
PENCILS OF POLARITIES IN PROJECTIVE SPACE 

SEYMOUR SCHUSTER 

1. Introduction. A polarity in complex projective space of two dimen­
sions (S2) is completely determined by a self-polar triangle ABC, and a pair 
of corresponding elements: a point P and its polar line p. We denote the 
polarity by {ABC) {Pp). We follow Coxeter (2) in denning a pencil of polarities 
as the 001 polarities {ABC) {Pp) where A, B, C, P are fixed while p varies in a 
pencil of lines. Coxeter has developed this notion and has shown that two of 
the classical types of pencils of conies are, in fact, the conies which arise from 
such pencils of polarities. The pencils of conies so derived are the general 
system with four distinct points in common and the double-contact system 
where the conies have in common two distinct points and common tangents 
at these points. 

It is well known that a polarity in S 2 is also completely determined by a 
self-polar pentagon (2, p. 64). Suppose we start afresh and define a pencil of 
polarities by means of such a pentagon. Will this yield anything more general 
than the previous definition? The answer to this question is in the affirmative, 
as we shall see in §2. 

Sections 3 and 4 deal with a development of pencils of polarities in complex 
projective space of three dimensions (S3) by utilizing a self-polar tetrahedron 
in the definition. Section 5 continues the development in 53, but by redefining 
a pencil of polarities, this time using a self-polar skew hexagon. Section 6 
will deal with the problem in projective space of n dimensions {Sn). 

2. Pentagonal pencils of polarities. 

DEFINITION. A pentagonal pencil of polarities is the set of polarities deter­
mined by the self-polar pentagon PQRST, where P , Q, and T remain fixed 
and the line RS varies in a pencil of lines with R on the fixed line t through Q, 
and 5 on the fixed line q through T (Fig. 1). 

Each polarity for such a pentagon has 

P<-*p = RS, Q<->q = ST, R^r = TP, S <-» 5 = PQ, T <-» t = QR. 

If we consider a general pentagon (with none of the vertices on its own 
polar), we can find a fixed self-polar triangle for the pencil. Let A denote the 
point of intersection q-t. Then A <-> a — QT, and AQT is a fixed self-polar 
triangle for the entire pencil. If the pencil of lines p varies about a fixed point 
on a side of AQT, we can arrive at a self-dual system (2, 5.82), as well as the 
more general type of pencil when p varies about a point in general position. 
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FIGURE 1 

Hence, a pentagonal pencil yields everything which can be found by a develop­
ment with a fixed self-polar triangle. 

We are particularly interested in finding pentagonal pencils of polarities 
which have no fixed self-polar triangle. Recalling the construction for a self-
polar triangle in a polarity determined by a self-polar pentagon, we see that 
two alternate vertices of the pentagon must be joined. Now, if there is a pencil 
of polarities determined by pentagon PQRST with P , Q, T fixed and the 
line RS varying in a pencil, the only possible fixed self-polar triangle is 
QT(QR-ST); for, no pair of alternate vertices other than Q and T yield a 
fixed line. If QT is distinct from ST = g, such a triangle is non-degenerate. 
Hence, attention will be confined to pentagons where QT coincides with ST. 
That is, Q is always on its own polar q. 

We can immediately state two theorems of (2) which carry over to the case 
where Q is always a self-conjugate point. Their proofs, which we omit, are 
very much the same as those supplied in (2), except that there are several 
additional special cases to consider. 

THEOREM 2.1. The polars of any fixed point X, with respect to a pencil of 
polarities, form a pencil of lines through a point X'. 

THEOREM 2.2. The locus of X' as X varies along a fixed line o is a conic or a 
line. The locus of poles of the fixed line o, with respect to a pencil of polarities 
is the same conic or line. 

Suppose, for instance, that P ' , the vertex of the pencil of lines p, is located 
on r. Then all the polarities in the pencil induce on r the same involution, 
namely (PP ' ) (PPi ) , where T\ is t-r. The invariant points, A and B, of this 
involution, must be common points of the conies determined by the polarities. 
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PENCILS OF POLARITIES 121 

Thus we have a pencil of conies with a common tangent q at Q and two further 
common points, A and B. 

It might be best to introduce some general notation at this point. We will 
discuss pencils of polarities in i-dimensional space, determined by a configura­
tion generally associated with j points. We denote such a pencil of polarities 
by the symbol Pijjci where k will be an integer indicating a special case of such 
a pencil. The cases covered by Coxeter were 2-dimensional, defined by tri­
angles; so we call them the P 2

3 i and P2
32 systems. The P 2

3 i system is the one 
yielding a general pencil of conies with four distinct points in common. The 
P232 system is Coxeter's self-dual system yielding a double-contact pencil of 
conies. Our pentagonal pencils have yielded P2

3i and P2
32, so we will not 

trouble to give them alternate names P25&. Instead, we begin naming penta­
gonal systems with the pencil discussed above, which yielded a new pencil of 
conies. We call this a P2

5i system. 
Suppose we turn our problem around and ask how to determine the pentagon 

for the pencil of polarities when we are given the pencil of conies with a 
common tangent q at Q, and two further points A and B in common. The 
following procedure yields the pentagon. Let AB = r and T = r-q (Fig. 2). 
Find Pi on r such that H(TTi,AB). Let / = QT\. Line / is the polar of T 
with respect to the pencil of conies. 

Q q 
FIGURE 2 

Pick a point P arbitrarily on r. Let s — PQ. Now two cases arise : 
(a) P j* A,B. Find P' on r such that H(PP'} AB).An arbitrary line through 

P' will serve to represent the variable line p. Thus we have a self-polar penta­
gon PQRST, where p-t = R and p-q = S, which determines the pencil of 
conies provided p varies in the pencil about P'. 

(b) P = A. The point P is self-conjugate. Construct an arbitrary line through 
P to serve as a representative for the variable pencil. Each arbitrary p is a 
tangent at P for one conic of the pencil. This time P plays the role of P' so 
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we have a pentagon which defines the pencil of polarities associated with the 
conies provided line p varies in the pencil through P. 

Suppose we allow the pencil of lines p to have its vertex on q, so that 
P' = S. We will show that such a pencil of polarities leads to a pencil of conies 
with four-point contact (third order) at point Q. We shall call these polarities 
a P252 system. In order to prove our assertion we show that every point on 
line q possesses the same polar for every polarity in the pencil (10, p. 136). 
From the nature of the pentagon defining the pencil, it is seen that Q, S, and T 
have fixed polars for the pencil. For a consideration of the general point X 
on q, we look back at the construction of its polar line x (see Fig. 3). It is clear 
that x depends not at all upon the position of p, except for the fact that p 
meets q in S. But this is so for every polarity in the pencil. Hence, point X 
has a fixed polar line for the entire pencil. 

FIGURE 3 

N.B. The only way such a pencil of conies can be derived from a pentagonal 
pencil of polarities is by having point 5 fixed. For, otherwise, there would be 
points on q which would not have the same polar for all polarities in the 
pencil, thus contradicting the definition (10, p. 136). 

The fact that a four-point contact system of conies is reached by having p 
rotate about a fixed 5 can be seen in a simpler and perhaps more elegant manner 
as follows : 

X — x is a projectivity of points X on q with their polars through Q. Suppose 
point X had two distinct polars for two different polarities in the pencil. Then 
QSTX ~ qstxi and QSTX — qstx2. But this contradicts the fundamental 
theorem of projective geometry. Therefore X\ — x2. 

Actually, the P25i system may be reached with fewer restrictions than we 
have placed on a pentagonal pencil of polarities. That is, line p may vary 
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about point P ' , where P' is located anywhere except upon line q. We have 
already discussed the case where P' is on r. We will now discuss the case where 
Pf is in a general position; the reader might supply the details of the develop­
ment in the cases where P' is on line t, line s, or even when P' = P . The same 
system of conies is reached in all. 

P' is in general position. Since Q is on q, every polarity in the pencil yields 
a conic with q as the tangent at point Q. The pencil of conies cannot have 
three-point contact (second order) at Q because point P on q has the same 
polar for all the polarities, thus contradicting the necessary conditions for 
three-point contact (10, p. 134). The conies cannot have four-point contact, 
either, owing to the observation on p. 122. Therefore, the pencil must have 
two-point contact at Q, and two other points A and B in common. Since T 
and its polar t are fixed for the pencil, A and B must be collinear with T such 
that H( i lS , TTi), where 7\ = t-AT. 

Examination of the special cases where P' is on s, on t or P' = P , leads to an 
actual determination of the points A and B, whereas our examination of the 
more general case merely established the existence of A and B. 

Concerning pencils of conies with three-point contact at Q, we might say 
that all cases of pentagonal pencils have been investigated and no such 
systems of conies result; hence, they cannot be derived from a pentagonal 
pencil of polarities. However, there are more direct methods which are far 
more convincing : 

(1) A pencil with three-point contact (second order) has Q as the only point 
on the tangent q which possesses the same polar for all polarities in the pencil 
(10, p. 134). But, this is always contradicted by point P, whose polar line is 
fixed for the pencil. 

(2) A pencil of conies with three-point contact at Q has another point, 
say A j in common. Suppose that such a system of conies arises from a penta­
gonal pencil. Let Pi = t-AT. The point B, the harmonic conjugate of A 
with respect to P and Pi, is also common to all the conies. This contradicts the 
hypothesis that a three-point contact system arises from a pentagonal pencil. 

SUMMARY. The investigation of pentagonal pencils of polarities has shown 
them to be more general than the triangular pencils. The triangular pencils P2

3i 
and P232 can both be derived as pentagonal pencils. Further, two new systems, 
P25i and P252, were found to yield pencils of conies: (1) with two-point contact 
at a point and two other distinct points in common, and (2) the four-point contact 
system. It was also shown that the remaining pencil of conies, with three-point 
contact, cannot be derived from pentagonal pencils. 

3. Tetrahedral pencils of polarities in 53. 

DEFINITION. A tetrahedral pencil of polarities is the set of polarities 
(ABCD) (PIT), where A, B, C, D, and P are all fixed while plane w varies 
in an axial pencil. 
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THEOREM 3.1. The polar planes of any fixed point X, with respect to a pencil 
of polarities, form a pencil of planes. 

Proof. We use the following construction (4) for the polar plane of an 
arbitrary point. Let the polarity be (ABCD) (PT), and X a point in general 
position. We seek x> the polar plane of X. We use the notation 

ABC = Ô, BCD = a, ACD = 0, ABD = y, 

DP-Ô = Ph DX-b = Xs, wô = p8 (Fig. 4). Since DP is the polar line of pit 

the polarity induced in plane ô is (ABC) (Peps)- By Coxeter's construction 
(2, 5.64), the polar of X8 in plane 5 is line 

xh = [APr(a'P8X8)(PrAX8)]-[BPr(b-P8Xd)(PrBXs)]. 

By performing a similar construction in plane a, we can get the polar xa of 
the point Xa. The plane determined by xaxs is the polar plane of point X. 
In order to prove this it is sufficient to remark that X is conjugate to every 
point on xa and to every point on x$. 

FIGURE 4 

Referring to the construction, we proceed with the proof. Let ir vary in a 
pencil about line pf. This line cannot lie in more than two of the four faces. 
Let a and 5 be two in which it does not lie. Then p' 9^ ph. Line ps varies in a 
pencil (in plane ô) about the point P'&. By Coxeter's result (2, 5.81), we know 
that line x8 likewise varies in a pencil (in plane ô) about a point X's. Similarly, 
line xa varies in a pencil (in plane a) about a point X'a. In each polarity of the 
pencil we have x> the polar plane of X, determined by xax8. x rnust pass 
through X'a and X'h in each of the polarities. Hence, the polar planes of X 
vary in a pencil about X'aX\, 

In case X'a = X's, we take X'p and X'y. All four cannot coincide. 
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Three special cases of tetrahedral pencils are of interest because they lead 
to systems, highly analogous to the self-dual systems discussed in (2). These 
arise when line p' meets one or more edges of ABCD. 

There will be four tetrahedral pencils Pzu, where k is 0, 1,2, or 3, according 
as line pf meets 0, 1, 2 or 3 edges of ABCD. It is clear that if p' were to meet 
more than three edges of the self-polar tetrahedron we would not have a well-
defined pencil. 

The P34i system. Suppose p' meets only one edge, say AB, of the self-polar 
tetrahedron. Then P'$ = P\ is on AB. From the discussion in (2) we know that 
the polarities induced in the two faces through AB are two-dimensional self-
dual systems P232- Any pair of the involution on AB, together with C and D, 
will give a fixed self-polar tetrahedron for the entire pencil. Therefore, we have 
not one, but oo 1 tetrahedra which are self-polar for all polarities in the pencil. 

THEOREM 3.2. / / two polarities belong to a P3
4i system, their product is a 

general axial homography (1, p. 385; 5, pp. 180-183). 

Proof. Let pf meet AB in P\. A self-dual system is induced in plane ABC. 
Therefore, the product of two polarities in P34i leaves invariant every point 
on AB. Also, points C and D are invariant, so we must have the pencil of 
planes with axis CD as an invariant pencil. Thus CD is the tangential-axis 
and AB is the point-axis of a general axial homography; C and D are the 
invariant points. 

The P342 system. We suppose now that pf meets exactly two edges, say 
AB and CD, of the self-polar tetrahedron. This implies that pencils of polarities 
induced in the faces of ABCD are all self-dual, with the same involutions of 
points on AB and CD for all the polarities in the pencil. Therefore, if we take 
any pair of the involution on AB together with any pair of the involution on 
CD, we get four points which determine a self-polar tetrahedron for the entire 
pencil. Hence, oo2 self-polar tetrahedra are available inaPz^ system. 

THEOREM 3.3. / / two polarities belong to a P3
42 system, their product is a 

hyperbolic biaxial homography. 

Proof. Lines AB and CD are pointwise invariant under the product. 
Since a hyperbolic biaxial homography is characterized by two such lines, the 
theorem is proved. 

The P343 system. Suppose p' meets three edges of ABCD. It must lie in a 
face, say plane h. The polarity induced in ô is, therefore, the same for each 
member of the pencil. The polarity is always (ABC)(Pop'). Hence, the polar 
planes of X (for all members of the pencil) pass through line x$. The involutions 
of conjugate points induced on AB, BC, and AC are the same for all members 
of the pencil. By taking any pair of the involution on one of these lines together 
with the opposite vertex (the pole of the line in plane h), we can arrive at an 
infinite number of self-polar triangles. In fact, there are œ 3 such. Therefore, 
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we have œ 3 tetrahedra (formed by D and the oo 3 self-polar triangles in plane 5) 
which are self-polar for all the polarities. Hence 

THEOREM 3.4. A P343 system admits a plane 5 upon which the induced polarity 
is the same for all members of the pencil. The polars of any point P pass through 
a fixed line p' on <5, and the poles of any plane w form a range of points on a fixed 
line DP s j where D is the pole ofb for all the polarities. 

(If we define a range of polarities by fixing tetrahedron ABCD and plane 
7T, while P , the pole of T, varies in a range, then the above theorem indicates 
that a P343 system is also a range of polarities. Therefore, we might call it a 
self-dual system in 53.) 

THEOREM 3.5. If two polarities belong to the same P3
4 3 system, their product 

is a spatial homology. 

Proof. In a P343 system every line through one vertex, say D, of the self-
polar tetrahedron is invariant, and every pencil of planes whose axis lies in <5 
is invariant. But we must show that every point of a plane is invariant and 
every plane through a point is invariant (10, p. 75; 5, p. 179). Consider any 
point X in <5. Its polar plane % meets <5 in line x''. If we operate with another 
member of the self-dual system, we find that x' —* X (because the polarity 
induced in ô is the same for all members of the system). Hence, X —•> X, 
which shows that every point of ô is invariant. Now consider an arbitrary 
plane p through D. Let p-d = r' and let R! be the pole of rf in ô. Then R, the 
pole of p, is on line DRr. Then operate on R with another member of the pencil. 
The construction tells us that R maps into a plane through r'. Since every line 
through D is invariant, the plane r'D is invariant. Hence we have a spatial 
homology with D as its center and ô its plane of perspectivity. 

THEOREM 3.6. Every spatial homology can be expressed as the product of two 
polarities belonging to a self-dual system (P3w)> 

Proof. The homology whose plane of perspectivity is ô and whose center 
is D, with a pair of related points Pi and P<i (on a line through D) (10, 
p. 76; 5, p. 179), is the product of polarities (ABCD)(Pnr) and (ABCD) 
(P2TT), where -K is an arbitrary plane. 

THEOREM 3.7. The locus of poles of a fixed plane with respect to a pencil of 
polarities is: 

(a) a twisted cubic passing through the vertices of the fixed self-polar tetrahedron 
in a P340 pencil. 

(b) a conic passing through three vertices of one of the fixed self-polar tetrahedra 
in a P34i pencil. 

(c) a line passing through two of the vertices of one of the fixed self-polar 
tetrahedra in a P342 pencil. 

(d) a line passing through the vertex common to all the self-polar tetrahedra in a 
P 3 43 pencil. 

https://doi.org/10.4153/CJM-1956-017-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-017-0


PENCILS OF POLARITIES 127 

Proof. 
(d) For a self-dual system (P343), Theorem 3.4 indicates that the locus is 

such a line. 
(a) We consider the general case P34o with the pencil defined by 

(ABCD)(Pir). Let x be a fixed plane. Take three points Qu Q2l and Qà 

on x- The intersection of the polar planes of these three points is the pole X 
of x- Theorem 3.1 indicates that as x varies in the pencil the polar planes of 
Qu (?2, (?3 vary in projective axial pencils. The locus of poles is, therefore, a 
twisted cubic. 

Consider this situation from another point of view (Fig. 5). Examining what 
happens in plane ô, we see that line x& is fixed. The locus of poles of x& in 8 is a 
conic through A, B, and C (2, 6.81). This conic is the projection of the cubic 
onto ô from point D, the pole of ô. Hence, the cubic must be embedded in the 
surface of a quadric cone with vertex D. Further the cubic actually passes 
through D; for otherwise the projection of the curve onto the plane would be 
of third order. Similarly, the cubic passes through A, B and C. 

FIGURE 5 

(b) (Fig. 6) In a P3
4i system, self-dual systems (P2

32) are induced in two 
faces which have line, say AB, in common. By the nature of such self-dual 
systems, we see that point Xs, the projection of X through D onto plane 5, 
describes a line through C. Likewise, in plane 7, the point Xy describes a line 
through D, so that the locus of poles of x is confined to plane DCA8j where A 5 
is the companion of X'& = X'AB in the involution on line AB. Further, the 
projection of the locus through B onto 0 is a conic; and the projection through 
A onto a is also a conic. Hence, the locus of X is a conic through C, D, and As, 
where C, D, and As form the vertices of a self-polar tetrahedron for the entire 
pencil. 

(c) (Fig. 7) In a P3
42 system, self-dual systems (P232) are induced in all the 

faces of ABCD. Let X'AB = X's and X'CD = X'a. Let Aa be the companion 
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FIGURE 6 FIGURE 7 

of X'a in the involution on AB, and let Aa be the companion of X'a in the 
involution on CD. The projection of X onto <5 is the line CA&; onto plane y, 
the line DA5] and onto plane 0, the line ^4^4«. Therefore, the locus of X must 
be on planes CDA& and ABAa. The locus is, in fact, the meet of these planes, 
that is, the line AaA5 The points Aa, A8, X'a, and Xf

ô form one of the oo 2 

tetrahedra which are self-polar for the entire pencil. 
From previous discussion we know that the polar plane of a fixed point P 

varies in an axial pencil. We call the axis of the pencil the axis of point P and 
denote it by lP. It might be noted that there are oo 3 axes lP since there are œ 3 

points in 53. But there are 00 4 lines in 53, so we may conclude that not every 
line is an axis of a point. The following two theorems show that axes of certain 
related points play interesting roles. 

THEOREM 3.8. The °° 2 axes lT of the points T of a fixed plane T are the 00 2 

chords of the twisted cubic of poles of -K in a P34o system. 

Proof. Any point T of -K can serve as one of the points whose polar planes 
provide an axial pencil for the generation of the twisted cubic. By well-known 
theorems on such generation (5, p. 170), we know that the axis lT is a chord of 
the twisted cubic. Since this is so for all points of T, our theorem is established. 

THEOREM 3.9. If I is a fixed line, the polar lines V\ of I with respect to the 
pencil of polarities, and the axes lP of the different points P of I form the two 
systems of generators of a quadric, which (in general) passes through the vertices 
of the self-polar tetrahedron. 
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Proof. Take two points, Q and R, arbitrarily on I. Their polar planes, 
with respect to a polarity of the pencil, intersect in the polar line l'u with 
respect to this polarity. As the polarity varies in the pencil the polar planes 
of Q and R describe projective pencils with axes lQ and lR. The lines of inter­
section V i of corresponding planes describe a regulus, and the axes lQ and lR 

belong to the conjugate regulus (10, p. 299). 
Now we show that the regulus passes through points A, B, C, D. Let 

l-a — A i and 1-8 = Dx. The polar of Dx in plane 8 varies in a pencil about a 
point, say D', as the polarity varies; and, in every polarity, the polar planes of 
A i pass through A. Therefore, in plane 8, the points of the regulus belong to a 
conic, which can be thought of as the intersection of corresponding lines of 
two projective pencils of lines through D' and A. Hence, A, and similarly B, 
C, and D lie on the regulus. 

This construction in plane 8 breaks down in the P343 case, where the polarity 
induced in one of the faces, say 8, is the same for the entire pencil. In this case, 
the regulus degenerates. 

The first part of the proof meets with a special case in the event that / 
itself is an axis of a point, say P. In this case the regulus degenerates into a 
cone with vertex P. 

4. Tetrahedral pencils of quadrics. 

THEOREM 4.1. Every pencil of polarities determines a pencil of quadrics. 

Proof. Consider the polarities (ABCD)(Pw)1 with w varying through line 
p' — IP. Since one possible position for x is Pv>, one of the polarities determines 
a quadric that touches Pp> at P . In fact, every point X lies on such a quadric 
(touching Xx' at X). 

Suppose two of the quadrics have a point R in common. Then all the quadrics 
have R in common. 

COROLLARY. There is only one quadric through any point which does not lie 
on the intersection of two. 

The points which are common to all the quadrics of the pencil are 
simply the points which make up the curve of intersection of the "two." 
This curve we call T, the base curve, of the pencil of quadrics. Since two 
members of the pencil meet a general plane in a conic, and two conies intersect 
in four points (in general), the base curve is a quartic. It is clear that a pencil 
of quadrics is cut by a plane in a pencil of conies. 

Now if R (on r ) is on AB, then we are led to one of our cases P3
4i, P342, 

or P343. In the simplest case, we have self-dual systems determined in 8 and y 
with lines DR and CR as common tangents. Therefore, plane DCR is a common 
tangent plane (at R) for all quadrics of the pencil. Further, let Q be on AB 
such that H (ABy QR). Then DCR is also a common tangent plane (at Q). 
So, we have a P3

4i system yielding a double-contact of pencil quadrics. 
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Suppose in addition to having R (and hence Q) in common, the quadrics 
also have a point T in common. Three significant cases arise: 

(a) T does not lie on any of the faces of ABCD. Since plane QRT cuts each 
of the quadrics in a conic, and since a unique conic is determined by the points 
Q, R, T (we have the tangents at Q and R), every member of the pencil passes 
through this conic. 

Let plane TJ be the harmonic conjugate of ABT( = QRT) with respect to 
7 and 8. Then by well-known properties of quadrics, there is a point U = rj- CT 
such that U is also a common point of all the quadrics. Therefore, there is 
another conic determined by Q, R, U (and the tangents at Q and R), which is 
common to all the quadrics of the pencil. 

Conclusion. This is our P3
4i case. T breaks up into two conies which intersect 

in R and Q. The two conies lie in planes which are harmonic conjugates with 
respect to y and 8. 

(b) T is on CD. U, the harmonic conjugate of T with respect to C and D, 
is also a point common to all the quadrics. Now QT and RT touch all the quad­
rics at T\ QU and RU touch all the quadrics at U. Since Q and R are also on 
the quadrics, we have lines QT, RT, QU, and RU as common generators for 
all the members of the pencil. 

Conclusion. In this case, P3
42, T is the skew quadrilateral QTR U. 

(c) T is in plane 8. Again we have the intersection of 8 with the pencil of 
quadrics being a single conic through Q, R, and T. That is, the plane 8 has the 
same polarity induced in it for all members of the pencil. This corresponds to 
the P343 system. The infinity of lines joining D to the conic in 8 are tangents to 
all the quadrics. That is, the pencil has ring contact on this conic. 

Conclusion. A P3
43 system yields a pencil of quadrics which have ring-contact 

in plane 8. T consists of the conic in 8 counted twice. At each point of this conic, 
the quadrics of the pencil touch. 

Another way of arriving at this type of system is to suppose simply that two 
quadrics of the pencil have a point R in common, with R lying in 8 but not 
on any edge of ABCD. Then T, the harmonic conjugate of R with respect to 
C and CR-AB, is also common to the system. Also U, the harmonic conjugate 
of T with respect to B and B TAC, is common; and V, the harmonic conjugate 
of U with respect to C and CU-AB, is common; and W, the harmonic conju­
gate of T with respect to A and BCAT, is common. These points, R, T, U, 
V, W determine a conic which is the intersection of 8 with all the quadrics of 
the pencil. 

Suppose that we now begin again with the assumption that two (hence all) 
of the quadrics have in common a point Q, which does not lie on any face of 
ABCD. Then R, the harmonic conjugate of Q with respect to C and CQ-y, is 
common to all the quadrics; point S, the harmonic conjugate of Q with respect 
to D and DQ-8, is common to all the quadrics; finally T, the harmonic conju­
gate of R with respect to D and DR-8, is common to all the quadrics. Now 
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Q, R, S, T are coplanar, so if we assume that the quadrics have another point 
in common in plane QRST, we arrive at a previously discussed case, namely 
P34i. Therefore, we assume that the quadrics pass through a point U not in 
plane QRST. By the same method used in finding R, S, T, we find V, W, Y 
coplanar with U, such that V, W, Y are also common to all the quadrics. 
Hence, we have eight points which determine a quartic, the curve of inter­
section of the quadrics. This method of finding T breaks down if the eight 
points are associated; for then, any quartic through seven of the points passes 
through the eighth. In this event we can, by the above method, find many more 
points belonging to I\ Since the * 'eighth associated point" is unique, we have 
the opportunity of choosing the eighth point (which finally determines T) 
so that it is not associated. 

It can be noted that V cannot pass through C or D, for these points lie in 
plane QRST. Likewise, the quartic cannot pass through A or B. 

Conclusion. This, the most general case, is our P34o- It yields a pencil of quad­
rics whose intersection Y is a quartic which has no multiple points and does not 
pass through any of the vertices of the fixed self polar tetrahedron. 

SUMMARY. The investigation of tetrahedral pencils of polarities has shown 
that there are four different types, each yielding a distinct pencil of quadrics. Thus, 
four of the thirteen non-degenerate pencils of quadrics are reached in this manner. 
The corresponding Segre symbols (6, pp. 304-308; 9, pp. 190-195) are as follows: 

Ph0 ~ [1111], Phi - [ (H) l l ] , P342 - [ (H)( l l ) ] , P343 - [ (H l ) l ] . 

5. Hexagonal pencils of polarities. Given a self-polar skew hexagon 
APBQCR, a polarity is determined (7; pp. 269-288) by the following corres­
pondence of points and planes : 

A <-> BQC, 

P <-> QCR, 

B^ARC, 

Q <-> PAR, 

C<^APBy 

R «-> PBQ, 

C 

FIGURE 8 
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DEFINITION. If line RC (Fig. 8) is permitted to vary in a regulus such that 
R varies along a fixed line through A, while C varies along a fixed line through 
Qy then we have °° l polarities determined. We call these a hexagonal pencil of 
polarities. 

The motivation for this definition follows. The main consideration is to 
arrive at a definition which generalizes the notion of pencils of polarities as 
previously defined in 53. Then suppose we were to let a point, say R, vary. 
It would have to vary in a twisted cubic, a conic, a line; for these are-the loci 
of poles of a fixed plane PBQ in a pencil of polarities. This sort of definition is, 
of course, unsuitable. We seek, then, an analogue of the two-dimensional 
case, and thus consider a line varying. Since its polar line (the opposite side 
of the hexagon) remains fixed, Theorem 3.9 indicates that our line should vary 
in a regulus.' 

Thus we let RC vary in a regulus. Does this mean that lines AR and CQ 
must also vary? The answer to this question is no; for AR and CQ are the 
axes, lB and lPy of the points B and P (respectively), and therefore must be 
members of the associated regulus. If then AR and CQ were variable, different 
complementary generators would be intersecting in A and in Q. This situation 
would always lead to a degenerate regulus. 

Therefore, in order to characterize a hexagonal pencil of polarities, we must 
allow line RC to vary in a regulus, with R always on the fixed line lB = AR, 
and C always on the fixed line lP = QC. 

Define a - BQC, and let AP meet a in D. Join AQ and DQ (Fig. 9). The 
polar plane of Q is £ = PAR. Plane £ cuts a in DE, where E = CQ-%. This 
leads to a self-polar tetrahedron AQDE, which is fixed for the entire pencil of 
polarities. 

Now for a point not on the tetrahedron and its polar plane. Consider the 
point M = PB-ARQ. Its polar plane is M = RC(BQ-Ç). Call F the point 
determined by BQ%. Then \x = RCF. By Theorem 3.9 we know that D also 

FIGURE 9 
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lies on the regulus (PC), with the notable exception of the P3
43 case. Hence, 

in general, DE is a generator of the conjugate regulus. Therefore, F in general 
lies on the quadric. 

We wish to show that /x varies in an axial pencil. A projective correspon­
dence exists between the axial pencil CQ and the planes n, with corresponding 
planes intersecting in RC. Thus, there is a line lM — through F and lying in the 
quadric — which is the axis of the pencil of planes /*. 

Now, from Theorem 3.1 we know that the polar planes of any fixed point 
vary in an axial pencil. In this case, where we have a fixed self-polar tetra­
hedron, we can show that each axis passes through DE. For the pencil of 
polarities induces a self-dual system in plane QDE, and the properties of self-
dual systems indicate that the polars of any fixed point vary in a pencil whose 
vertex is always on the same side of the fixed self-polar triangle. Hence, in 
general, the axes of the oo 3 points of S3 form a linear complex of lines through DE. 

According as the axis of n passes through one, two, or three edges of AQDE, 
we get cases P34i, P342, or P3

43- But it appears as though we can never arrive 
at P34o- (Note that in the case P343, we get one of either R or C fixed for the 
pencil. The regulus (RC) degenerates into a plane pencil of lines the vertex 
of which is the fixed point R or C, as the case may be.) 

Again, by methods of §4, we can show that a pencil of polarities leads to a 
system of quadrics, which we call a pencil of quadrics. 

We know that the hexagon will yield pencils of quadrics P3
4* (k = 1, 2, 3), 

but the important question to answer is: Do the hexagonal pencils yield any 
systems of quadrics which do not have fixed self-polar tetrahedra? 

In order to find the answer to such a question, we degenerate the self-polar 
tetrahedron which appears in our hexagonal development. The tetrahedron 
is AQDE. The various ways in which it may degenerate are listed as follows: 

5.1 D lies on plane A QE. 
5.11 D = A. 

5.111 a-£ = AP, 5.112 «•£ = AR, 5.113 «•£ = AB, 
5.114 «•£ = AQ, 5.115 <*•? * AP,AR,AB,AQ. 

5.12 D = Q. 
5.121 a-H = AQ, 5.122 «•£ = BQ, 
5.123 «•£ = CQ, 5.124 «•{ ^ AQ, BQ, CQ. 

5.13 D = E. 
5.131 a-£ = QC, 5.132 «•£ ^ QC. 

5.14 D ^ A,Q,E. 

5.2. E lies on plane ADQ. 
5.21 E - A, 5.22 E = Q, 5.23 E = D, 5.24 E * A,Q,D. 

5.3 Q lies on plane A DE. 

5.4 A lies on plane QDE. 
5.41 A = Q, 5.42 A = D, 5.43 A = E, 5.44 A * Q, D, E. 
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We proceed to investigate these cases. 

5.111 Here A, P, B, Q, C are coplanar (all on a). This case degenerates 
completely. 

5.112 R on a implies that a is the polar plane of P as well as of A. Impossible. 

5.113 Since a-% is the polar line of AQ, the polar plane of B (on «•£) always 
passes through Q as well as A, R, and C. Hence P and B have the same polar 
plane. Therefore this case degenerates completely. 

5.114 (Fig. 10). Since a is a common tangent plane at A for all the quadrics (if 
the pencil exists), they have contact of order 1 or higher. Actually, they must 
have four-point contact (third order). For consider the polarities induced in 
plane BAR. The conies all touch line AB = a at A. Any fixed point on AR 
has a variable polar through B. This rules out the possibility of constructing a 
self-polar triangle. Thus two-point contact is ruled out. Since B has a fixed 
polar line AR, three-point contact is ruled out (10, p. 75). Thus the conies 
must have four-point contact at A; and therefore, the quadrics have four-
point contact at A. Similarly for Q. 

FIGURE 10 

Now we look at plane A PB. The pencil of conies in this plane must also 
have four-point contact at A. Again, using a result of Veblen and Young 
(10, p. 75), B has a fixed polar b through A. But b = ARC-APB. Therefore C 
must be fixed on QC. Likewise we can show that R is fixed on AR. Impossible. 
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5.115 Le tE ' = f .ÇJ5(Fig. l l) . 

5.1151 Suppose there is, in the plane a, a point X, distinct from A, such that 
X is common to the quadrics of the pencil (if it exists). Since the polarity in 
a is degenerate, the line x (the polar of X) must be AX. 

Since the polar of any point on a •£ is AQy X does not lie on AQ. (The 
situation under discussion may arise when the third generator of the regulus 
(RC) lies in a. This implies that C remains fixed on the intersection of the third 
generator and QC.) If we wish C to be our point X, or any point which is 
self-con jugate for all the polarities, we let C be on AB (Fig. 12). C is on plane 
A PB for every polarity since it is self-conjugate. Let line / be the harmonic 
conjugate of line AB with respect to AC and «•£. Then X\ = E'C-l is also 
on all the quadrics. Likewise, X2 = X\E AB is on all the quadrics. 

FIGURE 12 
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Also, Xz — EfX2-L Moreover, the lines AX2 and AXZ are common to all the 
quadrics. a is the common tangent plane at A, APB is the common tangent 
plane at C, ACR is the common tangent plane at B. A, B, and C are, therefore, 
double points of the curve of intersection T. Actually, the entire line AB is a 
line of double points. 

Now X± = l-BQ has as its polar the plane ARX±, and Xh = l-QC has 
APX$ as its polar plane. Further, these planes are common tangent planes 
for the pencil of quadrics at points X4 and X5, respectively. Hence, line / is also 
a line consisting of double points of T. 

Conclusion. We have arrived at a pencil of quadrics whose curve of intersection 
Y is a pair of intersecting lines counted twice. All of the quadrics touch at each 
point of the two lines. We call this aPs&i system. 

5.1152 Suppose X is on T (that is, is common to all the quadrics) and on £, 
and that X lies on neither line AR nor line AP (Fig. 13). Let U = EX-AP. 
Call Xi the harmonic conjugate of X with respect to E and U. Let V = AR-
EX 1. Call X2 the harmonic conjugate of Xi with respect to E and V. X\ and 
X2 are points of T, too. A unique conic *% is determined in plane £ by X, Xi, 
X2 and A (the tangent at A is «•£). Hence, the polarity in plane £ is the same 
for all the polarities of the pencil. Further, the lines joining Q to the conic 
are tangents to all the quadrics. Therefore this system (if it exists) is a ring-
contact system, the same as P343-

FIGURE 13 

5.1153 We now allow a point of r to be on AP or AR. By assuming X on Y 
to be on AP and taking harmonic conjugates as done above we get two lines 
of points which belong to Y. They are all double points because the lines from 
Q to these lines are all tangents. Hence, all the quadrics touch on our two lines 
of T. This is a ring-contact system of quadrics touching at a degenerate conic. 
It reduces to our P3

6i case. 
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5.1154 Suppose X is on T, not on £, not on AQP, and not on AQR. For all 
the polarities of the pencil the polar plane of E' is rj' = AQR and the polar 
plane of E is rj = AQP. Let Xx be such that H ( £ ( E Z • *;), XXi). Then Xi is 
on T. Le tX 2 be such that H(£ ' (£ 'X• i/), XX2). The po in ta (with its tangent 
a-J), X, Xi, X2 determine a conic ^ \ in plane EE'X. ^ is part of r . (Addi­
tional points of ^ i may be found by repeating above method.) Consider 
plane 6, the harmonic conjugate of EE'X with respect to a and £. The projec­
tion of ^ i on 0 through point Q is a conic ^ 2 , which also belongs to T. Hence T 
consists of two conies which have a-£as a common tangent at point A. We call this 
aPs&2 system. 

5.1155 If we consider the previous case without the assumption that X is 
not on 7} and not on t\\ we are led to a degenerate conic, consisting of two 
lines meeting in A, in plane EE'X; and in plane 6 we also have such a conic. 
T here would consist of four lines all intersecting in A. This is not possible as 
the intersection of two non-degenerate quadrics. Hence this case does not 
exist. 

5.121 (Fig. 14) D = Q implies that A, P and Q are collinear and a- J = AP. 
Therefore the polar line of a-£ is QC. But a- J is its own polar line. Therefore 
QC = a-£. For every polarity of the pencil, the polar plane of B is ARC = £. 
Hence B and Q always have the same polar plane, which is impossible. 

FIGURE 14 

5.122 a- J = QB is the polar line of AR and AQ. Therefore AR = AQ. This 
case degenerates with A, R, P, By Q all on J, and points B and Q having the 
same polar plane. 
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5.123 a-£ is the polar line of AQ\ hence CQ = «•£ has 4 P = 4 Q as its polar 
line. A, R,P, C,Q are all on £. This case degenerates. 

5.124 a-H is not any of AQ, BP, QB, CQ. The polar line of AQ is «•£. But 
4 Q = 4 P (since Z) = 4 P - a ) , and the polar line of AP is CQ. Therefore, 
a ' £ = CQ- This contradicts the hypothesis of this case. 

5.131 QC is the polar line of AP, and a-£ is the polar line of AQ. Therefore 
AQ = 4 P and Q = D = £ . This reduces to case 5.123. 

5.132 In this case we can find a fixed self-polar tetrahedron AD'E'Q, where 
Ef — BQ-% and D' = AR-a. This reduces to previously discussed cases 
(Fig. 15). 

A 

FIGURE 15 

However, we may attempt to degenerate AD'E'Q by allowing D' = E'. 
The polar plane of D is -4PQ for every polarity. Therefore, D is self-conjugate 
in every polarity. Similarly, the polar plane of D' is AQB and D' is self-
conjugate in every polarity. If we now examine the polarity induced in a, 
we see that D <-> QD and D' <-» QD'. Hence Q <-> «•£. Hence, we have a self-
dual system in a. The self-polar triangles are formed by Q and any pair of the 
involution (D'D') (DD) on a • £. We can find infinitely many self-polar tetra-
hedra which are fixed for the pencil by taking A} Q, and a pair of the indicated 
involution on a • £. These cases have already been discussed in §3 and §4. 

5.14 D lies on AQE. D ^ A, Q, £ . QC-£ = £ and D is on a-?. But £> is on 
AQE) hence D is on QE. Therefore D — E, which contradicts the hypothesis. 

5.21 (Fig. 16). E = A implies A is on QC. The polar plane of P is RCQy 

and the polar plane of B is ARC — RCQ. Two distinct points have the same 
polar plane which is impossible. 
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A=E 

139 

FIGURE 16 

5.22 This is the same case as 5.11 with the letters D and E interchanged and 
the letters A and Q interchanged. 

5.23 Although tetrahedron AQED breaks down, we can find another self-
polar tetrahedron AQD'E'. We can proceed as in 5.132 with the same results. 

B \ 

\ D 

FIGURE 17 

5.24 (Fig. 17) E on plane ADQ implies that D is on line QC. Hence, AP 
and QC are coplanar. E ^ D, and ED is a-£ = QC. A, P , Ç, C, R are all on £. 
This case is degenerate. 

5.3 Q lies on ADE. This is essentially the same as 5.1 and 5.2 where E lies 
on ADQ, except in the case where Q = A. But in this case a = £, and all the 
points are coplanar. 
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5.41 A lies on QDE and A = Q. This degenerates; for A = Q implies a = £, 
and this implies that all the points are coplanar. 

5.42 This case was treated in 5.11. 

5.43 This case was treated in 5.21. 

5.44 QDE = a. Hence, A is on a. AP-a = D implies A = D, which case has 
already been treated. 

SUMMARY. The development of hexagonal pencils of polarities has shown 
them to be not quite as good as a generalization as pentagonal pencils were in S\. 
The hexagonal pencils have yielded two pencils of quadrics which tetrahedral 
pencils failed to produce. However, one of the systems of quadrics (P34o) which 
arose from the tetrahedral development cannot be reached as a system of the 
hexagonal type. 

Below is a listing of all the systems of quadrics by means of their Segre symbols 
matched with their pencils of polarities symbols when such exist. 

[ 1 1 1 1 ] - Pho [(2 1)1] 
[ (11 )11 ] - p « 4 1 [(2 1 D] 
[(11)(11)] -Phi [2 2] 

[ (111) 1] - p«„ [(2 2)] 
[2 11] [3 1] 
[2 (1 1)] [(3D] 

[4] 

6. Pencils of polarities in Sn. A symmetric (i.e., non-null) polarity in 
Sn is determined by a self-polar simplex 2W, = AiA2. . . An+i and a pair of 
corresponding elements: point P and the (n — l)-flat (prime) T. The notation 
for this polarity is the usual (AiA2 . . . An+i) (PIT). 

In general, we shall denote the prime AiA2 . . . Ai^iAi+i . . . An+i by the 
symbol at ; at is then the polar prime of A t. 

DEFINITION. If T varies in a pencil about the (n — 2)-flat p, we have <» l 

polarities (AiA2 . . . An+i)(Pw) determined. We call these a pencil of polarities 
in Sn. 

THEOREM 6.1. The polar prime % of any fixed point X, with respect to a 
pencil of polarities, varies in a pencil about an (n — 2)-flat. 

Before embarking on a proof we must consider the problem of constructing 
(4) the polar prime of an arbitrary point X. Such a construction can be carried 
out in S2 and 6V We assume that it can also be done in Sn-i. Let 

AiP-Œi = Pi} AiX-oLi = Xu woti = pi, i = 1, 2, . . . , n 
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AiP is the polar line of the (n — 2)-flat pi. Every point on A\P is conjugate 
to pi. In particular, P i is such a point. Hence, we have a polarity induced 
in the prime a\. By the induction hypothesis, we can find the polar (n — 2)-
flat of point X\. Call it %\. We repeat this construction in prime a2 arriving 
at an (n — 2)-flat x2 which meets Xi. x> the polar prime of X, must pass 
through Xi and x2} for X is conjugate to every point on x\ and to every point on 
x2. Since these two (n — 2)-flats meet, they determine a prime which is in 
fact x> the polar prime of point X. 

Proof of Theorem 6.1. We proceed by induction. The theorem is true for 
n = 2 ,3 . Suppose it is also true for Sn-i. 

Let 7T vary about p. Since p cannot lie in more than n — 1 of the n + 1 
faces of 2TO, we suppose that a\ and a2 are two in which p does not lie. Then 
p 7e pi = 7r-ar, pi varies in a pencil about an (n — 3)-flat in face a\. By the 
induction hypothesis, Xi likewise varies in a pencil (in ai) about an (n — 3)-
flat x\. Similarly, x2 = X'OL2 varies in a pencil (in «2) about an (n — 3)-flat 
which we call x'2. In each polarity of the pencil we have % determined by 
Xi'X2. x must pass through x\-x\ in each of the polarities. Hence, the polar 
prime x of point X varies in a pencil about x\-x\. 

In case x\ = x'2} then we can take #'3, x\, . . . , x'n+\. They cannot all be 
equal. 

In Sn there are for consideration the cases Pn
n+i,k where £ = 0 , 1 , 2 , . . . , 

\n{n — 1) according as p meets none, 1, 2, . . . ,\n{n — 1) edges of 2„. 
/? passes through the maximum number of edges when it lies entirely in a face, 
thus meeting all of the \n(ji — 1) edges of Sw in the face. It is clear that this 
is not a complete classification for there may be several distinct pencils in S„ 
with the same k when n > 3 ; e.g., in P4

53, P meets three edges of 2n but different 
cases occur when the three edges are coplanar and not. 

The Pnn+\,i system: In this case we suppose that p meets only one edge, say 
A\A2 — a of Sn. Two-dimensional self-dual systems are induced in every 
plane of Sn which is incident with AiA2. Hence, the involution of conjugate 
points on AiA2 is the same for all the polarities. Therefore, any pair of the 
involution on AiA2 together with the points A3, A±, . . . , An+\ form a fixed 
self-polar w-simplex for the pencil of polarities. Hence 

THEOREM 6.2. A PVHI. I system has 00 l self-polar n-simplexes, each one of 
which serves for the entire pencil. 

Reasoning analogous to that of Theorem 3.2 gives us 

THEOREM 6.3. The product of two polarities belonging to the same P \+ i , i 
system is a general axial homography (a collineation which leaves invariant every 
point on aline and every prime on an (n — 2)-flat). 
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Proceeding similarly, we have 

THEOREM 6.4. 

(a) The Pn
n+ifk system has <nk self-polar n-simplexes, each of which serves for 

the entire pencil. 

(b) If two polarities belong to the same Pn
n+itk system (k = 2, 3, 4, . . . , 

\n{n — 1) — 1), their product is a k-axial homography (a collineation having k 
skew lines which are pointwise invariant). 

The P\+ i^n ( n_D system is of particular interest since it is the direct 
generalization of the self-dual system, p now lies entirely in a face, say 
a\ = AiAz. . . An+\, of 2n. The polarity induced in this face is the same for 
each member of the pencil. The polarity is always (A2A^ . . . An+i)(Pip). 
Hence the polar primes of point X (for all members of the pencil) pass 
through xi. The involutions induced on all the edges in ai are the same for 
every polarity in the pencil. By taking any combination of pairs of the 
involutions on these edges together with the point A, we can arrive at cohn(n-^) 
self-polar simplexes. Hence, 

THEOREM 6.5. A Pw
n+ifiw(w_i) system admits a prime «i, upon which the 

induced polarity is the same for all members of the pencil. The polars of any point 
P pass through a fixed (n — 2)-flat p on prime a\, and the poles of any prime T 
form a range of points on a fixed line A\P\, where A\ is the pole of a\ for all the 
polarities. 

THEOREM 6.6. If two polarities belong to the same Pn
n+i^n(<n_i) system, their 

product is an homology. 

Remark. We speak of an homology in Sn when the collineation leaves 
invariant every prime through a point and every point on a prime. 

Proof. We suppose that p, the axis of T, lies in a\. From the construction of 
pole and polar prime, we know that every prime through A\ is fixed under 
the product of two polarities, and so is every pencil of primes whose axis lies 
inai. 

Consider any point X in «i. Its polar prime % intersects ai in the (n — 2)-
flat Xi. If we operate with another member of the Pn

n+i^w(w_i) system, we find 
that Xi —» X because the polarity induced in a\ is the same for all members of 
the pencil of polarities. Hence, X —» X under the product, which shows 
that every point of prime a\ is invariant. 

Now consider an arbitrary prime p through A\. Let p-ai = r±. Let P i be 
the pole of f\ in plane a\. Then R, the pole of prime p, is on the line AiRi. 
Then operate on R with another member of the system. The construction tells 
us that R maps into a prime through r\. Since every line through A i is invariant, 
we have the prime t\A\ invariant. Hence, the product is an homology. 

https://doi.org/10.4153/CJM-1956-017-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-017-0


PENCILS OF POLARITIES 143 

THEOREM 6.7. Every homology can be expressed as the product of two polarities 
belonging to a P*n+i,jn(n-i) system. 

Proof. The homology whose prime of perspectivity is ai and whose center 
is Au and with a pair of corresponding points Pi and P 2 (on a line through 
Ai) is the product of two polarities (AiA2. . . An+i){P1Tr) and (A1A2 . . . ̂ 4w+i) 
(P27r), where T is an arbitrary prime. 

THEOREM 6.8. The locus of poles of a fixed prime in general position with 
respect to a Pn

n+ i(o system is a rational normal n-ic curve. 

Proof. Let x be a fixed prime. Take n distinct points Qi, (?2, . . . , Qn on x-
The intersection of the polar primes of these n points is the pole X of x-
The previous theorems indicate that as TT varies in the pencil the polar primes 
of Qi, Qi, . . . , Qn vary in projective axial pencils. The locus, therefore, is a 
rational normal n-ic. 

In Pn
n+i,k (k = 1, 2, 3, . . . , \n{n — 1) — 1) the rational normal n-ic 

degenerates into an (n — &)-ic or lower order curve which is confined to an 
(n — &)-flat. This follows from reasoning precisely the same as used in the 
proof of Theorem 3.9. The discussion of the Pn

n+it^n^D system in Theorem 
6.3 indicates that in this case the locus is a line which passes through exactly 
one vertex At of 2n, where At is the pole of the face of Sw with the same 
induced polarity for all members of the pencil. 

Proceeding in a manner analogous to that in §3, we might ask what happens 
to the oo n~1 axes of lT of the points T on a fixed prime. The general case is most 
interesting. 

THEOREM 6.9. The con~l axes of LT of the points T of a fixed prime w are the 
oo n~1 chords of the rational normal n-ic in a Pn

n+\to system. 

Proof. Any point T of T can serve as one of the points whose polar prime 
provides an axial pencil for the generation of the n-ic. By well-known theorems 
concerned with such a generation, we know that the axis lT is a chord of the 
w-ic. Since this is so for all points of w, the theorem is established. 

For any given w, a detailed investigation, analogous to that in §4, may be 
carried out to develop the various pencils of quadrics in Sn. Such a presentation 
here would be lengthy and, I fear, uninteresting because of its repetitious 
nature. However, such would not be the case with a development of pencils of 
polarities and pencils of quadrics by means of a self-polar (n + 2)-gon. While 
it is clear that self-polar (n + 2)-gons always exist in Sn, I confess that I have 
not discovered any general method of investigation of the pencils of polarities 
which they yield. The method of attack in 5 3 does not readily lend itself to 
use in higher dimensions; for even in 54 we would have an enormous number of 
special cases to treat. 
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