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BOUNDARY AND ANGULAR LAYER BEHAVIOR IN 
SINGULARLY PERTURBED SEMILINEAR SYSTEMS 

BY 

K. W. CHANG AND G. X. LIU 

ABSTRACT. Some authors have employed the method and technique of 
differential inequalities to obtain fairly general results concerning the exis­
tence and asymptotic behavior, as e —» 0+, of the solutions of scalar 
boundary value problems 

ey" = h(t,y), a < t < b, 

y(a,e) = A,y(b,e) = B. 

In this paper, we extend these results to vector boundary value problems, 
under analogous stability conditions on the solution u = u(t) of the reduced 
equation 0 = h{t,u). 

Two types of asymptotic behavior are studied, depending on whether the 
reduced solution u(t) has or does not have a continuous first derivative in 
(a,b), leading to the phenomena of boundary and angular layers. 

1. Introduction. We consider in this paper semilinear boundary value problem of 
the form 

(1.1) e V = h(t,y), y(a,e) = A, y(b,e) = B, 

where y, h, A and B are «-vectors and e > 0 is a small real-valued parameter. The aim 
is to show that under appropriate conditions, there exist solutions of (1.1) which exhibit 
boundary layer and angular layer behavior for all sufficiently small e. 

We assume that the corresponding reduced system 

0 = h(t,u) 

has at least one solution u(t) = (u{(t),..., un{t)). We require, as in the scalar case, 
that the reduced solution u(t) is /^-stable. The definition of /^-stability will be given in 
section 3. This "componentwise" /^-stability condition will allow us to obtain estimates 
for each component of the solution y(t, e) of (1.1). 

2. Preliminary results. We need the following basic result on differential 
inequalities ([3], chap. 1): 
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LEMMA 1. Consider the boundary problem 

(2.1) y" = h(t,y),y(a) = A,y(b) = B, 

where y, h, A and B are in U". Suppose that there exist n bounding pairs (a,(f), 0,(f)) 
of Cm-functions on [a,b] which satisfy 

(2.1), a,(a) =s At < p,(a), a,(ft) ^ Bt == p,(ft), i = 1, . . . , « ; 

(2.1)2 a,(0 s (3,(/), f in (a, 6), i = 1 , . . . , n; 

ra"> hj(t,y,,... ,ah... ,y„) 
(2.1)3 

U r ^ A.-(ï,3'i,...,R,...,3'.), 

/or ? m (a, è), a^(0 ^ yy ^ (^(0,7 ^ '• ^/so suppose that h is continuous in the region 

[a,b] xn;=1[a,p (]. 
Then the problem (2.1) has a solution y(t) — (y\(t),. . . ,yn(t)) of class C(2) [a,b] 

satisfying 
a,(0 < yt(t) < 0,(0 

/br r m [a, &] a«d / = 1 , . . . , n. 
The following extension of Lemma 1 will also be needed [2]. 

LEMMA 2. Consider the problem (2.1) and suppose that there exist n bounding pairs 
which are piecewise — C(2) on [a, b], namely there is a partition {ti}T=0of[a,b] with 
a = t0 < tx < . . . < tm — b such that on each subinterval [f,--i, £/], / = 1,. . . , m, the 
n bounding pairs (aj9 Py), j = 1,. . . , n, are twice continuously differentiable; at the 
partition points, f;_i and th the derivatives are righthand and lefthand derivatives 
respectively. Suppose also that (2. l)j, (2.1)2, (2.1)3 hold on each subinterval [tt-1, tt]. 
Lastly, suppose that for each t in[a,b], DLa.j(t) < DRai(t) andDL$t{t) > DR$t{t), 
where DL, DR denote, respectively, lefthand and righthand differentation. 

Then (2.1) has a solution y(t) = (y\t),... ,yn(t)) of class Ci2)[a,b] satisfying 

af-(0 < yM < (3,(0 

for t in [a, b] and i — 1 , . . . , n. 

3. Boundary layer phenomenon. Let q be a non-negative integer. In the following 
definition of /^-stability for the reduced solution u(t), we assume that the function 
h(t,y) has the stated number of continuous partial derivatives with respect to v, in 11"= x 

9)/, / = 1 , . . . ,n, where 

% = {(t,yi): t E [a,b], \yt - ut(t)\ < dt{t)}. 

Here dt{t) is a smooth positive function such that 

|Ai - Ui(a)\ < J/(0 < |A, - w,(tf)| + 8, on [a,a + 8] 

|£, - M/(6)| < ^ ( 0 < \Bi - Ui(b)\ + 8, on [b - 8,&] 
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and 

di(t) < 8 on [a + b,b - 8]. 

where Ai9 Bt are components of A, Z? respectively and 8 > 0 is a small constant. 

DEFINITION. The vector function u = u(t) = (u\(t),..., un{t)) is said to be Instable 
in \_a,b\ if there exist n positive constants mi9. . . ,mn such that 

dkhi 
(3.1) — z ( t , y l 9 . . . ,uh . . . ,y„) = 0 

ay-

and 

1 d2*+,fcf 

(3.2) — — ^ - 7 (f, y„ . . . , yn) > m > 0 
(2<? + 1)! dy?+l 

fori = l , . . . , n , (f , j) G n;=1 3 , , 

We note that the definition of /^-stability for a scalar function was first given by 
Boglaev [4], and has been employed and extended by other authors [2]. 

We have the following result. 

THEOREM 1. Assume that the reduced system h(t9u) — 0 has an Instable solution 
u(t) = {ut(t),. . . , un(t)) of class C{2\a, b]. Then there exists an e0 > 0 such that for 
0 < e ^ e0, the boundary value problem (1.1) has a solution 

y(t) = y(t,e) = (y , ( f , e ) , . . . , yn(t,e)), 

for t in [a, b], satisfying 

|y,(f,e) - M|.(r)| ^ Ut,e) + *,(*,€) + 0(e) , 

where i = 1 , . . . , n. Here 

\At - Ui(a)\ exp [-m^'^t - a)], if q = 0, 
(3.3) L,U,e) 

\At - Ui(à)\[\ + vue~l(t - a)Yq~\ if q > 1; 

f \Bi - Ui(b)\ exp [-m^~\b - t)]9 if q = 0 
(3.4) *,-(*,€) = 

l|£, - M/(&)|[1 + ^ " ' ( f t - 0]~*~\ if ? s> 1. 

q q 
V\i = mf [A,- - w/(a)|*, cr2/ = m, |#,- - w,-(ft)|*, 

V 7 + l Vq+Î 
for i = 1,. . . , «. 

REMARK. For g — 0, the boundary layers at both end-points are of exponential type, 
while for q > 1, the boundary layers are of algebraic type. 
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PROOF. Theorem 1 will follow from Lemma 1, if we can exhibit, by construction, 
the existence of lower and upper pairs of bounding functions (a,-(f, e), (3,(7, e)) which 
possess the required properties (2.1)i, (2.1)2 and (2.1)3, with a,(f), P/(0 replaced by 
a,-(f, e), P,(f, e) respectively and with /*, replaced by h^~2. 

By assumption (3.2), we must have hi(t,y) ~ m^y^q+l, and we are led to consider 
the differential equation 

Indeed, the function L,(r, e) is non-negative and is the solution of (3.5) such that 

L,(a,e) = \Ai - Uj(a)\, 

and 

L/(fl,€) 7 = K - - «i(fl)|*+I. 
eVV+1 

This solution decreases to the right. Similarly, the function Rt{t, e) > 0 is the solution 
of (3.5) such that 

Ri(b,e) = 1^ . -1 /^ )1 , 

and 

YYli 

R!(b,e)= |fr-n f(fr) |g+ 1 , 
eV<? + 1 

and decreases to the left. 
We now define, for f in [a, b] and e > 0, the required lower and upper functions 

a,(f,e) = Ui(t) - Li(t,é) - Ri(t,e) - r,(e), 

0,-(f,e) - w,(f) + £,•(/,€) + #,(f,e) + rf-(€), 

where 

r,(e) = Wli/m
2
l{2q+ l)!]1/(2«+,). 

Here, each 7, is a positive constant chosen so large that 

(3.6) 7/ ^Mt(2q + 1)! 

where M, = max[fl^][|«J'(0|]- Clearly we have T^e) > 0. 
Observe that the region between a, and P,, that is, the set {(f, vy), f E [a,b], 

a;(f, e) < j , - < pt.(^ €)} is contained in the region 2), when e is sufficiently small. 
Clearly, a, and p, satisfy the required properties (2.1), and (2.1)2. It remains to show 

that the property (2.1)3, with h(e~2 in place of hh also holds. Applying Taylor's 
Theorem and the hypothesis that 11(f) is /^-stable, we have 
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e2a? - hXUyu . . . , a , , . . . , y„) = éul - e2L',' - e2R'! + — ^ 
(2q + 1)! dy," 

X ( f j „ . . . , e „ . . . > r , ) [ a i ( ( , e ) - « i ( ( ) ] ¥ l 

1 d2"+,h, 
= êu'l - êL", - éR", + r -T 

(2q + 1)! dy2«+' 
x (t,y],...,Ql,...,yn)(Li + Ri + Ti)

2',+\ 

where 0, is some intermediate point between a,(f, e) and u,{t)- The point (/, 9,) is 
therefore in % if e is sufficiently small, say, e < e<,. Since L,, /?,, T, are all positive and 
since both L, and /?, satisfy (3.5), it follows by virtue of (3.2) and (3.6) that 

e V - fc,-(f,)>„...,a,,...,y„) 2= -e2 |ii?| + m ? I ? + ' 

and so 
(2<? + D! 

e 2 a " > ^ , ( f , y i , . . . , < * „ . . . , y„ ) . 

7/ 

-(2? + D! 
-A/,- ^ 0 , 

The proof for (3, is similar. Therefore Theorem 1 follows from Lemma 1. 

4. Angular layer phenomenon. We now turn to the following situation: suppose 
that the reduced equation h(t, u) = 0 has a pair of C(2)-solutions ux — ux(t) and u2 — 
u2(t) which intersect at an interior point t — T in {a, b). That is to say, u{(T) = u2(T), 
but u[(T) i= u2(T), or if we define the reduced solution u(t) by 

fw,(0, a < t < 7, 
«(0 ^ 

[w2(0, T<t<b, 
then u'{T~) 41 u'(T+). Thus, the essential characteristic of this situation is that the 
reduced solution #(/) does not have a continuous first derivative in (a,b), but has a 
'corner' at an interior point. 

We wish to determine if results similar to Theorem 1 can be obtained under appro­
priate stability assumptions on this type of reduced solution u(t). In view of the corner 
or angular nature of the reduced solution u(t), we expect that the bounding functions 
will be more complex than those considered earlier in Theorem 1. Furthermore, each 
component of the original solution can, in general, be expected to exhibit an angular 
or corner layer at a different interior point and also simultaneously exhibit boundary 
layer behavior at the end-points. This situation is demonstrated by an example in 
Section 5. 

THEOREM 2. Assume that 
(1) there exists functions ux = (uu(t),. . . , uln(t)) and u2 = (u2](t),. . . , u2n(t)) with 
Uji(t) of class C(2) on [a , r , ] and \Th b] respectively, satisfying for j — 1, 2,; 

hi(t,yl9. . . , « , - / , . . . , y n ) = 0 
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for t E [a, b] andyk in Dk, k =£ i. Moreover, uu(Ti) = w2/(T/) ant/ «[/(I,) < 112/(7/), 
7/ m (a,b), where 

Dk = {yk:\yk ~ uk(t)\ <dk(t)} 

with 

\un{t), tE [a,Tk] 
uk(t) = 1 

[u2k(t)9 te[Tk,b], 

and dk is a smooth positive function such that 

\Ak - uk(t)\ < dk(t) < \Ak - uk(t)\ + Ô o n [ a , a + - J 

\Bk - uk(t)\ < dk(t) < |fl* - «,(0| + 8 on \b - - , b\ 

for 8 > 0 a small constant; 
(2) for a nonnegative integer g, the function h is continuous in (t,y) and C(2<?+1) with 
respect to yt in A; 
(3) Uj(t) is Instable for j = 1,2 in [a, Tt] and [Tt,b] respectively. 

Then there exists an e0 > 0 such that for each e, 0 < e < e0, there exists a solution 
y = y(t,e) = (y,(7,e),. ..,yn(t,e)) of (I A). Moreover, for t in [a,b] 

\yi(t,e) - M/(0| ^ W M ) + i?/(r,e) + C,e1/(«+,), 

/<?r / = 1,2,. . . , n, where Cq is a positive, computable constant independent of e, 

(4.1) L/(r,c) - K- - M l /(a)|£/(r,e), 

(4.2) */(f,e) = |Bf. - K 2 / (* ) |F / ( / , € ) , 

r m, I 
exp (f - a) , if a = 0 

[ l + — ( f - a ) J , i f g ^ l , 

exp [ -(ft - r)J, if a = 0, 

Fi-ac) 
r a2/ -|-(i/̂ ) 
[1 + — (b - OJ , if g > 1 

ant/ 

ai/ = , A,- - uu(a)\\ a2/ = / \Bt - u2i(b)\q. 
V a 4- 1 V g + 1 
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PROOF. The theorem follows from Lemma 2, if we can show the existence of 
functions a, P which satisfy the required differential inequalities. 

For t in [a, b] and e > 0, define 

uu(t) - \A( - uu(a)\Ej(t,e) 

- \Bt - ii2l-(ft)|/
r/(r/, e) - r.-U), t G [a, Til 

(*i(t,e) = [ 
u2i(t) - \B, - UuWlFiit,*) 

- \At - u^a^EM,*) - r,-(e), t G [Thb] 

r uu{t) + |A, - uu{a)\Et{t^) + /J/(f,e) + A,(e), r G [«,7,] 
Pi-a,e) = 

I n2|.(0 + |Bf- - i*2l-(&)|Ff-(f,e) + ftf-(€), t G [r ;,/7], 

where 

A,(e) = (b - t)\At - Uu(a)\E!(Ti9*) + r,(e) 

+ % ~ UrXb^lE^T^t) + (b - WW,*)], 

a-(€) = H((Tne) + (ft - 01*,- " w2,(/7)|F/(r/,€) + r,(e) 

+ |A,- - W w(«) |[^(r ; ,e) + (ft - 7,)£;(rMe)], 

— WvlTi) - u'uiT^cxp 
YYli 

— (T,- t) 
e 

if q = 0, 

if (7 > 1 

k = \m{\Jq + U(9+,)[w2i(7,
/) - w ^ r , ) ] ^ ^ 0 " ' . 

Here r,(e) = [y^/mXlq + 1)!](2<?+1) ', and 7, > 0 is a constant chosen so large that 

7/ > Mi(2q + 1)!, M, = max {max \u"u(t)\, max |M2 ' /(0|1-
U^,] [Thb] j 

We observe that a, < p„ a,(a, e) < A, < p,-(a, e), af-(fe, e) < £, < p,-(ft, e), and that 
DR0Li(Ti) > DLai(Tj) and DR$i(Tj) < DLp,(r,), for all sufficiently small values of €. 

It only remains to verify that the differential inequalities 

j e2a?(r,e) > /z,(f, v,, . . . , a,-(f, e), . . . , v j 

U2p;i(r,€) < ^-(r ,y» , . - . ,P/U,€) , . . . ,y j 

are satisfied on [0, T,] and [Ti9b]. We only verify the inequality for p/? since the 
verification for a, is similar. 

We can easily see that the terms A,(e) and ft/(e) are nonnegative for e sufficiently 
small, even though they contain the negative terms (b - t) [A{ - U\i(a)]Ei(a,e) and 
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[Ai - uu(a)]E'i(a,e) respectively. On [a,Tt], by differentiating 0,, substituting into 
(2.1)3 and expanding by Taylor's Theorem, we have 

hi(t,ylr.. . , p / , ...,)>„) - €2PÎ'= hi(t,yl,...,uu,...,y„) 

& f 1 d*A,-

* = i lKl dy, 

A i d2«+1/*, 
j (2(7 + 1)! dy/ 

x [(A, - Wl/(«))£/(r,e) + //,(r,e) + A^e)]2**1 

- e2uUt) - e2[A, - uu(a)]EKt,e) ~ e2ff ?(*,€), 

where T^, is the appropriate intermediate value. In view of the /^-stability of u and the 
fact that Af-(e) > 0, it follows that 

/ ^ y , , . . . , ^ , . . . , ^ ) - étfzimiUAi - uu(a))2tl+lE2q+\t,é) 

+ H2q+\t,e) + Af+ ,(€)] - e2Mt - e2(At - uu{a)) 

x E'!(t,e) ~ e2//;'(r,e). 

By construction, the functions Et and //, satisfy the differential equation 

e2Z? = m2Z2q+l, 

and so 

hAUyu • •. ,P/, • • • ,yn) ~ €2P7^ m2A^+ , )(e) - €2M, 

> m) \ . 7<e 1 - e2M, = e2f Aff-1 > 0. 
Vm]{2q + 1)!J L(2<? + 1)! J 

The verification of the differential inequality for P/(f, e) for f in [7;, b] is similar and 
so we omit details. 

REMARK. If some of the derivatives of the functions uu and u2i satisfy the inequality 
u\i(Ti) > U2i(Ti), then it is possible to obtain results which are analogous to Theorem 
2. We can simply make the change of dependent variable yt —> —yt and apply Theorem 
2 to the transformed problem. 

5. An example. Consider the problem 

eY = h(t,y), - 1 <t< 1, 

j ( - l , e ) = A , y(l,e)=B, 

where h(t,y) is the column vector 

((Ji - \t\)2q+l(l + G(y2)), (v2 - 1 + |f|)2*+,(l + //(y,))). 

Here q is a nonnegative integer, G(y2) ^ 0, //(yi) ^ 0. 

https://doi.org/10.4153/CMB-1985-018-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-018-8


182 K. W. CHANG AND G. X. LIU [June 

The reduced solution is the column vector (|f|, 1 — \t\) and does not have a con­
tinuous derivative at t = 0. The reduced solution is stable, since 

— ^ = 1 + G(v2) > 1 > 0, 

d2^lh2 

dy 
2q+] 

1 + #(? , ) > 1 > 0. 

By Theorem 2 there exists a solution y = (y\(t, e), y2(t, e)) for e sufficiently small 
which satisfies the following inequalities: 

where 

|v, - M| < L , +f l , + C,e u+ir 1 

|y2 - 1 + |;|| < L 2 + R2 + C^e (9+1) - ' 

|A, - l | exp 
•1 - i 

q = 0, 

U = A, - 1 

1 + 
Va + 1 e V # 

|5 , — l| exp 

|A, - 1|*(1 + r) 

- 1 + t 

q^U 

q = 0, 

* , = \By ~ 1 

1 + 

\A2\ exp 

e V ç + 1 

1 - t 

B\ - l K l - „ ] • 
q^ 1, 

q = 0, 

u = 

Ri = 

\A2 

1 + 
e V ç + 1 

|B2| exp ( — — - J , 

<7 , , 1 " " 
A2|«(l + Oj 

1 + 
<7 , , 1"" 

« 2 * 0 - 0 V a + 1 e v<7 

? s 1, 

9 = 0, 

q^ 1, 
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where Cq is positive, computable constant independent of e. (The result is indicated in 
the following figures.) 
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