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A droplet under a thermal gradient is known to migrate in a preferential direction, as
governed by the variation of its interfacial tension with temperature. Contradicting the
outcome of reported asymptotic analysis, here we show that the calculation of the droplet
migration by considering the variation of interfacial tension with the imposed thermal
field alone may be fundamentally incorrect. This error is attributed to the dynamically
evolving interfacial temperature field due to a two-way coupling between the thermal field
and the flow field, mediated by the droplet deformation and thermal diffusion. By directly
capturing an inherent nonlinear coupling between the thermal field and the flow field
using explicit interface tracking in a three-dimensional space, our boundary integral based
analysis reveals that a linearly decreasing temperature profile imposed along the direction
of a plane Poiseuille flow enhances the migration speed of the droplet in both the axial and
cross-stream directions. This is in sharp contrast to a prediction of decelerated motion of
the droplet under the same imposed thermal field, as obtained from asymptotic theory. We
attribute this discrepancy to an alteration of the surface tension mediated interfacial stress
due to the locally evolving temperature field, and a consequent concomitant alteration in
the interfacial viscous stress to realize a tangential force balance at the interface. From
scaling arguments, we show that the resulting change in the viscous drag force may occur
over an order of magnitude, disrupting the outcome as compared to that obtained from
asymptotic analysis. These results are likely to bear significant implications in controllable
separation and sorting of deformable entities in confined fluidic media.
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1. Introduction

Droplets suspended and transported in flow media are central in several emerging
applications encompassing biomedical technology (Gañán-Calvo et al. 2013; Mazutis et al.
2013; Pan et al. 2013; Tasoglu et al. 2013; Vladisavljević et al. 2013; Zhao et al. 2013;
Rosenfeld et al. 2014; Schlicht & Zagnoni 2015), industrial processes (Karabelas 1977;
Kaushal & Tomita 2002), flow cytometry (Adan et al. 2017) and beyond. As droplets
migrate in confined fluidic pathways, they are likely to confront obvious variations in
their thermal ambience, either purposefully imposed or inherent to the system itself. For
instance, when droplets are used as drug carriers, they need to migrate to the specific target
areas inside the human body by invading complex non-isothermal environments inside
physiological pathways (Lawson & Chughtai 1963; Werner & Buse 1988). However, in
engineered flow-focusing experiments (Baroud et al. 2007a; Baroud, de Saint Vincent &
Delville 2007b; Nguyen et al. 2007; Stan, Tang & Whitesides 2009), micro-fabricated
thermal units are known to facilitate controlled droplet motion. As the droplets migrate,
deformation of the droplet–carrier fluid interface is likely to trigger non-trivial alterations
in the incipient flow field and a consequent alteration in the droplet morpho-dynamics
via complex two-way thermo-fluid coupling, an aspect that may not be trivially captured
by simplified theoretical frameworks. A related area of research is the thermo-capillary
dynamics of sessile droplets (Karapetsas et al. 2014; Pradhan & Panigrahi 2015) which
is governed by three-phase contact line phenomena mediated by fluid motion inside the
droplet. It should be noted that the physical problem addressed in this paper involves a
droplet which is completely immersed in another fluid and experiences a dynamically
evolving thermal field on its entire periphery, as opposed to a sessile droplet which has a
footprint on the solid surface and hence, the thermal gradient imposed on the solid surface
directly acts on the droplet. This renders the dynamics of droplets in the scenario of a
freely moving droplet physically different as compared to that of a sessile droplet, and
hence the physics of migration as observed for the latter cannot be trivially presumed to
govern the former.

Motion of a droplet in a thermal field is known to be strongly influenced by the
interfacial stress stemming from the gradient of surface tension with temperature,
culminating in an interfacial tangential stress, alternatively interpreted as the Marangoni
(thermo-capillary) effect (Subramanian 1983). Starting from the early work of Young,
Goldstein & Block (1959), several researchers have studied the thermally modulated
dynamics of droplets and bubbles in a quiescent fluid medium, as governed by Marangoni
effects. In a classical text titled ‘Film notes for surface tension in fluid mechanics’,
Trefethen (1969) describes an experiment where air bubbles propel themselves within
a capillary tube, along the direction of the externally imposed temperature gradient.
They explained this phenomenon qualitatively by analysing the variation in the thermally
induced surface tension of the bubble and the consequent fluid motion due to viscous drag.
Nadim, Haj-Hariri & Borhan (1990) reported thermo-capillary migration of a slightly
deformed droplet in a quiescent fluid, where the droplet deformation occurs either due
to surfactants or due to fluid inertia. They estimated the droplet migration speed by
expanding the droplet shape using a regular perturbation approach and concluded that in
the presence of droplet deformation, the migration speed can either increase or decrease,
depending on the relevant physical property ratios of the carrier and suspending fluid
phases. Later, Raja Sekhar and co-workers (Choudhuri & Raja Sekhar 2013; Sharanya
& Raja Sekhar 2015) studied the thermo-capillary migration of a spherical droplet in the
presence of a background flow and inferred that the effects of non-uniform temperature
field and background flow can be linearly superimposed. Recently, Das, Mandal &
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Chakraborty (2018); Das et al. (2017) studied the migration of a surfactant-coated
droplet in a non-isothermal pressure driven flow. They used a perturbation approach
for studying the thermo-capillary migration in the regimes of diffusion-dominated and
advection-dominated transport of surfactants along the droplet interface. It was found that
the droplet migrates faster both along the axial and cross-stream wise directions when the
temperature field is increasing along the direction of flow. Conversely, a linearly decreasing
temperature field in the flow direction was found to slow down the droplet migration along
both the axial as well as cross-streamline directions. In a related work by the same authors,
the effect of asymptotically small shape deformation was also taken into account (Das &
Chakraborty 2018), and it was observed that when the temperature decreases along the
direction of flow, a reversal in the direction of cross-streamline migration of the droplet
occurs beyond a certain magnitude of the temperature gradient.

Despite offering significant insights on thermally modulated droplet transport, the
above results appear to be physically somewhat restrictive because of the following
simplifications made for analytical tractability: (a) shape deformation of the droplet during
its dynamic evolution is neglected (Das et al. 2018) or at the best considered to be
asymptotically small (Das & Chakraborty 2018); and (b) the externally imposed thermal
field is directly super-imposed on the droplet, obviating a possible two-way coupling
mediated by the balance of viscous stress and capillary stress at the dynamically evolving
interface.

Here, we show that by relaxing the above assumptions via an explicit interface-tracking
approach, one may confront a physical scenario that conflicts with results from reported
theories where only one-way coupling between the externally imposed thermal field and
the interfacial stress field is considered. Towards establishing this proposition, we use a
boundary integral based formalism that essentially converts the physical three-dimensional
problem into a set of two-dimensional integral equations over the droplet surface. For
illustration, we consider a droplet initially suspended in an externally imposed parabolic
flow (Griggs, Zinchenko & Davis 2007; Janssen & Anderson 2008) and a linearly
varying temperature gradient along the direction of the flow. In such a scenario, the
boundary integral equations can further be simplified into a set of integrals over the
droplet interface by including additional corrections to the Green’s function (Pozrikidis
et al. 1992). Nevertheless, the transport phenomenon addressed herein is elusively
more complex as against an intuitive two-dimensional paradigm, as attributed to an
inherent three-dimensionality of the dynamically evolving droplet–carrier fluid interface.
Consequently, a three-dimensional consideration of the interface is warranted to bring out
the correct interfacial forces.

As a decisive advantage, as opposed to the established diffuse interface methods that
artificially smear out macroscopically sharp interfaces to gain computational advantages
(Anderson, McFadden & Wheeler 1998; Liu & Zhang 2010; Teigen et al. 2011) of
avoiding mesh entanglement during the interface deformation at the expense of using
soft parameters in the model that cannot be directly mapped with the physical data,
our approach enables an explicit representation of the interface without invoking any
artificial model parameters, and hence holds the capability of extremely accurate depiction
of the interfacial forces. Further, our boundary integral based formulation is established
to be capable of representing a three-dimensional interface via a derived system of
two-dimensional equations, establishing computational tractability amidst the dynamical
complexity. In contrast to the predictions from analytical theory, we show that the axial and
cross-stream migration speeds of a droplet increase in the presence of a linearly decreasing
temperature field and conversely, an increasing temperature field slows down the migration
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velocity along both axial and cross-stream directions. This paradigm of two-way coupling
between the imposed flow and other field mediated interfacial effects is likely to be
decisive in a wide class of problems encompassing droplet and bubble dynamics, offering
interfacial descriptions with high level of quantitative accuracy as compared to established
theories.

2. Problem formulation

2.1. System description
We consider a Newtonian droplet with density ρ, viscosity μ and thermal conductivity ki.
Initially, it holds a spherical shape with a radius a. It is suspended in another Newtonian
medium having identical density and viscosity, and a thermal conductivity equal to ke. The
surface tension, σ̄ , varies along the droplet–carrier fluid interface, due to local variations
in temperature. For simplicity, yet without sacrificing the essential physics, we consider
a linear decrease of σ̄ with increase in the interfacial temperature T̄s, with the reference
value of σ̄0 at temperature T̄0.

We fix up a Cartesian co-ordinate system (x̄,ȳ,z̄) at the channel centreline, on the inlet
boundary. Initially, the droplet centroid is positioned with a slight offset from the channel
centreline at (X̄c, Ȳc, Z̄c). The imposed free stream velocity, V̄ ∞, is taken to be a parabolic
profile with centreline velocity V̄c and the externally imposed temperature field is denoted
by T̄∞. The domain is bounded along the z-direction by two parallel plates separated by a
distance H̄. The velocity of the droplet centroid is denoted by Ū , having components equal
to Ūx, Ūy and Ūz along the x, y and z directions, respectively. The temporal co-ordinate is
denoted by t.

2.2. Normalization of the parametric space
Normalization of the parametric space is essential towards gaining a generic insight into
the physical situation disregarding absolute values of the chosen physical parameters.
Towards this, we choose the reference length scale of the system to be the un-deformed
radius of the droplet (a), the velocity scale as the centreline velocity V̄c of the imposed
flow, characteristic time scale to be tc and the characteristic temperature difference (�Tc)
as the temperature difference across the length scale of the droplet (|Ḡ|a), where |Ḡ|
denotes the axial gradient of the externally applied temperature field (see figure 1). The
non-dimensional temperature field in the domain is expressed relative to the reference
temperature T̄0. Finally, we choose the thermal conductivity of the carrier fluid ke to
be the reference value for thermal conductivity. Accordingly, the following relevant
dimensionless parameters emerge.

(i) Capillary number Ca = μV̄c/σ̄0, denoting the relative importance of viscous and
surface tension forces.

(ii) Marangoni number MaT = β|G|a|/μV̄c, denoting the magnitude of temperature-
gradient driven interfacial flow as compared to the strength of the imposed flow.

(iii) Thermal Péclet number PeT = V̄ca/αe, denoting the relative magnitude of advective
to diffusive transport of thermal energy. Here, αe refers to the thermal diffusivity of
the carrier phase.

(iv) Grashof number Gr = gγeρ
2
e �Ta3/μ2

e , denoting the relative magnitude of thermal
buoyancy to viscous force.
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Figure 1. Schematic of the physical set-up where a deformable droplet is suspended in a pressure-driven
flow in a parallel plate channel. For the purpose of illustration, we consider an imposed temperature profile
decreasing along the flow direction. The model framework, however, is generic to accommodate any imposed
variations in the thermal field.

(v) Reynolds number Re = ρeV̄ca/μe, denoting the ratio of the imposed flow velocity
to a diffusive velocity scale due to viscous dissipation and the Strouhal number is
denoted by S = tc/(a/V̄c), such that the relative importance of Eulerian acceleration
is given by the ratio Re/S.

(vi) The ratio of the thermal conductivities of the suspending and carrier fluid phases, δ.
(vii) Confinement ratio Wc = 2a/H, denoting the extent of occupancy of the droplet

relative to the channel height.

We use the boolean variable ζ to denote the direction of the temperature gradient. For
a linearly increasing temperature field, ζ = 1 and for a linearly decreasing temperature
field, ζ = −1. After normalization, all the variables are denoted by v instead of v̄, where
v refers to any physical variable. Further, we denote the value of a physical variable inside
the suspending phase using a subscript ‘i’ (vi) and corresponding value for the carrier
phase using a subscript ‘e’ (ve). All vector quantities are denoted by v and second-order
tensors are denoted using v .

2.3. Assumptions
The problem considered here is a complex multi-physics problem involving multi-phase
fluid mechanics and thermal transport. The dynamically evolving deformable interface
further complicates the solution by imposing a two-way coupling between the fluid flow
and heat transfer mediated by a topologically evolving phase boundary. To simplify the
solution procedure without sacrificing the essential physics of interest here, the following
assumptions are made.

(i) The fluid flow is dominated by viscous effects (Re � 1) and the magnitude of
Eulerian acceleration is assumed to be negligible in comparison to viscous and
pressure-gradient terms (Re/S � 1). These assumptions are quite standard in the
literature of low-Reynolds-number hydrodynamics and are commonly referred to
as the ‘creeping-flow’ approximation (Leal 2007). A detailed justification of this
assumption along with its applicability to the present problem is discussed in
Appendix B.1.
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(ii) Thermal energy transport occurs predominantly via diffusion, so that the thermal
Péclet number is negligibly small (PeT � 1). This is consistent with several physical
systems of practical interest (Nallani & Subramanian 1993; Chen et al. 1997).

(iii) Thermal buoyancy effects are not important, considering Gr � 1.
(iv) The surface tension is assumed to vary linearly with the interfacial temperature

(Young et al. 1959; Gittens 1969), so that

σ̄ = σ̄0 − β(T̄s − T̄0), (2.1)

where β refers to the sensitivity of the interfacial tension with change in temperature.
(v) The domain is assumed to be unbounded along the x and y directions. This physically

replicates a set-up where the inlet and outlet of the channel lie far apart from the
droplet surface and the walls bounding the fluid domain along the y direction lie
far apart from each other in comparison to the walls along the z direction. Thus,
the extent of the channel along the z direction determines the effective role of the
confinement.

2.4. Governing equations and boundary conditions

2.4.1. Thermal problem
In the absence of any heat source/sink within the domain and negligible thermal
convection, the thermal problem is governed by the homogeneous Laplace equation, as
given by

∇2Ti = 0,

∇2Te = 0.

}
(2.2)

The ambient temperature field, which exists in the absence of the droplet, is given by

T∞ = ζ z, (2.3)

where ζ can have a value of 1 or −1 depending on whether the temperature increases or
decreases along the direction of flow.

The temperature and heat flux are continuous across the interface of the droplet. This
can be expressed mathematically as

Ti = Te,

δ(∇Ti · n̂) = ∇Te · n̂

}
on Γ, (2.4)

where Γ denotes the interface of the droplet and n̂ denotes the unit normal vector on Γ

(see figure 1).
The channel walls are kept at the ambient thermal conditions:

Te = T∞ on B, (2.5)

where B denotes the rigid walls (see figure 1).
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Thermotaxis of a deformable droplet in a Poiseuille flow

2.4.2. Hydrodynamics
As the Reynolds number of the flow is vanishingly small, the fluid flow is governed by the
Stokes flow equations:

μ∇2ui = ∇pi, ∇ · ui = 0,

μ∇2ue = ∇pe, ∇ · ue = 0.

}
(2.6)

Here, ui and pi refer to the non-dimensional velocity and pressure fields, respectively,
inside the droplet. The corresponding variables in the carrier phase are denoted by ue and
pe. The ambient velocity field in the absence of the droplet is given by

V ∞ =
(

1 − 4
z2

H2

)
x̂. (2.7)

The traction discontinuity at the interface is balanced by the surface tension forces. It
can be expressed as a force balance at the interface:

(Se − Si) · n̂ = σ n̂(∇ · n̂) − ∇sσ, (2.8)

where Si and Se denote respectively the hydrodynamic stress tensors for the fluid inside
and outside the droplet. Here, ∇s denotes the gradient operator projected along the surface,
i.e. ∇s ≡ (I − n̂n̂) · ∇.

The tangential component of velocity is continuous across the interface, which implies

ui − (ui · n̂)n̂ = ue − (ue · n̂)n̂ on Γ. (2.9)

The evolution of the interface is governed by the normal component of the interfacial
velocity:

dxΓ

dt
· n̂ = ui · n̂ = ue · n̂ on Γ, (2.10)

where xΓ denotes the position vector of any point on the interface.
Equation (2.10) is physically reminiscent of two important features, namely, the

interface evolution and kinematic boundary condition. The first part of the equation
denotes an expression for evolution of the droplet interface, which is akin to several
previous approaches that have employed a Lagrangian interface tracking for simulation of
deformable droplets (Loewenberg & Hinch 1996). Since the shape of the droplet changes
exclusively due to the normal component of the interfacial velocity, we have considered
only the normal component of the interfacial velocity in the first part of (2.10). The second
part of (2.10) represents the kinematic boundary condition under the assumption of no
phase change (Leal 2007). Summarily, in the absence of any phase change processes,
(2.10) accurately describes both the kinematic boundary condition and evolution of the
droplet interface. This could also be interpreted as continuity of velocity at the interface
as (2.10) implies that at the interface, both the droplet and carrier phases have identical
velocities which is equal to the velocity of the interface.

The velocity is assumed to satisfy the no-slip and no-penetration conditions on the
surface of the rigid walls, i.e.,

ue = 0 on B. (2.11)
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3. Numerical solution

3.1. Formulation of integral equations
We employ two separate three-dimensional boundary element methods (BEMs) for the
solution of the thermal and the flow problems. The two methods are coupled via the
interfacial force balance (2.8) considering the temperature dependence of surface tension
(2.1). Whereas BEM has been extensively used to solve the isothermal fluid dynamics,
here, for the first time, we explore the crucial capabilities of BEM in coupling the
conservation equations of momentum and thermal energy. In the foregoing discussion,
we first describe the BEM for the thermal problem and subsequently provide an outline of
the BEM for capturing the flow dynamics.

A general solution of the energy equation within the domain can be constructed by a
linear superposition of a set of point singularities on the domain boundaries. The strength
of these point singularities is unknown a priori and is obtained from the solution of a
Fredholm integral equation. For the temperature field inside the carrier phase, the general
solution can be expressed as (Pozrikidis 2002)

Te(x0) = T∞(x0) −
∫

B∪Γ

Gl(x, x0){∇Te(x) · n̂(x)} dS(x)︸ ︷︷ ︸
Single Layer Operator

+
∫

B∪Γ

Te(x){n̂(x) · ∇Gl(x, x0)} dS(x)︸ ︷︷ ︸
Double LayerOperator

. (3.1)

Here, x0 denotes any point lying inside the domain occupied by the carrier fluid and
Gl(x, x0) denotes the Green’s function for the Laplace equation, which can be expressed
as

Gl(x, x0) = 1
4π(|x − x0|) , (3.2)

where |x − x0| is the magnitude of the Euclidean distance between the points x and x0.
Here, we introduce two integral operators, the single- and double-layer operator. When
the integrand constitutes a singular Green’s function multiplied by a continuous function,
the integral operator is referred to as the single-layer operator. However, a double-layer
operator involves a continuous function multiplied by the normal component of the
gradient of the Green’s function, as can be seen in (3.1). This notation will be used to
refer to these integrals in all subsequent discussions.

It can be observed that the surface integrals in (3.1) are carried out over the surface of
the droplet and the rigid walls. This can be simplified by carefully modifying the Green’s
function such that it vanishes on the walls (Pozrikidis et al. 1992):

G2W
l = 0 and ∇G2W

l = 0 ∀x ∈ B, (3.3)

where G2W
l represents the modified Green’s function. Details on the computation of G2W

l
is given in Appendix A.1. In (3.1), we neglect the contribution of the surface integrals from
the surfaces bounding the domain along the x and y directions, with the assumption that
they lie far away from the droplet interface. Using the modified Green’s function, (3.1) can
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be simplified as

Te(x0) = T∞(x0) −
∫

Γ

G2W
l (x, x0){∇Te(x) · n̂(x)} dS(x)

+
∫

Γ

Te(x){n̂(x) · ∇G2W
l (x, x0)} dS(x). (3.4)

We consider that the point x0 is being brought vanishingly close to the surface of the
droplet from the outer side, and consider the principal value of the surface integrals:

Ts(x0)

2
= T∞(x0) −

∫
Γ

G2W
l (x, x0){n̂(x) · ∇Te(x)} dS(x)

+
∫ PV

Γ

Ts(x){n̂(x) · ∇G2W
l (x, x0)} dS(x), (3.5)

where Ts denotes the temperature field on the interface of the droplet and the superscript
PV represents the principal value of the double-layer operator.

We next consider the boundary integral representation for the temperature field inside
the droplet. The temperature inside the droplet can be expressed as

Ti(x0) =
∫

Γ

G2W
l (x, x0){n̂(x) · ∇Ti(x0)} dS(x)

−
∫

Γ

Ti(x){n̂(x) · ∇G2W
l (x, x0)} dS(x), (3.6)

where x0 denotes any point inside the droplet. On letting the point x0 approach the droplet
interface, we obtain

Ts(x0)

2
=

∫
Γ

G2W
l (x, x0){n̂(x) · ∇Ti(x0)} dS(x)

−
∫ PV

Γ

Ts(x){n̂(x) · ∇G2W
l (x, x0)} dS(x). (3.7)

We eliminate the normal derivatives of the temperature gradient by multiplying (3.7)
with δ and adding to (3.5). The normal derivative terms cancel out due to the continuity of
the heat flux across the interface (2.4). This leads to the final form of the boundary integral
equation used for computing the interfacial temperature:

1 + δ

2
Ts(x0) = T∞(x0) + (1 − δ)

∫ PV

Γ

Ts(x){n̂(x) · ∇G2W
l (x, x0)} dS(x), (3.8)

where x0 denotes the position vector of any point on the droplet interface.
The interfacial velocity of an equi-viscous droplet can be obtained using the

well-established equations from the boundary integral representation of Stokes’ flow in
the presence of deformable droplets (Pozrikidis et al. 1992; Janssen & Anderson 2008):

us(x0) = u∞ − 1
8π

∫
Γ

[(Se − Si) · n̂(x)] · G2W
s (x, x0) dS(x), (3.9)

where G2W
s refers to the Green’s function for the Stokes equation modified to satisfy

the no-slip condition at the walls (Griggs et al. 2007). The computation of the modified
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Green’s function for the Stokes equation is explained in Appendix A.2. The traction jump
appearing in (3.9) can be obtained by simplifying the boundary condition for force balance
at the interface (2.8):

(Se − Si) · n̂(x) = 1
Ca

[σ(x)κm(x)n̂(x) − ∇sσ(x)], (3.10)

where Ca denotes the capillary number.

3.2. Discretization in space and time

3.2.1. Mesh generation
The boundary integral equations for the interfacial velocity (3.9) and temperature (3.8)
are solved on a dynamically evolving interface which is triangulated into an unstructured
grid. This grid is generated by successively dividing an icosahedron into triangles (Yon
& Pozrikidis 1998). At each step, every triangle is subdivided into four new triangles,
such that the total number of triangles increases by four times in each iteration. Finally,
the points are projected onto a unit sphere. The programs for performing this procedure
were adopted from the open-source package BEMLIB (Pozrikidis 2002). Henceforth, the
curved triangles will be referred to as elements, which are uniquely identified using a set
of six points, three on its vertices and one on the midpoint of each edge. In this study, we
found that 1280 elements were sufficient to obtain grid independent results.

3.2.2. Evaluation of boundary integrals
The surface integrals were evaluated by summing the integrals up over the individual
elements. To perform the numerical integrations, a curved element is mapped to a planar
right-angle triangle in an orthogonal parametric space and all the relevant quantities are
mapped using a second-order isoparametric mapping (Yon & Pozrikidis 1998). When the
point of singularity x0 lies on an element over which the integral is evaluated, that element
is referred to as a singular element. For a singular element, the single-layer operator
is evaluated using a polar integration rule (Pozrikidis et al. 1998) and the double-layer
operator is evaluated by subtracting the singular part and integrating it analytically
(Pozrikidis et al. 1992). Over non-singular elements, the single-layer and double-layer
operators are evaluated using a 7-point Gauss–Legendre quadrature.

3.2.3. Numerical computation of traction discontinuity
In this section, we discuss the methods for computation of the right-hand side of (3.10).
The important quantities of interest are: (i) unit normal vector and curvature; (ii) surface
tension; and (iii) surface gradient of interfacial tension. The computation of the mean
curvature is the most sensitive part of the simulation, as inaccuracies in the curvature
calculation give rise to numerical instabilities, especially when large deformations are
encountered. To mitigate this difficulty, the normal vector and curvature are computed
using a local parabolic interpolation of the surface at each point (Zinchenko, Rother &
Davis 1997). Once the interfacial temperature is known at every point, the surface tension
is computed using (2.1). The surface gradient of the interfacial tension is obtained by an
indirect method which involves the solution of a 3 × 3 matrix equation relating the surface
gradient in the Cartesian co-ordinates with the surface gradient in the local parametric
space of an element (Yon & Pozrikidis 1998).
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3.2.4. Advancing in time
Once the interfacial velocity is computed at every point, the interface is advanced using a
second-order accurate Runge–Kutta method (RK2), which can be expressed as follows:

xn+1 = xn + �t
2

{V n + V n+1/2}, (3.11)

where xn+1 and xn represent the position of the interface at the time step n and n + 1,
respectively, �t denotes the size of the time step, V n is the velocity of the interfacial
points at the nth time step and V n+1/2 refers to the velocity of the interfacial points at
an intermediate time step where the position of the interface is approximated using the
velocity (V n) and position (xn) at the nth time step. The velocities of the interfacial marker
points (V n, V n+1/2) are computed by a linear superposition of the normal component of
the interfacial velocity obtained from BEM and an artificial tangential velocity referred
to as the mesh-relaxation (MR) velocity. The MR velocity is imposed to maintain the
stability of the mesh for long simulation times. The calculation of this velocity is based on
an iterative technique for minimizing the mesh distortion energy (Zinchenko et al. 1997).
It should be noted that the addition of this artificial tangential velocity to the interfacial
marker points does not alter the physics of the problem as it does not lead to any additional
deformation of the interface. However, the inclusion of the MR is extremely important
because, without the same, the simulation convergence in a background pressure-driven
flow is not achieved for all scenarios.

3.3. Summary of the numerical method
The overall numerical approach may be summarized as follows.

(i) Initialization and mesh generation.
(ii) Computation of geometric quantities like normal vector and curvature.

(iii) Solution of interfacial temperature from BEM.
(iv) Computation of surface tension and interfacial gradient of surface tension.
(v) Computation of interfacial velocity from BEM.

(vi) Calculation of MR velocity.
(vii) Advection of interfacial marker points using RK2 method (3.11).

(viii) Go to step (ii) and iterate for subsequent time steps.

Further details regarding the computational implementation of the numerical algorithm
are outlined in Appendix B.2.

4. Results and discussions

For illustration, we consider the migration of a neutrally buoyant deformable droplet
having the same viscosity as the carrier fluid in a linearly varying temperature field. We
consider two separate cases: (i) linearly increasing temperature profile (ζ = 1); and (ii)
linearly decreasing temperature profile (ζ = −1) along the flow direction. The magnitude
of the temperature gradient is quantified using the non-dimensional Marangoni number
(MaT ). It has been noticed that the physically acceptable range for MaT , within the limit
of droplet breakup, is different for ζ = 1 and ζ = −1. For ζ = 1, increasing the value of
MaT beyond 0.05 leads to excessive droplet deformation, and a further increase in MaT
leads to breakup. This phenomenon can be understood qualitatively by considering the fact
that the surface tension of an interface decreases with an increase in temperature. Hence,
as the droplet migrates towards a region of higher temperature, the average temperature on
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the droplet interface also increases. Due to this, the average surface tension on the droplet
interface decreases, leading to larger deformations. Quantitatively, this effect is captured
by an instantaneous capillary number (Cai = μVc/σavg) which varies as the position of
the droplet evolves in time. Here, σavg refers to the average value of the surface tension
at the interface at any given point in time. For ζ = 1, Cai increases with time. However,
Cai decreases with time for ζ = −1. For ζ = −1, we have found that the maximum value
of MaT ∼ 0.10. We have arrived at this estimate by taking experimentally obtained values
of β (Yakhshi-Tafti, Kumar & Cho 2011) and the maximum value of �Tc that obviates
any perceptible role of buoyancy. The distinguishable interfacial phenomenon, despite
holding the same magnitude of the imposed temperature gradient, occurs in cases of the
positive and the negative temperature gradients because of its interconnection with the
shape deformation, which had not been considered in the reported models. However, in
the subsequent discussions, we show that this effect can have a strong influence on the
physical outcome, so much so that it contradicts the reported theoretical predictions. The
difference in magnitude of Marangoni number for the two directions is due to the physical
asymmetries associated with positive and negative temperature gradients. In the case of
a positive temperature gradient, the average capillary number increases, which leads to
greater droplet deformation with time; whereas for a negative temperature gradient, the
average surface tension increases and the deformation of the droplet does not increase
with time. To avoid situations of perpetual enhancements in the droplet deformation to an
extent that the same approach the conditions for droplet breakup, which does not conform
to the focal theme of this work, we have limited the Marangoni number to the case of a
positive temperature gradient. Since alteration of the directions of the temperature gradient
by itself disrupts the physical symmetry, adhering to the same order of magnitude of it
for the two scenarios, thus, does not necessarily conform to the same physics. Consistent
with the focal theme of the present work that aims to establish significant differences
between the droplet dynamics, as predicted by asymptotic theory and the same obtained
via numerical computation, we therefore purposefully attempted to remain restrictive
to the parametric limits that ensure droplet migration without approaching physical
disintegration for which the qualitative physics by itself would change altogether and the
essential basis of comparing with the asymptotic theory loses its fundamental proposition.
The key to this proposition has been to highlight the role of a dynamic two-way coupling
between the thermal and the flow fields at the interface, and exemplify serious deficits in
the reported theoretical propositions that superimpose directly the external thermal field
instead.

We begin by validating our numerical method with the existing literature in § 4.1,
where we validate both the trajectory and shape of a deformable droplet migrating in
an isothermal pressure-driven flow. Subsequently, in § 4.2, we discuss the effect of the
temperature gradient by comparing the trajectory and axial migration velocity of a droplet
for a positive temperature gradient, negative temperature gradient and isothermal flow.
These results are discussed in detail using physical arguments supported by additional
numerical experiments. In § 4.3, we provide a direct comparison of the results obtained
from the present numerical simulations with the results obtained from reported analytical
theories, for a valid range of physical parameters obeying the limits of the assumptions
made in analytical theories. This shows that the conclusions drawn from the present
simulations hold true in a broad sense, even within the parametric limits of the analytical
theories. Finally, we investigate the quantitative variations in migration trajectory and the
axial component of migration velocity, due to variations in the confinement ratio Wc and
magnitude of the thermal Marangoni number MaT in §§ 4.4 and 4.5, respectively.
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Figure 2. Variation in the transverse location of the droplet centroid with the axial position of the centroid for
an isothermal flow. The surface plots show the deformed shape of the droplet at various locations, as demarcated
by the respective arrows. The values of relevant physical parameters are Ca = 0.33, Wc = 0.60.

4.1. Validation
Figure 2 depicts a comparison of the droplet migration trajectory obtained from the present
method with the results obtained by Griggs et al. (2007). In this problem, the evolution
of an initially spherical droplet in an isothermal pressure driven flow between two parallel
plates is investigated. Initially, we place the droplet at an off-centreline position (Zc =
−0.10) and follow its motion. We observe that the trajectories obtained from the two
separate numerical methods show nearly identical characteristics. Only a slight deviation
may be attributed to the difference in the methods of numerical integration employed for
computing the single-layer and double-layer integrals. The integration quadrature used in
the present study has been found to yield higher order accuracy and also requires fewer
discrete surface elements for obtaining grid independent results. In the insets, we have
shown the shape of the droplet at various axial locations. These shapes also match well
with those presented by Griggs et al. (2007).

The results presented in figure 2 serve as a baseline for studying the thermocapillary
dynamics of a droplet, which is discussed in subsequent sections. Therefore, it is
imperative to identify certain key features from this figure. We notice that the droplet
deforms maximally near the beginning of its trajectory, where it has a highly asymmetrical
shape. Subsequently, the shape evolves to attain a greater degree of symmetry with respect
to the axis of the imposed flow. When the droplet reaches its equilibrium position at the
centreline of the flow, it attains a ‘bullet-like’ shape where the rear section of the droplet
has a higher radius of curvature than the front section.

In the investigations presented in the subsequent sections, our approach remains the
same, i.e. we initially place a spherical droplet at an off-centreline position and observe
its evolution in time. For all the cases reported in this article, we fix the value of the
conductivity ratio δ to 0.10 as we observed that the change in δ does not lead to any
significant differences in the migration dynamics of the droplet within the physically
realistic limits of δ.

Before proceeding to the analysis for a non-isothermal flow, we illustrate a comparison
of the numerical results with analytical theory for the limiting case of a droplet
suspended in an unbounded circular Poiseuille flow, under the assumption of negligible
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Figure 3. Transverse migration velocity of a droplet as a function of lateral position of the centroid when the
droplet is suspended in a circular Poiseuille flow. The values of relevant physical parameters are Ca = 0.01,
Wc = 0.10.

droplet deformation. Mathematically, this translates to a very low value of the capillary
number and confinement ratio i.e. Ca � 1 and Wc � 1. To quantify the radial location
of the droplet centroid, we introduce the variable e = √

Z2
c + Y2

c , denote the radius of
the circular channel by R and represent the radial migration velocity of the droplet by
Ur such that a positive value of Ur denotes migration away from the channel centreline.
Interestingly, analytical theory for an equiviscous droplet in a unbounded Poiseuille flow
predicts a migration velocity of the droplet which is directed away from the channel
centreline (Haber & Hetsroni 1971). In figure 3, we show that the results from our
numerical method exhibit a good match with the analytical predictions. The deviation
between the two approaches becomes significant only for higher values of e/R. This can
be attributed to an increase in the magnitude of fluid shear with an increase in the distance
of the droplet centroid from the channel centreline, leading to a higher degree of droplet
deformation which violates the assumption of negligible droplet deformation made in
analytical theory.

4.2. Effect of temperature gradient
The migration trajectory of a droplet and the axial component of centroid velocity (Ux)
are plotted in figures 4(a) and 4(b), respectively, for three cases: ζ = 1, ζ = 0 (isothermal
flow) and ζ = −1. From figure 4(a), we can observe that in the presence of a linearly
decreasing temperature field (i.e. negative temperature gradient along the channel length),
the droplet migrates faster towards the centreline as compared to an isothermal flow
and in the presence of a linearly increasing temperature field (i.e. positive temperature
gradient along the channel length), the cross-streamline migration of the droplet is slowed
down. Similarly, the axial component of the velocity also increases in the presence of
a linearly decreasing temperature profile and decreases in the presence of a linearly
increasing temperature field, as compared to an isothermal flow. These results contradict
the prediction of recently reported analytical theories which suggest that a linearly
increasing temperature field will speed up both the axial and cross-stream migration of the
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Figure 4. (a) Variation of transverse centroid position with axial centroid location, and (b) variation of axial
centroid velocity with time, when Ca = 0.10, δ = 0.10 and Wc = 0.50.

droplet due to the Marangoni effect (Das et al. 2017, 2018). This contradiction is rooted
in the fact that the reported analytical theories assume a spherical interface and solve for
the temperature profile at a given transverse location. This temperature profile is used to
calculate the migration velocity of the droplet at that transverse location using Faxen’s laws
(Kim & Karrila 2013). However, in reality, when the droplet migrates in a non-isothermal
environment, the average local temperature over the surface of the droplet also changes.
This leads to a variation in the average value of the interfacial tension (σavg). When the
droplet migrates along a linearly decreasing temperature field (ζ = −1), σavg increases
with time and analogously, when ζ = +1, σavg decreases with time. Here we show that
the variation in σavg causes a change in the magnitude of the component of the viscous
drag force on the droplet (F D) which is exclusively due to the effect of interfacial tension,
and this change is an order of magnitude larger than the force due to the Marangoni effect.
It should be pointed out that F D is not the total drag force on the droplet, but it is that
component of the drag force which arises exclusively due to the effect of interfacial tension
of the droplet interface. It has been shown that an equiviscous droplet migrates towards
the centreline in a confined Poiseuille flow due to a confluence of wall-induced lift forces
and deformability of the droplet interface (Griggs et al. 2007; Janssen & Anderson 2008).
Since the viscous drag opposes this motion, it implies that a reduction in magnitude of the
drag forces facilitates a faster cross-streamwise migration of the droplet.

To estimate the magnitude of F D, we refer to the work by Haber & Hetsroni (1971),
where they considered the migration of a deformable droplet in a Poiseuille flow in
the limit of vanishingly small values of the capillary number (Ca). In equation (29)
of their paper, they present an expression for the transverse component of the drag
force (FDz) acting away from the centreline. On analysing this expression, we find that
if fluid viscosities, channel width and centreline velocity of the flow is kept constant,
FDz ∼ a4/σavg, where a denotes the droplet radius. As we are not considering very large
deformations of the droplet interface, we can approximate a2 ∼ A, where A denotes the
total surface area of the droplet and arrive at the following scaling relation:

FDz ∼ A2

σavg
. (4.1)

From (4.1), it can be inferred that the magnitude of FDz varies inversely with the
average interfacial tension (σavg), which changes significantly during the course of
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Figure 5. Variation of total surface area of the droplet with time when Ca = 0.10, δ = 0.10, Wc = 0.50, with
MaT = 0.20 for a negative temperature gradient and MaT = 0.0125 for a positive temperature gradient.

droplet migration. This change is proportional to the magnitude of the temperature
gradient multiplied by the length scale of axial migration of the droplet, i.e. �σavg ∼
|G|�Xc. In addition to the viscous drag force, there is another force due to the Marangoni
effect which acts along a direction opposite to the viscous drag force. In the present
case, Marangoni force results from a gradient in interfacial tension due to temperature
difference across the droplet interface. Hence, the magnitude of Marangoni force scales
as the temperature gradient multiplied by the length scale of the droplet, i.e. FMa ∼ |G|a,
where FMa is representative of the magnitude of the Marangoni force. It can be seen from
figures 2 and 4 that �Xc 
 a, which implies that the magnitude of �σavg is greater than
FMa. It can be seen from (2.1) that for a droplet migrating along a linearly decreasing
temperature gradient, σavg increases during the course of migration, which contributes
towards lowering the value of FDz and analogously, FDz increases when the droplet
migrates along an increasing temperature gradient. In addition to σavg, FDz also depends
on the total surface area of the droplet. In figure 5, we depict the evolution of the total
surface area of the droplet with time and it can be seen that the total surface area is smaller
for a negative temperature gradient as compared with the isothermal case and is larger
for the case of a positive temperature gradient. Since FDz ∼ A2, a decrease in A will also
contribute towards a decrease in the magnitude of the drag force.

Therefore, the combined effects of change in σavg and A leads to a decrease in the
viscous drag force acting on the droplet when it migrates along a linearly decreasing
temperature profile. This has been confirmed by plotting the temporal evolution of A2/σavg
in figure 6, where it can be seen that the value of A2/σavg decreases with time for a
negative temperature gradient and increases for the case of a positive temperature gradient.
Moreover, it has been shown using scaling arguments that the change in magnitude of
viscous drag force is much greater than the Marangoni force. Although Haber & Hetsroni
(1971) did not obtain any correction to the axial component of the drag force due to
interfacial tension, due to their assumption of vanishingly small droplet deformation, it
can be expected that the axial component of the viscous drag also follows a similar
scaling law as the underlying mechanism behind both the axial and cross-streamwise
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Figure 6. Variation of A2/σavg with time when Ca = 0.10, δ = 0.10, Wc = 0.50, with MaT = 0.20 for a
negative temperature gradient and MaT = 0.0125 for positive temperature gradient.

components of drag force is similar. This explains the change in magnitude of both the
axial and cross-streamwise components of the droplet migration velocity in the presence
of a non-isothermal temperature field.

In figures 7 and 8, we show the interfacial variation in temperature and surface tension,
respectively, for the results corresponding to figure 4. For constructing the surface plots,
we compute the average value of a variable over the surface and plot the deviation
at each point. The deviations increase from a negative to positive value as the colour
changes progressively from blue to yellow (visualized by an equivalent change in shade
in greyscale). The dark blue regions indicate a lower value of the variable as compared
to the average and the bright yellow regions indicate an above average value for the
variable. The plots in figure 7(a i–a iv) denote the temporal evolution of the interfacial
temperature for a droplet migrating in a negative temperature gradient. Similarly, the plots
in figure 7(b i–b iv) denote the temporal evolution of the interfacial temperature for a
droplet migrating in a positive temperature gradient. We observe that in figure 7(b i–b iv),
the front section of the droplet has a higher temperature than the rear section, as it is
migrating along a path of increasing temperature. Similarly, in figure 7(a i–a iv), we see
that the front section has a lower value of the temperature as the droplet is moving along
a path of decreasing temperature. By comparing figure 7(a i–a iv) with figure 7(b i–b iv),
one may notice that the shapes for figure 7(b i–b iv) show a greater degree of deformation
as compared to those for figure 7(a i–a iv). This difference is most prominent between
figures 7(a iv) and 7(b iv), even though the value of MaT corresponding to figure 7(b iv) is
less than one tenth as compared to that for figure 7(a iv). This again highlights the physical
asymmetry of the scenarios between a spatially increasing and decreasing temperature
gradient of the same magnitude. In figure 8(a i–a iv), we observe that the front section of
the droplet has a higher value of surface tension when the same migrates along a linearly
decreasing temperature field. This is expected, as the surface tension of the interface
increases with a decrease in the interfacial temperature. Following a similar point of view,
we can explain the temporal evolution of the surface tension for the linearly increasing
temperature field, depicted in figure 8(b i–b iv).
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Figure 7. Variation of interfacial temperature over the droplet surface for (a i–a iv) the negative temperature
gradient, and (b i–b iv) the positive temperature gradient when Ca = 0.10, δ = 0.10, Wc = 0.50, with MaT =
0.20 for linearly decreasing and MaT = 0.0125 for linearly increasing temperature profiles.
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Figure 8. Variation of interfacial tension over the droplet surface for (a i–a iv) the negative temperature
gradient and (b i–b iv) the positive temperature gradient, when Ca = 0.10, δ = 0.10, Wc = 0.50, with MaT =
0.20 for decreasing and MaT = 0.0125 for the linearly increasing temperature profile.

To summarize, we have investigated the axial and cross-streamline migration of a droplet
in a non-isothermal flow and have shown that, in addition to the interfacial gradients in
surface tension, one also needs to account for a variation in the average value of the surface
tension. In fact, this variation in the average value of the surface tension dictates the nature
of migration trajectory of the droplet. This has been explained in detail by considering the
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Figure 9. Comparison of the axial component of migration velocity with transverse centroid location from (a)
numerical simulations and (b) analytical calculations when Wc = 0.10, Ca = 0.10, δ = 0.10, with MaT = 0.20
for ζ = −1 and MaT = 0.0125 for ζ = 1.

variation of the total viscous drag on the droplet and it has been shown that our arguments
are in line with the classical analytical results for a deformable viscous droplet.

4.3. Direct comparison with analytical theory
In this section, we present a direct one-to-one comparison between the results obtained
from the present study and the analytical study by Das & Chakraborty (2018), where they
computed the migration velocity of a droplet by considering small deviations of the shape
from a sphere and a one-way coupling between the thermal field and fluid flow.

In figure 9, we plot the axial migration velocity for a droplet located initially at an
off-centreline position, and compare the results obtained from the present numerical
simulations and reported analytical theory. We observe that there is a clear deviation
regarding the effect of the temperature gradient. In figure 9(a), we see that the present
results predict a decrease in magnitude of axial migration velocity on application of
a positive temperature gradient along the direction of the flow and an increase in the
migration velocity on application of a negative temperature gradient. However, it can be
seen from figure 9(b) that the analytical results predict an increase in the migration velocity
on application of a positive temperature gradient and a decrease in the axial migration
velocity upon application of a negative temperature gradient.

In figure 10, the cross-stream migration velocity of the droplet is plotted and here also
we see a clear contradiction between the results obtained from the existing analytical
theory and the present simulations. The analytical theories predict an increase in the
transverse migration velocity on application of a positive temperature gradient, whereas
the completely opposite outcome is predicted by the numerical simulations. Similarly, on
application of a linearly decreasing temperature gradient, the transverse migration velocity
is supposed to decrease according to analytical theory but the present simulations show
that it actually increases.

4.4. Effect of confinement ratio
In figure 11, we have compared the trajectory and axial migration velocity of a droplet
for various values of confinement ratio (Wc). In figure 11(a i), we have compared the
migration trajectories for a droplet suspended in a linearly decreasing temperature field
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Figure 10. Comparison of transverse component of migration velocity with transverse centroid location from
(a) numerical simulations and (b) analytical calculations when Wc = 0.10, Ca = 0.10, δ = 0.10, MaT = 0.20
for ζ = −1 and MaT = 0.0125 for ζ = 1.

and the corresponding result for a linearly increasing temperature field is depicted in
figure 11(b i). From figures 11(a i) and 11(b i), we observe that the extent of centreline
migration increases as the value of the confinement ratio is increased. This effect can be
primarily attributed to the fact that a larger droplet experiences a greater magnitude of
lift forces from the rigid walls which tend to push it towards the centreline. If we closely
compare figures 11(a i) and 11(b i), we can note that the difference between the migration
trajectories for Wc = 0.50 and Wc = 0.60 is more prominent when the droplet migrates
along a linearly increasing temperature field. This is because of the fact that since a larger
droplet extends across a longer distance, the Marangoni effects due to the variation in
surface tension become more prominent. In the case of a positive temperature gradient, it
aids in increasing the magnitude of cross-streamline migration, whereas in the presence
of a negative temperature gradient, it slows down the migration speed. Hence, although
the Marangoni effect does not dictate the overall dynamics of a droplet, it explains the
differences in the migration trajectory with confinement ratio between a linearly increasing
and decreasing temperature field.

In figures 11(a ii) and 11(b ii), we compare the axial migration velocity for different
values of confinement ratio for ζ = −1 and ζ = 1, respectively. In both cases, we observe
that the magnitude of the axial migration velocity decreases with an increase in the
confinement ratio. This can be explained by noting that a smaller droplet experiences
a lower magnitude of viscous drag from the surrounding flow, due to a lower value
of its cross-sectional area. In this case also, we observe that the Marangoni effect
leads to a higher order correction to the axial migration velocity. This can be seen by
closely examining the differences in the axial migration velocity between Wc = 0.50
and Wc = 0.60 for figures 11(a ii) and 11(b ii). Here, we can observe that the difference
between the values of Ux for Wc = 0.60 and Wc = 0.50 is less in figure 11(a ii) than in
figure 11(b ii). This is because for ζ = −1, the Marangoni effect tends to slow down the
axial migration velocity of the droplet, and this effect gains more prominence when the
size of the droplet increases. Since the axial velocity of a droplet decreases with an increase
in Wc due to viscous drag, the Marangoni effect further slows down the droplet leading to
a greater difference in the migration speeds on increasing Wc. However, when ζ = 1, the
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Figure 11. Variation of migration trajectory (a i,b i) and axial migration velocity (a ii,b ii) with confinement
ratio for a droplet suspended in a linearly decreasing (a i,a ii) and linearly increasing (b i,b ii) temperature field,
when Ca = 0.10, δ = 0.10 and MaT = 0.0125.

Marangoni effect increases the axial migration velocity, leading to a lesser magnitude of
decrease in the axial migration speed on increasing Wc.

Therefore, we observe that although the magnitude of change in velocity due to the
Marangoni effect is small in comparison to that due to viscous drag, it explains the
differences in the variation of droplet migration with confinement ratio for an increasing
and decreasing temperature profile.

4.5. Effect of Marangoni number
In this section, we quantify the difference in thermo-capillary dynamics of a deformable
droplet when subjected to alterations in the thermal Marangoni number, MaT . In
figure 12(a), we show the migration trajectories for two different values of MaT in
a linearly decreasing temperature profile. Here, we observe that as the value of MaT
increases, the droplet migrates faster towards the centreline. This effect can be explained by
considering the fact that in the case of ζ = −1, the increase in the magnitude of the average
interfacial tension is greater for a larger value of MaT , leading to a greater reduction in the
viscous drag. To confirm this, we have plotted A2/σavg for MaT = 0.20 and MaT = 0.0125
in figure 13. As we have shown in an earlier section that the drag force scales with A2/σavg,
it implies from figure 13 that the decrease in magnitude of viscous drag increases as the
value of MaT is increased. Due to a reduction in the viscous drag on increasing the value
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Figure 12. Variation of migration trajectory (a) and axial migration velocity (b) with MaT , for a droplet
suspended in a linearly decreasing temperature field when Ca = 0.10, δ = 0.10 and Wc = 0.50.
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Figure 13. Variation of A2/σavg with time for two different values of MaT when ζ = −1, Ca = 0.10,
δ = 0.10 and Wc = 0.50.

of MaT , the migration speed of the droplet increases. This is also reflected in figure 12(b),
where we observe an increase in the magnitude of the axial migration velocity due to an
increase in MaT when ζ = −1. However, we observe that the change in magnitude of the
axial migration velocity is not very large as compared to the change observed by varying
the confinement ratio (Wc) or by switching the direction of the temperature gradient. This
can be explained by considering the fact that the magnitude of decrease in viscous drag,
due to the increase in MaT , is very small as compared to the variation in drag forces due
to changes in Wc and ζ .

5. Conclusions

We have presented a robust three-dimensional computational framework for investigating
the thermo-capillary dynamics of a deformable droplet in a confined fluidic environment.
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This method allows the imposition of any external velocity and temperature field, in
a framework that is consistent with the boundary conditions relevant to wall-bounded
flows. We have used this framework for analysing the motion of a deformable droplet in
pressure-driven flow, in the presence of a temperature field varying linearly along the axis
of the flow. The results obtained from this study indicate drastic alteration in the migration
dynamics of a droplet as compared to the predictions from reported analytical theories
which consider asymptotically small shape deformation of the interface. In particular,
we observe that when a droplet migrates towards a colder region, its migration speed
increases both along the axial and cross-streamwise directions, and alternatively, when
a droplet migrates towards a hotter region, its velocity decreases in magnitude along
both the directions. This is in contrast to the commonly portrayed consequences of
the Marangoni effect which predict a decrease in the migration speed along both the
axial and cross-streamwise directions when a droplet migrates in a linearly decreasing
temperature field. The apparently non-intuitive physical phenomenon has been explained
by considering the change in viscous drag over the surface of the droplet, due to variation
in the average interfacial tension of the droplet–carrier fluid interface. A direct one-to-one
comparison has been provided between the results obtained from the present numerical
method and reported analytical theories, and clear contradictions have been observed
between the two. The reasons for these contradictions have been pinpointed and it has been
observed that the predictions obtained from the current study also hold true in a broader
sense, which encompasses the limiting cases addressed by the analytical theories. Finally,
we have deciphered the effects of confinement ratio and thermal Marangoni number on the
migration characteristics of the droplet and we conclude that alterations in the confinement
ratio can exert significant influence over the quantitative nature of droplet migration. In
comparison, the variations due to change in thermal Marangoni number are smaller in
magnitude.

While the analysis presented in this work has shed new insights on the exclusive
two-way coupling between the thermal and the flow field, as mediated by interfacial stress
balance on the droplet surface, severe droplet deformations hallmarking their coalescence
and break-up phenomena are not considered in this work. Those considerations, amidst
possible entanglements of the Lagrangian grid points located on the interface, need special
re-meshing considerations (Cristini, Bławzdziewicz & Loewenberg 2001) and physically
refer to unstable dynamical regimes, precluding the controllability of precise migration of
an identified droplet without further disintegration or re-integration, which are beyond the
purview of the central theme of this work.
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Appendix A

In this section, we discuss the computation of the Green’s function for both the thermal
energy and the momentum equation in a domain bounded by two parallel plates. The
premise behind constructing both the Green’s functions is to superimpose the free-space
Green’s function with additional corrections which negate it on the boundary. The
computation of the Green’s function for the Stokes equation is complicated by the fact
that it is a second-order tensor and additional care has to be taken to ensure that all the
components vanish at the wall.

A.1. Computation of Green’s function for the energy equation
To construct the Green’s function for the energy equation, we consider successive
reflections of the point of singularity over the two rigid walls. The first sets of two
reflections on each wall are then taken as separate points of singularity, and the resulting
Green’s function is subtracted from the free space Green’s function. This leads to a
cancellation of the Green’s function on the two walls, due to the free space component
of Green’s function. However, it gives rise to additional contributions at the wall, for
example, the image on the upper wall will give rise to a contribution at the lower wall,
and analogously, the image at the lower wall will have non-zero contribution on the
upper wall. Therefore, additional reflections of these two points have to be considered
on the two walls to nullify this contribution, and the new set of images will in turn
have additional contributions on the other wall (other than the wall over which they
were originally reflected). This gives rise to an infinite sum, whose convergence can be
physically understood from the fact that the contribution due to each successive family of
reflections is less in magnitude, since the Green’s function scales inversely with distance.
The modified Green’s function can be expressed as

G2W
l = 1

4π|x − x0|︸ ︷︷ ︸
free space contribution

+
∞∑

k=−∞,k /= 0

1

4π
√

(x − x0)2 + ( y − y0)2 + (z − (z − (2Hk + z0)))2︸ ︷︷ ︸
even set of reflections

−
∞∑

k=−∞

1

4π
√

(x − x0)2 + ( y − y0)2 + (z − (z − ((2k − 1)H − z0)))2︸ ︷︷ ︸
odd set of reflections

, (A1)

where k belongs to the set of integers. To implement this numerically, we consider the
leading order contributions from the odd and even set of reflections and interpolate the
higher order terms from a pre-processed array containing the values of the higher order
summation terms at several discrete points belonging to the computational domain. This
was found to be a fast and accurate method for the computation of Green’s function and its
derivatives. To calculate the derivatives, we simply differentiate (A1) and follow the same
procedure outlined above.

A.2. Computation of Green’s function for the Stokes equation
The Green’s function was computed using the formulae given in Janssen & Anderson
(2007). To illustrate the numerical computation, we take the example of one component
of the Green’s function tensor, and the procedure for computing all other components is
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identical:

G2W
s,zz = G∞

s,zz︸︷︷︸
free space component

+
∫ ∞

0
J0(qs)t1nn(q, z, z0)dq︸ ︷︷ ︸

correction due to walls

, (A2)

where J0(qs) denotes the Bessels’s function, t1nn is a function of the z coordinate of the
point of evaluation and point of singularity, and s denotes the distance between the point
of singularity and point of evaluation in the XY plane. To evaluate the improper integral,
t1nn is decomposed into two components:

t1nn(q, z, z0) = t̂1nn(z, z0) + t̃1nn(q, z, z0), (A3)

where t̂1nn(z, z0) = limq→∞ t1nn(q, z, z0). The integral arising from t̂1nn(z, z0) is evaluated
analytically and the other integral is found to be a smooth function of z, z0 and s2;
therefore, it is pre-computed on a set of discrete points identified by these three variables
and interpolated at any given point using a tri-linear interpolation method. We found this
method to be simple and accurate for obtaining the Green’s function for both the Stokes
flow and energy equation.

Appendix B

B.1. Justification of the creeping flow assumption
Under the creeping flow assumption, fluid flow is modelled using the Stokes
equation which disregards the inertial terms present in the Navier–Stokes equations.
Mathematically, this corresponds to Re � 1 and Re/S � 1, and as a result of this, time
does not explicitly appear in the equations of fluid dynamics. This corresponds to a
‘quasi-steady’ state where time acts more like a parameter than an independent variable
(Leal 2007). Now, to see why this is a good approximation for the present case which
involves an unsteady process of droplet deformation, we need to compare two distinct time
scales.

(i) Time scale for significant droplet deformation (t1): this refers to the time required for
a change in the droplet deformation which is comparable to the characteristic length
scale of the problem, which is the droplet radius (a). For the current problem, this
can be estimated by analysing the changes in the droplet shape during the course of
its migration. For example, it can be seen from the insets in figure 2 that significant
droplet deformation occurs across ∼10 non-dimensional units of Xc (see the first and
third insets of the droplet shape in figure 2). Since the axial migration velocity of the
droplet Ux ∼ 1 (see figures 9 and 11a ii,b ii), the dimensional scaling law for t1 can
be expressed as t1 ∼ 10a/V̄c. Note that here the lengths are non-dimensionalized
by the droplet radius a and velocities are non-dimensionalized using the centreline
velocity for the imposed flow V̄c, as explained in detail in § 2.2 of this manuscript.

(ii) Time scale for evolution of fluid flow from one steady state to another (t2): in
the low-Reynolds-number limit, this is equal to the diffusive time scale which is
∼a2/ν (Leal 2007), where ν refers to the kinematic viscosity of the fluids (both the
droplet and carrier fluids are considered to be of the same kinematic viscosity in this
problem).
Therefore, the ratio of the two time scales is t2/t1 ∼ V̄ca/10ν which is one order of
magnitude lower than the Reynolds number. Now, as Re � 1, it can be concluded
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that t2/t1 � 1. Hence, the fluid flow takes negligibly small time to adjust with
respect to the time scale for droplet deformation and can be effectively treated to
be in a steady state for each deformed configuration of the droplet.

B.2. Some details regarding computational implementation of the numerical algorithm
The computation of interfacial temperature requires the solution of a system of linear
equations, and is the most time-consuming part of the simulation. If N denotes the number
of points and M denotes the number of discrete elements over the surface of the droplet,
then the total number of steps required for constructing the coefficient matrix for the
interfacial temperature is ∼ N2M. The resulting system of linear equations is solved
using the DGESV subroutine in LAPACK (Anderson et al. 1999), which is parallelized
in the ATLAS (Whaley & Petitet 2005) package. The computation of interfacial velocity
takes ∼ NM steps. The code was developed in-house using the FORTRAN programming
language and the mesh discretization and integration quadrature was adopted from the
BEMLIB (Pozrikidis 2002) package. The code was fully parallelized using OPENMP
(Dagum & Menon 1998) directives and run on a CPU having the i7-8700k processor.
Each simulation required approximately 4 GB of RAM and took nearly eight days for
completion.
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