nmax can be regarded as the upper limit of the number of satellite droplets.

6. Conclusions

In this study, we have extensively investigated the stability of a flat, thin film wrapping a
cylinder corner. Utilising the long-wave theory framework, we have provided theoretical
predictions for both film stability and postinstability morphology through LSA. Our
findings indicate that the film stability is primarily governed by its size. Specifically,
thicker films show less sensitivity to higher-wavenumber perturbations. Wall wettability
influences the growth rate but has a minor impact on marginal stability and postinstability
morphology.

To assess the predictive capacity of the theoretical solution for the final state, we
have compared the results among the LSA, the DPM and VOF simulations. At the
early stage, the film evolution aligns with LSA predictions, especially in terms of the
number of emerging fingers. However, during the breakup stage, the observations from
DPM and VOF are matched to a large extent, and specifically two nonlinear mechanisms
impacting the final number of satellite droplets are involved: (1) connecting films between
neighbouring fingers would appear and develop into secondary satellite droplets; (2) finger
coalesce occurs when the wrapping film is too thick. Therefore, the predicted finger
number represents only the upper limit of major satellite droplets in the final state.

Nevertheless, there are some aspects worth further explorations in the future as
follows.

(i) The employment of linearised curvature in the lubrication approximation confined
our analysis to flat-and-thin configurations. It would be advantageous to develop
a more comprehensive model covering cases with arbitrary θ1 and θ2. Notably,
adapting the current framework to model a ‘tall and thin’ corner film is possible
by assuming the film thickness is along the radial axis, and θ1 → 0◦ and θ2 → 90◦.
However, this specific scenario is not explored in the current work due to a lack of
practical motivation.

(ii) In reality, in contrast to the smooth-surface assumption that the contact angle
is constant in this study, the surface roughness or imperfection to some extent
cannot be neglected, resulting in contact line pining and contact angle hysteresis,
i.e. apparently, the advancing and receding contact angles differ. To investigate
the impacts of complex surfaces, an improved contact line model incorporating
hysteresis effects needs to be integrated into the current theoretical framework.

(iii) Directly observing the instability process of the wrapping film through experiments
would provide valuable insights. Specifically, it is crucial to confirm, through
dedicated experiments, the formation and breaking of connecting films at the later
stage, as well as how neighbouring fingers merge.
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[250, 250, 75] [500, 500, 150] [625, 625, 200] [750, 750, 250]

Time

(b)

(a)

Figure 15. Grid-dependence study for the test case with rw0 = 0.13, θ1 = 90◦ and θ2 = 30◦:
(a) the postinstability patterns of four grid resolutions; (b) enlarged-view snapshots of the film breakup process
for the grid resolution [625, 625, 200].

This study is a continuation of our prior research on liquid-stain removal in porous
media (Suo et al. 2022). As described in § 2, the insights gained here have significant
implications for optimising the design of functional surfaces, enhancing their performance
and durability. Moreover, the conclusion of this work can also be leveraged for other
engineering purposes, such as coating surfaces (Sabaté del Río et al. 2019) and
self-assembly of liquid phases (Wu et al. 2014). Specifically, the understanding of
film instability can facilitate passive control of interfacial morphology by purposefully
designing the geometry or topology. For example, a settled liquid film can be directed by a
group of ordered pillars to form an assembly of highly ordered droplet arrays. The formed
pattern is tuned by adjusting the size, gap and topology of the pillar group. This approach
paves the way for diverse applications, e.g. manufacturing nanosized metal particles with
tunable patterns if the liquid phase is a melted metal or creating designable microstructures
on a surface if the liquid phase is a curable polymer fluid.
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Dewetting of a corner film wrapping a wall-mounted cylinder

Appendix. Grid-dependence study

We perform a grid-dependence study for the VOF simulation case with the thinnest
wrapping film: rw0 = 0.13, θ1 = 90◦ and θ2 = 30◦. Four different grid resolutions,
[250, 250, 75], [500, 500, 150], [625, 625, 200] and [750, 750, 250], are investigated. All
other physical and computational parameters are kept constant for all cases. Figure 15(a)
shows the postinstability patterns of the four grid resolutions. Except the lowest grid
resolution [250, 250, 75], all other grid resolutions produce similar results, with the
wrapping film eventually breaking up into eight satellite droplets. Notably, when a neck
region approaches to be pinched off, as shown in figure 15(b), the film becomes extremely
thin and its size is even close to the grid spacing. Thus, the VOF simulation can fail to
capture the interfacial dynamics at the breakup stage. Therefore, the size and number of
subdroplets appearing after breakup strongly depend on the grid resolution. However, the
emergence of these subdroplets does not affect the major satellite droplets which stably
form before breakup.
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