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On general curves lying on a quadric.

By Professor H. F. BAKER, F.R.S.

(Received 1th September 1926. Read 5th November 1926.)

Introduction. The present note, though in continuation of the
preceding one dealing with rational curves,1 is written so as to be
independent of this. It is concerned to prove that if a curve of
order n, and genus p, with k cusps, or stationary points, lying on a
quadric, Q, in space of any number of dimensions, is such that itself,
its tangents, its osculating planes, ... , and finally its osculating
(h — 1)-folds, all lie on the quadric O, then the number of its oscula-
ting A-folds which lie on the quadric is

2[n + 2h(p- 1)] - 2k.

Two proofs of this result are given, in §§ 4 and 5.

For p = 0, that is for a rational curve, this result is incidentally
proved in the preceding note. For h = 1 the result, as will be seen,
is well known; and it may well be that the general result has been
stated. In any case the note suggests a further enquiry, to the case
when, in place of a curve, a locus of points, the locus of an aggregate
of lines, or of planes, etc., is considered.

§1. Consider a Ruled surface in ordinary space. It possesses a
certain number of generators which intersect their " consecutive."
Let the general generator be represented, in Cartesian coordinates
x, y, z, by

x = g + za, y = 7] + zfi,

where (£, ij, 0) is a general point of the section by z = 0, and a, B, y
are regarded as functions of £, the points of the generator being given
by the various values of z. The condition for this generator to
intersect its consecutive may be obtained by expressing that the
point of intersection (x, y, z), must also satisfy the equations

da dri dB

1 Proc. Edin. Math. Soc, XLIV, 1926, p. 131.
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the generators in question arise therefore for values of £ such that

dr) da dp
dj di~di^ "

The tangent plane of the ruled surface is then the same at every
point of such a generator, its equation being

y _ v _ 0Z _ (X _ £ _ az)
 dJI = 0,

and every plane through the generator touches the surface at the
point of the generator for which

Conversely these facts may be used to define the generator, which is
hence called a Torsal line.

The number of such generators may be found by the theorem
(Salmon, Solid Geometry, 1882, p. 591) that the Hessian of the Ruled
surface meets the surface in its double curve, counting eight times,
and in the Torsal lines, each counting twice. The order of the plane
section being n, and its genus p, so that, if we neglect the possibility
of cuspidal generators, the order of the double curve is

1(W _ 1 ) ( M - 2)-p,
the equation

8 [J (n - 1) (n-2)-p] + 2x = 4n(n~ 2)

gives for x, the number of Torsal lines,

x = 2 (n -f 2p - 2).

Another proof of this number is obtained by considering two
plane sections of the Ruled surface, put in (1, 1) correspondence
by the generators, and finding the number of intersections of a
tangent of one section with the tangent at the corresponding point
of the other.

We easily find that the line coordinates of the general generator
of the Ruled surface are

I = a, m = /?, n = 1, Z'= y], m'= — £, n' = £/3 — rja,

so that, when this is a Torsal line, we have

dl dV + dm dm' +dndn'=0;
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if (I, m, n, V, m', n') be regarded as the coordinates of a point in space
of five dimensions, thus lying on the quadric, Q, given by

U'+ mm'+ nn'= 0,

the generators of the Ruled surface will be represented by the points
of a curve lying on Q. Those particular generators which are torsal
will be represented by points of this curve whereat the tangent line
of the curve lies wholly on O. This is what is expressed by the
differential equation dldl' + . . . = 0 , which is equivalent to the original
differential equation d-rj/dg — d/3/da = 0.

§ 2. It is obvious that two lines of ordinary space which intersect
determine a flat pencil of lines; thus, if the lines of ordinary space be
represented by the points of a quadric, Q, in space of five dimensions,
the line joining the points of this quadric which represent two inter-
secting lines of ordinary space lies wholly on Q. Thus the generating
lines of a developable surface of ordinary space are represented in
five dimensions by the points of a curve, lying on O, which has the
property that all its tangents equally lie on O. A ruled surface which
is not a developable will however similarly be represented by a curve
on Q of which the tangents at the points representing the torsal
generators of the ruled surface lie on Q.

The order of the curve on O which represents a ruled surface of
ordinary space, being, by definition, the number of its intersections
with a general prime (or fourfold) of the fivefold space, is equal to
the number of its intersections with a tangent prime of Q; that is,
is equal to the number of generators of the ruled surface which meet
any general line, that is, to the order of the ruled surface. By the
(1, 1) correspondence, the genus of the representative curve on Q is
equal to the genus of the ruled surface, or of an arbitrary plane
section of this surface.

In the particular case when the ruled surface is the developable
formed by the tangents of a curve, C, of ordinary space, the order
of the representative curve, on O, is the rank, r, of the curve C, the
number of its tangents meeting a general line. Further, the points
of the curve G are represented on Q by the planes of the first kind
lying on Q, say the planes (I), which pass through the tangent lines
of the representative curve on O, while the osculating planes of the
curve C are represented by the planes of the second kind lying on Q,
say the planes (II), which pass through the tangent lines of the
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representative curve on D. Thus the order, n, of the curve C, being
the number of its points lying on an arbitrary plane, is the number
of planes (I), on Q, through the tangent lines of the representative
curve, which meet any selected plane (II) of D. in a line, or, is the
number of tangent lines of the representative curve (say y) which
meet this plane (II). Similarly, the class, n', of the curve C, being
the number of osculating planes through a general point, is the
number of tangent lines of the curve y, on Q, which meet any
selected plane (I), of Q. If the curve C have a point of inflexion,
there being three "consecutive" points of the curve, or three "con-
secutive " osculating planes, lying in, or through, the same tangent
line, that is, two "consecutive" tangent lines which are the same
line, then the representative curve has a stationary point or cusp;
let /? be the number of inflexions of C, or cusps of y. Consider now
the number of tangent lines of the curve y, on D., which meet an
arbitrary solid (threefold space) of the fivefold space; such lines will
lie in a prime (fourfold space) through this solid; conversely if any
prime be drawn through this solid, the joining line of any two of the
r intersections of the prime with the curve y will meet the solid, and
if the two intersections coincide, except at a cusp, the line will be
a tangent line which meets the solid. The primes through the solid
are a single infinity, ("pencil"), and determine an oo1 lot of sets of
r points upon the curve y, of genus p. There are, therefore, by a
result originally due to Riemann, 2 (r + p — 1) cases of coincidence of
two points of such a set, including once every cusp of the curve y, or
so many tangent lines meeting the fixed solid, if the /? cusps be
reckoned in. Let us, in particular, take for the fixed solid one
determined by a plane (I) of D, together with a plane (II) which meets
the former in a line; this solid is the polar solid, in regard to Q, of
the line of intersection of these two planes and intersects Q only in
these two planes. The tangent lines of the curve y, which lie on £1,
can only meet this solid on the plane (I), or the plane (II). As we
have seen, the total number of such meetings is n + n . Allowing
for the cusps, ft in number, we thus have the result

n + n'+p = 2(r+p- 1),

which is a known result of the Pliicker-Cayley formulae for the curve
C. Another result of these formulae, r + a = 2n -f- 2p — 2, may be
similarly illustrated. Here, a is the number of stationary points,
or cusps, of the curve C itself, the number of " points in four planes "
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(Salmon, Solid Geometry, 1882, p. 292; there denoted by /?); in other
words a is the number of points of the curve G through which three,
instead of two, "consecutive" tangents of the curve pass; for the
curve y it is therefore the number of points at which the osculating
plane lies on Q, and is a plane (I) of Q. Similarly, the number a', of
stationary planes of the curve C, is the number of osculating planes
of the curve y which are planes (II) of Q. And another result of the
Pliicker-Cayley formulae for the curve C, namely

a + a' + 2/3= 2 (r + 4p - 4),

is thus also capable of interpretation. For we shall prove below that
the right side, for a curve lying on a quadric, of order r and genus p,
of which the tangent lines lie on the quadric, is the number of
osculating planes of the curve which lie on the quadric. We have
already seen this when p = 0.

§ 3. The results so far suggested to us for a curve upon a quadric
in five dimensioned space which arises as representing a ruled surface
of ordinary space, are in fact true for a curve lying on a quadric in
space of any number of dimensions. We first illustrate this by
obtaining again, in another manner, the formula which, in the
particular case we have considered, gives the number of torsal
generators of a ruled surface.

We consider, in space of any number of dimensions, a quadric,
il, given by the vanishing of a single quadratic polynomial in the
coordinates; and, upon this quadric, a curve, C, of order n and
genus p. We shew that the number of points of this curve whereat
the tangent line lies on the quadric is 2 (n + 2p — 2) — 2k, where k is
the number of stationary points, or cusps, of the curve.

The tangent prime of the quadric at any ordinary point, P, of
the curve, meets the curve again in (n — 2) points. The line joining
P to one of these points, P', meets the quadric in two coincident
points at P, and thus lies entirely on the quadric, so that the tangent
prime of the quadric at P' contains P. We thus have a corre-
spondence, of indices (n — 2, n — 2), between two points P, P' of the
curve whose join lies on the quadric. This correspondence is of
valency 2, since, obviously, the (n — 2) points corresponding to P,
together with P taken twice over, are the complete intersection of
the curve with the tangent prime at P, and are thus a set of the
linear series (oo 1) of sets of n points in which the curve is met by the
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primes of the space. Thus, by the Cayley-Brill formula, there are
2 (n — 2) + 2.2p, or 2 (n + 2p - 2),

cases in which P coincides with one of the (n — 2) corresponding
points. When this is so the chord becomes the tangent of the curve
at P and lies entirely on the quadric, if P be an ordinary point of
the curve. But, it may be shewn, the number obtained contains
every cusp of the curve, counted twice; this appears more clearly
from the second proof of the theorem given below in § 5.

For example, if the quadric Q (and the curve C) be in space of
three dimensions, and the curve be a cubic, for which n = 3, p = 0,
the number obtained is 2. This we know to be accurate; for the
generators of the quadric which meet the cubic curve in two points
determine an involution on this curve, of which there are two double
points. If the curve C be a quartic with p = 1, the intersection of
the quadric with another quadric, the number obtained is 8. This
again is a familiar result, there being four generators of each system
of the original quadric which touch the curve, as we may see by
projecting the curve, and one system of generators, from one of the
vertices of the self polar tetrahedron, two quadric cones of common
vertex having four common tangent planes. If the curve be a non-
singular rational quartic, part of the intersection of the given quadric
with a cubic surface containing two skew generators of the quadric,
the number obtained is 4; namely, of the generators of that system
of the quadric which are trisecant chords of the curve, there are
four which touch the curve. This is also obvious by remarking that,
if two points of the curve be regarded as corresponding when they
lie on a trisecant chord, this establishes a (2, 2) correspondence, of
which there are four points of coincidence. The curve may however
be the rational intersection of two quadrics which touch, having a
double point, or a cusp at this point. In the former case the number
2 (n — 2), or 4, is still the right number of tangents of the curve
which lie on either quadric, there being two generators of each
system, of the quadric, which are tangent lines of the curve. In
the latter case the number 2 (n — 2) — 2k, or 2, is also correct, there
being only one generator of each system, of the quadric, touching
the curve. This may be verified in detail by taking the two
quadrics to be

zt = x2 — y2, zt — {a+ l).r2 + (b — l)y2 + z (Ix + my);

these have contact at x — y = z = 0, which is stationary if a or b
is zero.
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For the case when the quadric Q is in space of five dimensions,
and the C curve represents a ruled surface of ordinary space, we
have already shewn that a point of C where the tangent line lies
on Q. corresponds to a torsal generator of the ruled surface. The
number of these is then 2 (n + 2p — 2), as we have already found,
this number including however every stationary generator of the
ruled surface, counted twice.

§ 4. It may happen that of the curve C on Q every tangent also
lies on Q. We may then investigate how many of the osculating
planes of C lie on Q. It will be as easy, however, at least in the
former of the two methods which we employ, to suppose that, of
the curve C. every osculating (h— l)-fold—determined by h "con-
secutive " points of C—lies on Q, and to investigate how many
osculating A-folds of G lie on Q.. We prove that this number is

2[n + 2h{p- l)]-2it,

where k is the number of cusps of C.

The proof is quite easy if we assume the following lemma, of
which we give the proof in outline in § 6 below:—

When the curve C is such that every osculating {h — l)-fold,
determined by h " consecutive" points of the curve, lies on the
quadric O, then the tangent prime of Q. at any ordinary point, P,
of the curve, meets the curve at P in 2h coincident points. But
if, for a particular ordinary point of the curve, the tangent prime
of D contains 2h + 1 coincident points of the curve, then the
osculating h-iold of the curve at that point lies entirely on the
quadric Q.

There is limitation1 of the value of h owing to the fact that upon
a quadric in space of r dimensions, the linear space of highest dimen-
sion, s, must be such that s < \r. We shall suppose that h < \r, if
the curve, and Q, be in space of r dimensions.

Assuming this lemma, and supposing that every osculating
(h — l)-fold of the curve C lies on O, the tangent prime of Q, at any
ordinary point, P, of C, meets the curve again in n — 2h points.

1 For instance, if we can have a rational quintic curve, with its tangents, lying
upon a quadric in space of four dimensions (n = 5, h — 2, r = 4), the result of the
formula would otherwise be that there are two of its osculating planes upon the quadric.
In the preceding paper, dealing with rational curves, we have supposed the curve of
order n to lie in space of n dimensions.
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Thus we have a (n — 2h, n — 2h) correspondence between pairs of
points of this curve, evidently of valency 2h. There will then be,
neglecting the possibility of cusps,

2 {n- 2h) + 2.2h.p, = 2[n + 2h(p- 1)],

coincidences, or, this number of points P where, by the lemma, the
osculating h-iold of C lies on il: which is the theorem stated. The
correction when C has cusps appears clearly in the second proof of
the theorem given in § 5 below.

For instance, when h=2, that is, for a curve on O of which every
tangent line lies on il, the number of points of C for which the
osculating plane also lies on D is

as was remarked above for the case when Q is in five dimensions.

§5. There is another method of proof of this result, which is
instructive, proceeding with a step by step process.

Suppose as before the curve C to lie on il, a quadric in space of
r dimensions, and that we wish to find how many of its tangents lie on
12. From a general point 0, of il. let O, and the curve C, be projected
upon a space To, of r — 1 dimensions. The tangent prime of il at 0
contains all lines through 0 which lie on Q; the tangent prime meets
— in a space, TS', of r — 2 dimensions, and these lines determine
therein a quadric, il', of dimension r — 3. The curve C meets the
tangent prime of il at 0 in n points; the curve C, in ~, which is the
projection of C, thus meets the quadric Q' in n points, these being the
intersections of C with the space GJ'. Any tangent line of C meets
the tangent prime of Q at 0 in a point, and is thus projected into a
tangent line of C" meeting cr'. But a tangent line of C which lies on
12 meets the tangent prime of Q at 0 in a point on il, and is thus pro-
jected into a tangent line of C" which meets ~/ in a point of il'. To
find the tangent lines of C which lie on Q., we are thus required to find
the intersections with Q' of the curve, y, in v>', which is the locus of the
intersections, with rs', of the tangents of C". The number of these
intersections would be twice the order of this curve y, were it not for
the n intersections of C" itself with il'; at such an intersection there
are two coincident tangents of C" meeting £}', and these do not
generally arise by projection from tangents of C which lie on Q (the
position of 0 being arbitrary). Now, the order of the curve y is the
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number of tangents of the curve C" which meet a space Sr _:!, of
dimension (r — 3); or is the number of 8,. . 2, of the pencil of such
<S> 2 which pass through this Sr_s, which touch the curve C", which
itself lies in the prime cr, of dimension (r — 1). If C have k cusps.
and therefore as 0 is arbitrary, if C have k cusps, this number is
2n + 2p — 2 — 1c, by a theorem originally due to Riemann. The
number of tangents of C which lie on O is thus

2 (2m + 2p ~ 2 — Jc) — In

or 2 (w + 2p - 2) - 21c,
as was remarked.

Next suppose that all the tangent lines of C lie upon O, and that
we wish to find how many osculating planes of C lie on O. Carrying
out the same projection, the curve y will be entirely upon Q'. An
osculating plane of C will give rise by projection to a tangent line of
the curve y, for the osculating plane meets the tangent prime of Q. at
0 in a line. If this osculating plane lies on Q., this line also lies on il,
and the corresponding tangent line of y will be on LY. If v be the
order of y, the number of such tangents, by what has been seen, is

2(v + 2i>-2)-2ifc',

where k' is the number of cusps of y. These cusps are the n points
of y where C" meets Q'. The number of osculating planes of C which
lie on Q, putting

v = 2n + 2p — 2 — k, k' = n,
is thus

2 (n + ip — 4) — 2k.

Next suppose the osculating planes of C lie on O, and we wish
to find the number of osculating solids (threefolds) of C which lie
on O. This will as before be the number of osculating planes of
y which lie on Q!, and will therefore be

2 („ + 4p - 4) - 2k',

or 2 (n + &p — 6) — 2k.

The argument is evidently general, and we have the same result

as before

§ 6. We may now indicate the nature of an elementary proof
of the lemma assumed in § 4.

The equation of O may be taken to be

... + xtyk + mx^ = 0,
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where m is a constant, equal to zero when the space in which Q lies
is of odd dimension (2k — 1), and equal to unity when the space is
of even dimension (2k). In the latter case we can write the last
term xk+lyk + i with yk + l = xk + 1. This form, an evident change from
a sum of 2k (or 2k + 1) squares, is always possible.

The quadric contains the point for which

xi — Vi — • • • = XL• = 0 a n d xk + 1 = 0, w i t h yk. = 1,

and the tangent prime at this point is xk = 0. We suppose the
curve on O, which we consider, to pass through this point, and to
have, for the expression of its coordinates, in terms of a parameter s,
in this neighbourhood, forms indicated by

' i + i) a (/:• + i)

together with

where the denominators are factorials.
The conditions that the curve lies on D. require that if these

series be substituted in the equation of the quadric Q, the coefficient
of every power of 5 in the resulting series should vanish. Instead
now of writing separately the results of the substitution of these
series in the terms

x1 yx, x?,y2, . . . , xk _ i i/* _ i , mx2
k + i,

preceded by a sign of summation over the k terms (in case the
last term is present), we shall write down simply the result of
substituting

in the single term xy. It is then understood that the coefficient of
every power of s in the result of the substitution stands for the
sum of the results of the substitutions in these k terms (or k — 1
terms when m = 0). Further we shall denote apbq-\-a,pp by [p, q],
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and apbp by [p, p]; also, the product of the two factorials (p)!
and (q)\ , that is 1.2 ...p.1.2 ... q may be denoted by (p.q).

The condition that the curve lies on the quadric is thus
represented by the vanishing of

requiring the conditions

The conditions that the tangents of the curve lie on the quadric
are found (as is easy to see) by adding to these conditions those
obtained by substituting for the coordinates x, y the series for
dx dy , , ,
— , -~ , or say x , y , namely
ds ds

x'— — 4- — s 4- — s2+ i / ' = ^ + ^ . s + ^«2+

and for xl: the series

but as dykjds = 0, the series for x\. does not arise in this substitution.
The result of the substitution is

[1, 1] [1, 2] /[I, 3] [2, 2]
(oTo) + (TT) + (172)

and leads to

= 0, etc
(0.0) ' (1.1) (1.2) (1.1)

Hence we can at once read off the truth of the lemma for the
case h = 1. The curve lying on Q. involves that px = 0, so that the
expression for xk begins with the term in s2, and the tangent prime of
Q meets the curve in two coincident points at the point considered.
While, if the tangent prime meets the curve in three coincident
points, that is, if p2= 0, then from the equation

o(T7T) ' 2 ! ° '
we have [1, 1] = 0 , and hence the condition for the tangent line of
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the curve to lie on Cl is satisfied for the particular value s = 0, that is
at the point of the curve which is under consideration.

The truth of the lemma for h — 2 is also clear. If the conditions
for the curve, and its tangents, to lie on £1, are satisfied, the com-
parison of the conditions (I) and (II) leads to

so that the tangent prime of D. at the point, xk = 0, meets the curve
in four points coincident at this point. While, if the tangent prime
meets the curve at this point in five coincident points, that is, if also
£>4= 0, then it follows from (I) and (II) that

[1, 3] = 0 and [2, 2] = 0.

Now the condition that the osculating plane at the point considered
should lie on O is that the result of substitution in the equation of
the quadric Q of the values of d2x/ds2, d2y/ds2, for x, y, say of

should vanish for s = 0. This requires, however, only that [2, 2] = 0,
which is one of the consequences deduced above from p^-= 0.

The argument can be continued in this way; and the result is
as stated.
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