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1. Introduction

Hochschild and cyclic cohomology of topological algebras play a prominent role in K-
theory [3] and in non-commutative geometry [2]. There are a number of papers addressing
the calculation of Hochschild and cyclic continuous homology and cohomology of topo-
logical algebras (see, for example, [2,3,13,15–17,23,25]). However, there are few explicit
descriptions of non-trivial higher-dimensional Hochschild cohomology groups for topo-
logical algebras. Künneth formulae for continuous Hochschild homology and cohomology
provide tools for an explicit description of continuous Hochschild and cyclic cohomology
groups of certain tensor products of ⊗̂-algebras which are Fréchet spaces or nuclear DF -
spaces.

Künneth formulae for bounded chain complexes X and Y of Fréchet and Banach spaces
and continuous boundary maps with closed ranges were established, under certain topo-
logical assumptions, in [6,7,13]. Recall that, in the category of nuclear Fréchet spaces,
short exact sequences are topologically pure and objects are strictly flat, and so the
Künneth formula can be used for the calculation of continuous Hochschild homology
Hn(A ⊗̂ B, X ⊗̂Y ) if the boundary maps of the standard homology complexes have closed
ranges. To compute the continuous cyclic-type Hochschild cohomology of Fréchet alge-
bras one has to deal with complexes of complete DF -spaces. In [17] the author showed
that, for a continuous morphism ϕ : X → Y of complexes of complete nuclear DF -spaces,
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a surjective map of cohomology groups Hn(ϕ) : Hn(X ) → Hn(Y) is automatically open.
In this paper we establish relations between topological properties of the homology of
complexes of Fréchet spaces and of the cohomology of their strong dual complexes. We
use these properties to show the existence of a topological isomorphism in the Künneth
formula for complexes of complete nuclear DF -spaces and continuous boundary maps
with closed ranges, and thereby to describe explicitly the continuous Hochschild and
cyclic homology and cohomology of A ⊗̂ B for certain ⊗̂-algebras A and B which are
Fréchet spaces or nuclear DF -spaces.

In Theorem 3.4 and Corollary 3.5, for a complex of nuclear Fréchet spaces or of com-
plete nuclear DF -spaces (X , d) and continuous boundary maps dn with closed ranges,
we establish that there is a topological isomorphism, (Hn(X , d))∗ ∼= Hn(X ∗, d∗), where
(Hn(X , d))∗ is the dual space of the homology group of (X , d) and Hn(X ∗, d∗) is the
cohomology group of the dual complex (X ∗, d∗).

In Theorems 4.3 and 4.4, for bounded chain complexes X and Y of complete nuclear
DF -spaces or of nuclear Fréchet spaces such that all boundary maps have closed ranges,
we prove that, up to topological isomorphism,

Hn(X ⊗̂ Y) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]

and

Hn((X ⊗̂ Y)∗) ∼=
⊕

m+q=n

[Hm(X ∗) ⊗̂Hq(Y∗)].

In Corollary 4.2, for bounded chain complexes (X , dX ) of Banach spaces and (Y, dY) of
Fréchet spaces such that all boundary maps have closed ranges, and Hn(X ) and Ker(dX )n

are strictly flat in Ban for all n, we prove that, up to topological isomorphism,

Hn(X ⊗̂ Y) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]

and, up to isomorphism of linear spaces,

Hn((X ⊗̂ Y)∗) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]∗.

The Künneth formulae for the continuous Hochschild homology Hn(A ⊗̂ B, X ⊗̂Y )
and cohomology Hn((C∼(A ⊗̂ B, X ⊗̂Y ))∗) are proved in Theorem 5.4 for the underly-
ing category of complete nuclear DF -spaces and for the underlying category of nuclear
Fréchet spaces. In these underlying categories, for unital ⊗̂-algebras A and B, for a unital
A–⊗̂-bimodule X and a unital B–⊗̂-bimodule Y , under the assumption that all boundary
maps of the standard homology complexes C∼(A, X) and C∼(B, Y ) have closed ranges,
we show that, up to topological isomorphism,

Hn(A ⊗̂ B, X ⊗̂Y ) ∼=
⊕

m+q=n

[Hm(A, X) ⊗̂ Hq(B, Y )]
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and

Hn((C∼(A ⊗̂ B, X ⊗̂Y ))∗) ∼=
⊕

m+q=n

[Hm((C∼(A, X))∗) ⊗̂Hq((C∼(B, Y ))∗)].

In Theorem 5.5 we prove the Künneth formulae for the continuous Hochschild homology
groups of Banach and Fréchet algebras under some topological assumptions. In § 6 we
describe explicitly the continuous cyclic-type homology and cohomology of certain ten-
sor products of ⊗̂-algebras which are Banach or Fréchet or nuclear Fréchet or nuclear
DF -spaces.

2. Definitions and notation

We recall some notation and terminology used in homology and in the theory of topo-
logical algebras. Homological theory can be found in any relevant textbook: for instance,
[14,18] for the pure algebraic case and [10] for the continuous case.

Throughout the paper, ⊗̂ is the projective tensor product of complete locally convex
spaces. By X⊗̂ n we mean the n-fold projective tensor power X ⊗̂ · · · ⊗̂X of X and id
denotes the identity operator.

We use the notation Ban, Fr and Lcs for the categories whose objects are Banach
spaces, Fréchet spaces and complete Hausdorff locally convex spaces, respectively, and
whose morphisms in all cases are continuous linear operators. For topological homology
theory it is important to find a suitable category for the underlying spaces of the algebras
and modules. In [10] Helemskii constructed homology theory for the following categories
Φ of underlying spaces, for which he used the notation (Φ, ⊗̂).

Definition 2.1 (Helemskii [10, II.5]). A suitable category for underlying spaces of
the algebras and modules is an arbitrary full subcategory Φ of Lcs having the following
properties:

(i) if Φ contains a space, it also contains all those spaces topologically isomorphic to
it;

(ii) if Φ contains a space, it also contains any of its closed subspaces and the completion
of any its Hausdorff quotient spaces;

(iii) Φ contains the direct sum and the projective tensor product of any pair of its
spaces;

(iv) Φ contains C.

In addition to Ban, Fr and Lcs, important examples of suitable categories Φ are the
categories of complete nuclear spaces [24, Proposition 50.1], nuclear Fréchet spaces and
complete nuclear DF -spaces [17].

By definition, a ⊗̂-algebra is a complete Hausdorff locally convex algebra with jointly
continuous multiplication. A left ⊗̂-module X over a ⊗̂-algebra A is a complete Hausdorff
locally convex space X together with the structure of a left A-module such that the
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map A × X → X, (a, x) �→ a · x is jointly continuous. For a ⊗̂-algebra A, ⊗̂A is the
projective tensor product over A of left and right A–⊗̂-modules (see [9] or [10, II.4.1]).
The category of left (unital) A–⊗̂-modules is denoted by A-mod (A-unmod) and the
category of (unital) A–⊗̂-bimodules is denoted by A-mod-A (A-unmod-A).

Let K be a category. A chain complex X∼ in the category K is a sequence of Xn ∈ K
and morphisms dn (called boundary maps)

· · · ← Xn
dn←− Xn+1

dn+1←−−− Xn+2 ← · · ·

such that dn ◦ dn+1 = 0 for every n. The cycles are the elements of

Zn(X ) = Ker(dn−1 : Xn → Xn−1).

The boundaries are the elements of

Bn(X ) = Im(dn : Xn+1 → Xn).

The relation dn−1 ◦dn = 0 implies Bn(X ) ⊂ Zn(X ). The homology groups are defined by

Hn(X∼) = Zn(X )/Bn(X ).

As usual, we will often drop the subscript n of dn. If there is a need to distinguish between
various boundary maps on various chain complexes, we will use subscripts, that is, we
will denote the boundary maps on X by dX . A chain complex X is called bounded if
Xn = {0} whenever n is less than a certain fixed integer N ∈ Z.

Given E ∈ K and a chain complex (X , d) in K, we can form the chain complex E ⊗̂ X
of the locally convex spaces E ⊗̂Xn and boundary maps idE ⊗ d. Definitions of the total-
ization Tot(M) of a bounded bicomplex M and the tensor product X ⊗̂ Y of bounded
complexes X and Y in Fr can be found in [10, Definitions II.5.23–II.5.25]. Recall that
X ⊗̂ Y := Tot(X ⊗̂ Y) of a bounded bicomplex X ⊗̂ Y.

We recall here the definition of a strictly flat locally convex space in a suitable category
Φ which is equivalent to that given in [10, Chapter VII]. Note that it can be seen as a
special case of the corresponding notion for ⊗̂-modules, where the ⊗̂-algebra is taken
to be the complex numbers C. One can find the definition of a short exact sequence
in [10, § 0.5.1].

Definition 2.2. A locally convex space G ∈ Φ is strictly flat in Φ if for every short
exact sequence

0 → X → Y → Z → 0

of locally convex spaces from Φ and continuous linear operators, the short sequence

0 → G ⊗̂X → G ⊗̂Y → G ⊗̂Z → 0

is also exact.
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Example 2.3.

(i) Nuclear Fréchet spaces are strictly flat in Fr [5, Theorems A.1.5 and A.1.6].

(ii) Finite-dimensional Banach spaces and L1(Ω, µ) are strictly flat in Ban [26, Theo-
rem III.B.2] and in Fr [22, Proposition 4.4].

If E is a topological vector space, E∗ denotes its dual space of continuous linear
functionals. For a subset V of E, the polar of V is

V 0 = {g ∈ E∗ : |g(x)| � 1 for all x ∈ V }.

Throughout the paper, E∗ will always be equipped with the strong topology unless other-
wise stated. The strong topology is defined on E∗ by taking as a basis of neighbourhoods
of 0 the family of polars of all bounded subsets of E [24, II.19.2].

Let A be a ⊗̂-algebra. A complex of A–⊗̂-modules and their morphisms is called
admissible if it splits as a complex in Lcs [10, III.1.11]. A complex of A–⊗̂-modules and
their morphisms is called weakly admissible if its strong dual complex splits.

For Y ∈ A-mod-A a complex

0 ←− Y
ε←− P0

φ0←− P1
φ1←− P2 ←− · · · (0 ← Y ← P)

is called a projective resolution of Y in A-mod-A if it is admissible and all the modules
in P are projective in A-mod-A [10, Definition III.2.1].

For any ⊗̂-algebra A, not necessarily unital, A+ is the ⊗̂-algebra obtained by adjoining
an identity to A. For a ⊗̂-algebra A, the algebra Ae = A+ ⊗̂ Aop

+ is called the enveloping
algebra of A, where Aop

+ is the opposite algebra of A+ with multiplication a · b = ba.
A module Y ∈ A-mod is called flat if, for any admissible complex X of right A–⊗̂-

modules, the complex X ⊗̂A Y is exact. A module Y ∈ A-mod-A is called flat if, for any
admissible complex X of A–⊗̂-bimodules, the complex X ⊗̂Ae Y is exact.

For Y, X ∈ A-mod-A, we shall denote by TorAe

n (X, Y ) the nth homology of the complex
X ⊗̂Ae P, where 0 ← Y ← P is a projective resolution of Y in A-mod-A [10, Definition
III.4.23].

Definition 2.4. A short exact sequence of locally convex spaces from Φ and continuous
operators

0 → Y
i−→ Z

j−→ W → 0

is called topologically pure in Φ if for every X ∈ Φ the sequence

0 → X ⊗̂Y
idX ⊗̂ i−−−−→ X ⊗̂Z

idX ⊗̂ j−−−−→ X ⊗̂W → 0

is exact.

By II.1.8f and the remark after II.1.9 in [1], an extension of Banach spaces is topologi-
cally pure in Ban if and only if it is weakly admissible in Ban. In the category of Fréchet
spaces, the situation with topologically pure extensions is more interesting. Firstly, it
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is known that extensions of nuclear Fréchet spaces are topologically pure [5, Theorems
A.1.6 and A.1.5]. Note that nuclear Fréchet spaces are reflexive, and therefore a short
sequence of nuclear Fréchet spaces is weakly admissible if and only if it is admissible. It
is shown in [16, Lemma 2.4] that in Fr the weak admissibility of an extension implies
topological purity of the extension but is not equivalent to the topological purity of the
extension [16, § 2]. Recall that extensions of Fréchet algebras 0 → Y → Z → W → 0
such that Y has a left- or right-bounded approximate identity are topologically pure [16,
Lemma 2.5].

3. Topological isomorphism between (Hn(X , d))∗ and Hn(X ∗, d∗) in
the category of complete nuclear DF -spaces

DF -spaces were introduced by Grothendieck in [8]. It is well known that the strong
dual of a Fréchet space is a complete DF -space and that nuclear Fréchet spaces and
complete nuclear DF -spaces are reflexive [19, Theorem 4.4.12]. Moreover, the corre-
spondence E ↔ E∗ establishes a one-to-one relation between the nuclear Fréchet spaces
and complete nuclear DF -spaces [19, Theorem 4.4.13]. It is known that there exist closed
linear subspaces of DF -spaces that are not DF -spaces. For nuclear spaces, however, we
have the following.

Lemma 3.1 (Pietsch [19, Proposition 5.1.7]). Each closed linear subspace F of
the strong dual of a nuclear Fréchet space E is also the strong dual of a nuclear Fréchet
space.

Furthermore, we will need the following version of the open mapping theorem.

Corollary 3.2 (Lykova [17, Corollary 3.4]). Let E and F be nuclear Fréchet spaces
and let E∗ and F ∗ be the strong duals of E and F , respectively. Then a continuous linear
operator T of E∗ onto F ∗ is open.

For a continuous morphism of chain complexes ϕ : X → Y in Fr, a surjective map
Hn(ϕ) : Hn(X ) → Hn(Y) is automatically open [10, Lemma 0.5.9]. In the category of
complete nuclear DF -spaces this was proved by the author in [17, Lemma 3.5].

The following result is known for Banach and Fréchet spaces.

Proposition 3.3 (Gourdeau et al . [7, Corollary 4.9]). Let (X , d) be a chain
complex of Fréchet (Banach) spaces and continuous linear operators and let (X ∗, d∗) be
the strong dual cochain complex. Then the following are equivalent:

(1) Hn(X , d) = Ker dn−1/ Im dn is a Fréchet (Banach) space;

(2) Bn(X , d) = Im dn is closed in Xn;

(3) dn has closed range;

(4) the dual map dn = d∗
n has closed range;

(5) Bn+1(X ∗, d∗) = Im d∗
n is strongly closed in (Xn+1)∗.
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In the category of Banach spaces, (1)–(5) are equivalent to the following:

(6) Bn+1(X ∗, d∗) is a Banach space;

(7) Hn+1(X ∗, d∗) = Ker d∗
n+1/ Im d∗

n is a Banach space.

Moreover, whenever Hn(X , d) and Hn(X ∗, d∗) are Banach spaces, up to topological
isomorphism,

Hn(X ∗, d∗) ∼= Hn(X , d)∗.

The next theorem shows that certain niceties of the theory of nuclear DF -spaces allow
us to generalize this result to nuclear Fréchet spaces.

Theorem 3.4. Let (X , d) be a chain complex of Fréchet spaces and continuous linear
operators and let (X ∗, d∗) be its strong dual complex. Suppose that, for a certain n,
either dn and dn−1 have closed ranges or d∗

n and d∗
n−1 have closed ranges.

(i) Then, up to isomorphism of linear spaces,

(Hn(X , d))∗ ∼= Hn(X ∗, d∗).

(ii) If, in addition, (X , d) is a chain complex of nuclear Fréchet spaces, then Hn(X , d)
is a nuclear Fréchet space and, up to topological isomorphism,

(Hn(X , d))∗ ∼= Hn(X ∗, d∗) and Hn(X , d) ∼= (Hn(X ∗, d∗))∗.

Proof. We will give a proof of (ii), case (i) being simpler. By [4, Theorem 8.6.13], dn

has closed range if and only if d∗
n has closed range. Thus, dn−1, dn, d∗

n−1 and d∗
n have

closed ranges. We consider the following commutative diagram as in [18, Lemma V.10.3]:

0 0

0 �� Bn(X ) � � in ��

d̃n

��

��

Zn(X )
σn ��

��

jn

��

Hn(X ) �� 0

Xn+1
dn �� Xn

dn−1

��
Xn−1

(3.1)

where in and jn are the natural inclusions and σn is the quotient map. The notation d̃

shall be used repeatedly, and thus we adopt the following definition. Given a continuous
linear map θ : E → F , the map θ̃ is the surjective map θ̃ : E → Im θ defined by
θ̃(t) = θ(t). Here again all the maps have closed ranges.
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We form the dual diagram and add the kernel of d∗
n , Zn(X ∗) = Ker d∗

n, and the image
of d∗

n−1 , Bn(X ∗) = Im d∗
n−1, which is closed by assumption:

0

��

0

0 (Bn(X ))∗��

d̃∗
n

��

(Zn(X ))∗i∗
n��

��

(Hn(X ))∗σ∗
n�� 0��

X∗
n+1 X∗

n

d∗
n��

j∗
n

��

Zn(X ∗)
iZ�� 0��

X∗
n−1

d∗
n−1

��

d̃∗
n−1 �� Bn(X ∗)

iB

��

�� 0

(3.2)

where d̃∗
n−1 : X∗

n−1 → Im d∗
n−1 : γ → [d∗

n−1](γ) = γ ◦ dn−1. This diagram commutes and
has exact rows and columns. By [16, Lemma 2.3], the exactness of a complex in Fr

is equivalent to the exactness of its dual complex. Thus, the exactness of the first line
follows from [16, Lemma 2.3]; the exactness of the second line follows from the definition
of Zn(X ∗); the exactness of the first column follows from [4, Corollary 8.6.11] since the
surjectivity of d̃n implies the injectivity of d̃∗

n; and the exactness of the second column
follows from [16, Lemma 2.3]. Commutativity only needs to be checked for the square
involving the two added terms, namely Zn(X ∗) and Bn(X ∗), and this is obvious. Since
d∗

n−1 has a closed range, by Lemma 3.1, Zn(X ∗) = Ker d∗
n and Bn(X ∗) = Im d∗

n−1 are
the strong duals of nuclear Fréchet spaces. Therefore, this diagram is one of strong duals
of nuclear Fréchet spaces and continuous linear operators with closed ranges.

Since σ∗
n has a closed range, by Lemma 3.1, Im σ∗

n is a strong dual of a nuclear Fréchet
space. Therefore, by Corollary 3.2, the continuous linear surjective operator

σ̃∗
n : (Hn(X ))∗ → Im σ∗

n : γ �→ σ∗
n(γ)

is open.
Let us define a map

ϕ : Zn(X ∗) → (Hn(X ))∗

by the formula ϕ = σ̃∗
n

−1 ◦ j∗
n ◦ iZ , where σ̃∗

n

−1
is the inverse of the topological isomor-

phism σ̃∗
n. It is now a standard diagram-chasing argument to show that ϕ is well defined

and surjective. Let us give this argument. An element z ∈ Zn(X ∗) is sent by d∗
n ◦ iZ to

0 in X∗
n+1 and, therefore, since d̃∗

n is injective, [i∗n ◦ j∗
n ◦ iZ ](z) = 0. Hence, the element

[j∗
n ◦ iZ ](z) of (Zn(X ))∗ belongs to Ker i∗n = Im σ∗

n, by exactness of the first line of the
diagram. Thus, ϕ is a well-defined continuous linear operator. To show that this map
is surjective, starting with v ∈ (Hn(X ))∗, we get u = σ∗

n(v) ∈ (Zn(X ))∗, and, since j∗
n

is surjective, there is t ∈ X ∗
n such that j∗

n(t) = u. It is easy to see that t ∈ Ker d∗
n and

therefore it lifts uniquely to z ∈ Zn(X ∗) and ϕ(z) = v.
It can be seen that iB(Bn(X ∗)) ⊆ Ker ϕ, since d̃∗

n−1 is surjective and, for any y ∈ X∗
n−1,

[j∗
n ◦ d∗

n−1](y) = 0. Suppose that z ∈ Ker ϕ, and hence [j∗
n ◦ iZ ](z) = 0. This implies that
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iZ(z) ∈ Ker j∗
n = Im d∗

n−1, so that there is y ∈ X∗
n−1 such that d∗

n−1(y) = iZ(z). Since iZ
is injective, z = iB(d̃∗

n−1(y)). Thus, Kerϕ = iB [Bn(X ∗)].
By Corollary 3.2, the continuous surjective linear operator between strong duals of

nuclear Fréchet spaces
ϕ : Zn(X ∗) → (Hn(X ))∗

is open and, up to topological isomorphism,

(Hn(X , d))∗ ∼= Hn(X ∗, d∗).

By [19, Theorem 4.4.13], up to topological isomorphism,

Hn(X , d) ∼= (Hn(X ∗, d∗))∗.

�

Corollary 3.5. Let (Y, d) be a cochain complex of complete nuclear DF -spaces and
continuous operators. Suppose that, for a certain n, dn and dn−1 have closed ranges.
Then Hn(Y, d) is a complete nuclear DF -space, Hn(Y∗, d∗) is a nuclear Fréchet space
and, up to topological isomorphism,

(Hn(Y, d))∗ ∼= Hn(Y∗, d∗) and Hn(Y, d) ∼= (Hn(Y∗, d∗))∗.

Proof. By [19, Theorem 4.4.13], the complex (Y, d) is the strong dual of the chain
complex (Y∗, d∗) of nuclear Fréchet spaces and continuous linear operators. By [19,
Theorem 4.4.12], complete nuclear DF -spaces are reflexive, and therefore the statement
follows from Theorem 3.4 and Proposition 3.3. �

4. The Künneth formula for Fréchet and complete nuclear DF -complexes

In this section we prove the existence of a topological isomorphism in the Künneth
formula for the cohomology groups of complete nuclear DF -complexes (Theorem 4.3).
To start with we state the result by Gourdeau et al . on the Künneth formula for Fréchet
and Banach chain complexes. Note that similar results are true for cochain complexes.
One can see that, in order to obtain the Künneth formula in the category of Fréchet spaces
and continuous operators, we need the notions of strict flatness (Definition 2.2) and of
the topological purity of short exact sequences of Fréchet spaces (Definition 2.4). These
conditions allow us to deal with the known problems in the category of Fréchet spaces:
the projective tensor product of injective continuous linear operators is not necessarily
injective and the range of an operator is not always closed.

Theorem 4.1 (Gourdeau et al . [7, Theorem 5.2 and Corollary 4.9]). Let X
and Y be bounded chain complexes in Fr (in Ban) such that all boundary maps have
closed ranges. Suppose that the following exact sequences of Fréchet (Banach) spaces are
topologically pure for all n:

0 → Zn(X ) in−→ Xn
d̃n−1−−−→ Bn−1(X ) → 0 (4.1)
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and

0 → Bn(X )
jn−→ Zn(X ) σn−−→ Hn(X ) → 0. (4.2)

where in and jn are the natural inclusions and σn is the quotient map. Suppose also
that Zn(X ) and Bn(X ) are strictly flat in Fr (in Ban) for all n. Then, up to topological
isomorphism,

Hn(X ⊗̂ Y) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]

and, in addition, for complexes of Banach spaces, there is also a topological isomorphism

Hn((X ⊗̂ Y)∗) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]∗.

Corollary 4.2. Let X and Y be bounded chain complexes of Banach spaces and of
Fréchet spaces, respectively, such that all boundary maps have closed ranges and Hn(X )
and Bn(X ) are strictly flat in Ban for all n. Then, up to topological isomorphism,

Hn(X ⊗̂ Y) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]

and, up to isomorphism of linear spaces,

Hn((X ⊗̂ Y)∗) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]∗.

If, in addition, Y is a complex of Banach spaces, then both the above isomorphisms are
topological.

Proof. In the category of Banach spaces, by [10, Proposition VII.1.17], strictly flat
Bn(X ) and Hm(X ) imply that Zn(X ) is strictly flat as well. By [22, Proposition 4.4],
Bn(X ), Hm(X ) and Zn(X ) are also strictly flat in Fr. By [7, Lemma 4.3], strict flatness
of Bn(X ) and Hm(X ) in Ban implies that the short exact sequences (4.1) and (4.2) of
Banach spaces are weakly admissible. By [16, Lemma 2.4], the short exact sequences
(4.1) and (4.2) are topologically pure in Fr. The statement follows from Theorems 4.1
and 3.4.

By Proposition 3.3, in the case that both X and Y are from Ban, we have a topological
isomorphism Hn((X ⊗̂ Y)∗) ∼= (Hn(X ⊗̂ Y))∗. �

The topological isomorphism (4.3) for homology groups under the assumptions of
part (i) of the following theorem is already known [13]. To get the isomorphism for
cohomology groups of dual complexes, Karoubi required Hn(X ∗) to be finite-dimensional.

Theorem 4.3. Let X and Y be bounded chain complexes in Fr such that all boundary
maps have closed ranges.
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(i) Suppose that one of the complexes, say X , is a complex of nuclear Fréchet spaces.
Then, up to topological isomorphism,

Hn(X ⊗̂ Y) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)] (4.3)

and, up to isomorphism of linear spaces,

Hn((X ⊗̂ Y)∗) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]∗ ∼=
⊕

m+q=n

[Hm(X ∗) ⊗̂[Hq(Y)]∗].

(ii) Suppose that X and Y are complexes of nuclear Fréchet spaces. Then, up to topo-
logical isomorphism,

Hn((X ⊗̂ Y)∗) ∼= Hn(X ∗ ⊗̂ Y∗) ∼=
⊕

m+q=n

[Hm(X ∗) ⊗̂Hq(Y∗)].

Proof. (i) Suppose that X is a complex of nuclear Fréchet spaces. Since all boundary
maps have closed ranges, Zn(X ) and Bn(X ) are nuclear Fréchet spaces. By [5, Theo-
rems A.1.6 and A.1.5], Zn(X ) and Bn(X ) are strictly flat for all n in Fr and the short
exact sequences (4.1) and (4.2) are topologically pure in Fr. The first part of the state-
ment follows from Theorem 4.1. By Theorem 3.4, up to isomorphism of linear spaces,
Hn((X ⊗̂ Y)∗) = (Hn(X ⊗̂ Y))∗. Thus, up to isomorphism of linear spaces,

Hn((X ⊗̂ Y)∗) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]∗

By assumption, Hm(X ) is a nuclear Fréchet space for all m. By [11, Theorem 21.5.9]
and by Theorem 3.4, up to topological isomorphism,

[Hm(X ) ⊗̂Hq(Y)]∗ ∼= [Hm(X )]∗ ⊗̂[Hq(Y)]∗ ∼= Hm(X ∗) ⊗̂[Hq(Y)]∗

for all m, q.

(ii) Since X and Y are complexes of nuclear Fréchet spaces, by [11, Theorem 21.5.9],
up to topological isomorphism, (X ⊗̂ Y)∗ ∼= X ∗ ⊗̂ Y∗, and so

Hn((X ⊗̂ Y)∗) ∼= Hn(X ∗ ⊗̂ Y∗).

By [24, Proposition III.50.1], the projective tensor product of nuclear Fréchet spaces is
a nuclear Fréchet space. Hence, X ⊗̂ Y is a complex of nuclear Fréchet spaces. By (i), for
all n,

Hn(X ⊗̂ Y) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]

is a nuclear Fréchet space. By Proposition 3.3 and Theorem 3.4,

Hn((X ⊗̂ Y)∗) ∼= (Hn(X ⊗̂ Y))∗ ∼=
( ⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]
)∗

.
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By [11, Theorem 21.5.9] and Theorem 3.4, since Hm(X ) and Hq(Y) are nuclear Fréchet
spaces, ⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]∗ ∼=
⊕

m+q=n

[Hm(X )]∗ ⊗̂[Hq(Y)]∗

∼=
⊕

m+q=n

[Hm(X ∗) ⊗̂Hq(Y∗)].

�

Theorem 4.4.

(i) Let X and Y be bounded chain complexes of complete nuclear DF -spaces such
that all boundary maps have closed ranges. Then, up to topological isomorphism,

Hn(X ⊗̂ Y) ∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)].

(ii) Let X be a bounded chain complex of complete nuclear DF -spaces such that all
boundary maps have closed ranges, and let Y be a bounded chain complex of
complete DF -spaces such that all boundary maps of its strong dual complex Y∗

have closed ranges. Then, up to topological isomorphism,

Hn((X ⊗̂ Y)∗) ∼= Hn(X ∗ ⊗̂ Y∗) ∼=
⊕

m+q=n

Hm(X ∗) ⊗̂Hq(Y∗).

Proof. (i) By [19, Theorem 4.4.13], the chain complexes X and Y are the strong
duals of cochain complexes X ∗ and Y∗ of nuclear Fréchet spaces and continuous linear
operators. By Proposition 3.3, all boundary maps of complexes X ∗ and Y∗ have closed
ranges. By Theorem 4.3 (ii), for the complexes X ∗ and Y∗ of nuclear Fréchet spaces, up
to topological isomorphism,

Hn(X ⊗̂ Y) ∼= Hn((X ∗)∗ ⊗̂(Y∗)∗)

∼=
⊕

m+q=n

[Hm((X ∗)∗) ⊗̂Hq((Y∗)∗)]

∼=
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)].

(ii) Since X is the complex of complete nuclear DF -spaces, then, by [11, Theorem
21.5.9], (X ⊗̂ Y)∗ ∼= X ∗ ⊗̂ Y∗ and

Hn((X ⊗̂ Y)∗) ∼= Hn(X ∗ ⊗̂ Y∗).

By Proposition 3.3, all boundary maps of complexes X ∗ have closed ranges. By Theo-
rem 4.3 (i), for the cochain complex of nuclear Fréchet spaces X ∗ [19, Theorem 4.4.13]
and for the cochain complex of Fréchet spaces Y∗,

Hn(X ∗ ⊗̂ Y∗) ∼=
⊕

m+q=n

Hm(X ∗) ⊗̂Hq(Y∗).

�
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5. The Künneth formula for Hochschild cohomology of ⊗̂-algebras which
are nuclear DF -spaces or Fréchet spaces

Let A be a ⊗̂-algebra and let X be an A–⊗̂-bimodule. We assume here that the category
of underlying spaces Φ has the properties from Definition 2.1. Let us recall the definition
of the standard homological chain complex C∼(A, X). For n � 0, let Cn(A, X) denote
the projective tensor product X ⊗̂ A⊗̂n. The elements of Cn(A, X) are called n-chains.
Let the differential dn : Cn+1 → Cn be given by

dn(x ⊗ a1 ⊗ · · · ⊗ an+1) = x · a1 ⊗ · · · ⊗ an+1

+
n∑

k=1

(−1)k(x ⊗ a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1(an+1 · x ⊗ a1 ⊗ · · · ⊗ an)

with d−1 the null map. The space of boundaries Bn(C∼(A, X)) = Im dn is denoted by
Bn(A, X) and the space of cycles Zn(C∼(A, X)) = Ker dn−1 is denoted by Zn(A, X).
The homology groups of this complex Hn(C∼(A, X)) = Zn(A, X)/Bn(A, X) are called
the continuous Hochschild homology groups of A with coefficients in X and are denoted
by Hn(A, X) [10, Definition II.5.28].

We also consider the cohomology groups Hn((C∼(A, X))∗) of the dual complex
(C∼(A, X))∗ with the strong dual topology. For Banach algebras A, (C∼(A, X))∗ is topo-
logically isomorphic to the Hochschild cohomology Hn(A, X∗) of A with coefficients in
the dual A-bimodule X∗ [10, Definition I.3.2 and Proposition II.5.27].

Let A be in Φ and be a unital ⊗̂-algebra. We set

βn(A) = A⊗̂n+2

, n � 0,

and let dn : βn+1(A) → βn(A) be given by

dn(a0 ⊗ · · · ⊗ an+2) =
n+1∑
k=0

(−1)k(a0 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an+2).

By [10, Proposition III.2.9], the complex over A, π : β(A) → A : a⊗ b �→ ab, where β(A)
denotes

0 ← β0(A) d0←− β1(A) d1←− · · · ← βn(A) dn←− βn+1(A) ← · · ·
is a projective resolution of A–⊗̂-bimodule A. β(A) is called the bar resolution of A. The
complex has a contracting homotopy sn : βn(A) → βn+1(A), n � 1, given by

sn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) = 1 ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an+1,

which is to say that dnsn + sn−1dn−1 = 1βn(A).

Proposition 5.1. Let A1 and A2 be unital ⊗̂-algebras, let 0 ← X
ε1←− X be a

projective resolution of X ∈ A1-unmod and let 0 ← Y
ε2←− Y be a projective resolu-

tion of Y ∈ A2-unmod. Then 0 ← X ⊗̂Y
ε1⊗ε2←−−−− X ⊗̂ Y is a projective resolution of

X ⊗̂Y ∈ A1 ⊗̂A2-unmod.
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Proof. The proof requires only minor modifications of that of [18, Proposition X.7.1].
�

Note that the statement of Proposition 5.1 is also true in the category of bimodules.
In the next theorem we extend the result [7, Theorem 6.2] to the category of complete
nuclear DF -spaces.

Theorem 5.2. Let the category for underlying spaces Φ be Fr or the category of
complete nuclear DF -spaces. Let A and B be unital ⊗̂-algebras with identities eA and
eB, let X be an A–⊗̂-bimodule and let Y be a B–⊗̂-bimodule. Then, up to topological
isomorphism, for all n � 1,

Hn(A ⊗̂ B, X ⊗̂Y ) ∼= Hn(A ⊗̂ B, eAXeA ⊗̂ eBY eB)
∼= Hn(C∼(A, eAXeA) ⊗̂ C∼(B, eBY eB)).

If X and Y are also unital, then, up to topological isomorphism, for all n � 0,

Hn(A ⊗̂ B, X ⊗̂Y ) ∼= Hn(C∼(A, X) ⊗̂ C∼(B, Y )).

Proof. It is well known that, for a ⊗̂-algebra U with an identity e and for a U–⊗̂-
bimodule Z, up to topological isomorphism, for all n � 1,

Hn(U , Z) ∼= Hn(U , eZe),

where eZe is a unital U–⊗̂-bimodule. Therefore, up to topological isomorphism, for all
n � 1,

Hn(A ⊗̂ B, X ⊗̂Y ) ∼= Hn(A ⊗̂ B, eAXeA ⊗̂ eBY eB).

Let β(A) and β(B) be the bar resolutions of A and B. Since the bar resolution β(A)
is an A-biprojective resolution of A and β(B) is a B-biprojective resolution of B, by
Proposition 5.1 their projective tensor product β(A) ⊗̂β(B) is an A ⊗̂ B-biprojective
resolution of A ⊗̂ B.

For a unital ⊗̂-algebra U and for a unital U–⊗̂-bimodule Z, by [10, Theorem III.4.25],
the Hochschild chain complex C∼(U , Z) is isomorphic to Z ⊗̂Ue β(U) and, up to topolog-
ical isomorphism, for all n � 0,

Hn(U , Z) ∼= TorUe

n (Z,U) ∼= Hn(Z ⊗̂Ue β(U)).

The open mapping theorem holds in the categories of Fréchet spaces and of complete
nuclear DF -spaces (see Corollary 3.2 for DF -spaces) and, for a continuous morphism
of chain complexes ϕ : X → Y in these categories, a surjective map Hn(ϕ) : Hn(X ) →
Hn(Y) is automatically open (see [10, Lemma 0.5.9] and [17, Lemma 3.5]).

By [10, III.3.15], the nth derived functor TorUe

n (·,U) does not depend on the choice of
a U-biprojective resolution of U . In general, [10, Theorem III.3.15] provides us with an
algebraic isomorphism, and with a topological isomorphism under the condition that the
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surjective map Hn(ϕ) is open for a continuous morphism of chain complexes ϕ : X → Y.
Therefore, in these categories, up to topological isomorphism, for all n � 0,

Hn(A ⊗̂ B, eAXeA ⊗̂ eBY eB) ∼= Tor(A ⊗̂ B)e
n (eAXeA ⊗̂ eBY eB,A ⊗̂ B)

∼= Hn((eAXeA ⊗̂ eBY eB) ⊗̂(A ⊗̂ B)e β(A ⊗̂ B))
∼= Hn((eAXeA ⊗̂ eBY eB) ⊗̂(A ⊗̂ B)e(β(A) ⊗̂β(B))).

By [10, II.5.3], one can prove that the following chain complexes are isomorphic:

(eAXeA ⊗̂ eBY eB) ⊗̂(A ⊗̂ B)e(β(A) ⊗̂β(B)) ∼= (eAXeA ⊗̂Ae β(A)) ⊗̂(eBY eB ⊗̂Be β(B))
∼= C∼(A, eAXeA) ⊗̂ C∼(B, eBY eB).

Thus, up to topological isomorphism, for all n � 0,

Hn(A ⊗̂ B, eAXeA ⊗̂ eBY eB) ∼= Hn((eAXeA ⊗̂ eBY eB) ⊗̂(A ⊗̂ B)e(β(A) ⊗̂β(B)))
∼= Hn(C∼(A, eAXeA) ⊗̂ C∼(B, eBY eB)).

�

Remark 5.3. For a ⊗̂-algebra U with an identity e and for a U–⊗̂-bimodule Z, up to
topological isomorphism, for all n � 1,

Hn(U , Z) ∼= Hn(U , eZe),

where eZe is a unital U–⊗̂-bimodule. Thus, it is easy to see that if the boundary maps of
the standard homology complex C∼(U , Z) have closed ranges, then the boundary maps
of the standard homology complex C∼(U , eZe) have closed ranges. The previous theorem
and this remark show that, in addition, we may concentrate on unital bimodules.

Theorem 5.4. Let the category for underlying spaces Φ be Fr or the category of
complete nuclear DF -spaces. Let A and B be unital ⊗̂-algebras, let X be a unital
A–⊗̂-bimodule and let Y be a unital B–⊗̂-bimodule. Suppose that all boundary maps of
the standard homology complexes C∼(A, X) and C∼(B, Y ) have closed ranges. Then the
following hold.

(i) Up to topological isomorphism in the category of complete nuclear DF -spaces and
in the category Fr under the assumption that either A and X or B and Y are
nuclear, for all n � 0, we have

Hn(A ⊗̂ B, X ⊗̂Y ) ∼=
⊕

m+q=n

[Hm(A, X) ⊗̂ Hq(B, Y )].

(ii) Up to topological isomorphism in the category of complete nuclear DF -spaces and
in the category Fr under the assumption that A, X, B and Y are nuclear, for all
n � 0, we have

Hn((C∼(A ⊗̂ B, X ⊗̂Y ))∗) ∼= (Hn(A ⊗̂ B, X ⊗̂Y ))∗

∼=
⊕

m+q=n

[Hm((C∼(A, X))∗) ⊗̂Hq((C∼(B, Y ))∗)].
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(iii) Up to isomorphism of linear spaces, in the category Fr under the assumption that
either A and X or B and Y are nuclear, for all n � 0, we have

Hn((C∼(A ⊗̂ B, X ⊗̂Y ))∗) ∼= (Hn(A ⊗̂ B, X ⊗̂Y ))∗

∼=
⊕

m+q=n

[Hm(C∼(A, X))]∗ ⊗̂[Hq(C∼(B, Y ))]∗.

Proof. By Theorem 5.2, up to topological isomorphism, for all n � 0,

Hn(A ⊗̂ B, X ⊗̂Y ) ∼= Hn(C∼(A, X) ⊗̂ C∼(B, Y )).

By [24, Proposition III.50.1], the projective tensor product of nuclear Fréchet spaces
is a nuclear Fréchet space. By [24, Proposition III.50.1] and [11, Theorem 15.6.2], the
projective tensor product of complete nuclear DF -spaces is a complete nuclear DF -space.
Therefore, C∼(A, X) and C∼(B, Y ) are complexes of complete nuclear DF -spaces or of
(nuclear) Fréchet spaces such that all boundary maps have closed ranges. The results
follow from Theorems 4.3 and 4.4. �

Theorem 5.5. Let A and B be unital Banach and Fréchet algebras, respectively, let
X be a unital Banach A-bimodule and let Y be a unital Fréchet B-bimodule. Suppose
that all boundary maps of the standard homology complexes C∼(A, X) and C∼(B, Y )
have closed ranges. Suppose that Hn(A,X ) and Bn(A,X ) are strictly flat in Ban. Then,
up to topological isomorphism,

Hn(A ⊗̂ B, X ⊗̂Y ) ∼=
⊕

m+q=n

[Hm(A, X) ⊗̂ Hq(B, Y )],

and, up to isomorphism of linear spaces,

Hn((C∼(A ⊗̂ B, X ⊗̂Y ))∗) ∼=
⊕

m+q=n

[Hm(A, X) ⊗̂ Hq(B, Y )]∗.

Proof. This follows from Theorem 5.2 and Corollary 4.2. �

Example 5.6. Let A = 	1(Z+), where

	1(Z+) =
{

(an)∞
n=0 :

∞∑
n=0

|an| < ∞
}

is the unital semigroup Banach algebra of Z+ with convolution multiplication and norm

‖(an)∞
n=0‖ =

∞∑
n=0

|an|.

In [7, Theorem 7.4] we showed that all boundary maps of the standard homology com-
plex C∼(A,A) have closed ranges and that Hn(A,A) and Bn(A,A) are strictly flat
in Ban. In [7, Theorem 7.5] we describe explicitly the simplicial homology groups
Hn(	1(Zk

+), 	1(Zk
+)) and cohomology groups Hn(	1(Zk

+), (	1(Zk
+))∗) of the semigroup

algebra 	1(Zk
+).
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Example 5.7. In [17, Theorem 5.4] we describe explicitly the cyclic-type homology
and cohomology groups of amenable Fréchet algebras B. In particular, we show that all
boundary maps of the standard homology complex C∼(B,B) have closed ranges. In [22,
Corollary 9.9] Pirkovskii showed that an amenable unital uniform Fréchet algebra is
topologically isomorphic to the algebra C(Ω) of continuous complex-valued functions on
a hemicompact k-space Ω. Recall that a Hausdorff topological space Ω is hemicompact if
there exists a countable exhaustion Ω =

⋃
Kn with Kn compact such that each compact

subset of Ω is contained in some Kn. A Hausdorff topological space Ω is a k-space if a
subset F ⊂ Ω is closed whenever F ∩ K is closed for every compact subset K ⊂ Ω. For
example, C(R) is an amenable unital Fréchet algebra.

The closure in a ⊗̂-algebra A of the linear span of elements of the form {ab − ba :
a, b ∈ A} is denoted by [A,A].

Corollary 5.8. Let A = 	1(Z+) and let I = 	1(N) be the closed ideal of 	1(Z+)
consisting of those elements with a0 = 0. Let C be an amenable unital Fréchet algebra
or an amenable Banach algebra. Then

(i)
Hn(	1(Zk

+) ⊗̂ C, 	1(Zk
+) ⊗̂ C) ∼= {0}

Hn(C∼(	1(Zk
+) ⊗̂ C, 	1(Zk

+) ⊗̂ C)∗) ∼= {0}

}
if n > k,

(ii) up to topological isomorphism,

Hn(	1(Zk
+) ⊗̂ C, 	1(Zk

+) ⊗̂ C) ∼=
⊕(k

n)(I⊗̂n

⊗̂ A⊗̂k−n

) ⊗̂(C/[C, C]) if n � k,

and

(iii) up to isomorphism of linear spaces for Fréchet algebras C and up to topological
isomorphism for Banach algebras C,

Hn(C∼(	1(Zk
+) ⊗̂ C, 	1(Zk

+) ⊗̂ C)∗) ∼=
⊕(k

n)(I⊗̂n

⊗̂ A⊗̂k−n

⊗̂(C/[C, C]))∗ if n � k.

Moreover, for Banach algebras C, up to topological isomorphism, for all n � 0,

Hn(	1(Zk
+) ⊗̂ C, (	1(Zk

+) ⊗̂ C)∗) ∼= Hn(C∼(	1(Zk
+) ⊗̂ C, 	1(Zk

+) ⊗̂ C)∗).

Proof. By [17, Theorem 5.4], for an amenable Fréchet algebra C, H0(C, C) ∼= C/[C, C]
and Hn(C, C) ∼= {0} for all n � 1. Recall that an amenable Banach algebra has a bounded
approximate identity.

In [7, Theorem 7.4] we showed that all boundary maps of the standard homology
complex C∼(A,A) have closed ranges and that Hn(A,A) and Bn(A,A) are strictly flat
in Ban. By [7, Proposition 7.3], up to topological isomorphism, the simplicial homol-
ogy groups Hn(A,A) are given by H0(A,A) ∼= A = 	1(Z+), H1(A,A) ∼= I = 	1(N),
Hn(A,A) ∼= {0} for n � 2.
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Note that 	1(Zk
+) ⊗̂ C ∼= A ⊗̂ B, where B = 	1(Zk−1

+ ) ⊗̂ C. We use induction on k to
prove the corollary for homology groups. For k = 1, the result follows from Theorem 5.5
for an amenable unital Fréchet algebra C, and from [6, Theorem 5.5] for an amenable
Banach algebra C. The simplicial homology groups Hn(A ⊗̂ C,A ⊗̂ C) are given, up to
topological isomorphism, by

H0(A ⊗̂ C,A ⊗̂ C) ∼= A ⊗̂(C/[C, C]),

H1(A ⊗̂ C,A ⊗̂ C) ∼= I ⊗̂(C/[C, C]),

Hn(A ⊗̂ C,A ⊗̂ C) ∼= {0} for n � 2.

Let k > 1 and suppose that the result for homology holds for k − 1. As 	1(Zk
+) ⊗̂ C ∼=

A ⊗̂ B, where B = 	1(Zk−1
+ ) ⊗̂ C, we have

Hn(	1(Zk
+) ⊗̂ C, 	1(Zk

+) ⊗̂ C) ∼= Hn(A ⊗̂ B,A ⊗̂ B).

Also, it follows from the inductive hypothesis that, for all n, the Hn(B,B) are Fréchet
(Banach) spaces and hence the Bn(B,B) are closed. We can therefore apply Theorem 5.5
for A and B = 	1(Zk−1

+ ) ⊗̂ C, where C is an amenable unital Fréchet algebra, and [6,
Theorem 5.5] for A and B = 	1(Zk−1

+ ) ⊗̂ C, where C is an amenable Banach algebra, to
get

Hn(A ⊗̂ B,A ⊗̂ B) ∼=
⊕

m+q=n

[Hm(A,A) ⊗̂ Hq(B,B)].

The terms in this direct sum vanish for m � 2, and thus we only need to consider

(H0(A,A) ⊗̂ Hn(B,B)) ⊕ (H1(A,A) ⊗̂ Hn−1(B,B)).

The rest is obvious. �

6. Applications to the cyclic-type cohomology of certain Fréchet and
DF algebras

In this section we give explicit formulae for the continuous cyclic-type homology and
cohomology of projective tensor products of certain ⊗̂-algebras which are Fréchet spaces
or complete nuclear DF -spaces.

The reader is referred to the books by Loday [14] or Connes [2] on cyclic-type homo-
logical theory. The continuous bar and ‘naive’ Hochschild homology of a ⊗̂-algebra A
are defined, respectively, as

Hbar
∗ (A) = H∗(C(A), b′) and Hnaive

∗ (A) = H∗(C(A), b),

where Cn(A) = A⊗̂(n+1), and the differentials b, b′ are given by

b′(a0 ⊗ · · · ⊗ an) =
n−1∑
i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)
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and

b(a0 ⊗ · · · ⊗ an) = b′(a0 ⊗ · · · ⊗ an) + (−1)n(ana0 ⊗ · · · ⊗ an−1).

Note that Hnaive
∗ (A) is just another way of writing H∗(A,A), the continuous homology

of A with coefficients in A, as described in [10,12].
For a ⊗̂-algebra A, consider the mixed complex (Ω̄A+, b̃, B̃), where Ω̄nA+ = A⊗̂(n+1)⊕

A⊗̂ n and

b̃ =

(
b 1 − λ

0 −b′

)
, B̃ =

(
0 0
N 0

)
,

where λ(a1 ⊗ · · ·⊗ an) = (−1)n−1(an ⊗ a1 ⊗ · · ·⊗ an−1) and N = id +λ+ · · ·+λn−1 [14,
1.4.5]. The continuous Hochschild homology of A, the continuous cyclic homology of A
and the continuous periodic cyclic homology of A are defined by

HH∗(A) = Hb
∗(Ω̄A+, b̃, B̃),

HC∗(A) = Hc
∗(Ω̄A+, b̃, B̃),

HP∗(A) = Hp
∗ (Ω̄A+, b̃, B̃),

where Hb
∗, Hc

∗ and Hp
∗ are the Hochschild homology, cyclic homology and periodic cyclic

homology of the mixed complex (Ω̄A+, b̃, B̃) in the category Lcs of locally convex spaces
and continuous linear operators (see, for example, [15]).

There is also a cyclic cohomology theory associated with a complete locally convex
algebra A, obtained when one replaces the chain complexes of A by their dual complexes
of strong dual spaces. For example, the continuous bar cohomology Hn

bar(A) of A is the
cohomology of the dual complex (C(A)∗, (b′)∗) of (C(A), b′).

A ⊗̂-algebra A is said to be biprojective if it is projective in the category of A–⊗̂-bimod-
ules [10, Definition IV.5.1]. A ⊗̂-algebra A is said to be contractible if A+ is projective
in the category of A–⊗̂-bimodules. A ⊗̂-algebra A is contractible if and only if A is
biprojective and has an identity [10, Definition IV.5.8].

Recall that, for a ⊗̂-algebra A and for an A–⊗̂-bimodule X, [X, A] is the closure in X

of the linear span of elements of the form a · x − x · a; x ∈ X, a ∈ A:

CenA X = {x ∈ X : a · x = x · a for all a ∈ A}

and

CenA X∗ = {f ∈ X∗ : f(a · x) = f(x · a) for all a ∈ A and x ∈ X}.

Lemma 6.1. Let A be a contractible ⊗̂-algebra. Then, for each A–⊗̂-bimodule X,
H0(A, X) is Hausdorff and Hn(A, X) ∼= {0} for all n � 1.

Proof. By [10, Theorem III.4.25], for all n � 0 and all A–⊗̂-bimodules X, up to
topological isomorphism,

Hn(A, X) ∼= TorAe

n (X, A+).

Since A is contractible, A+ is projective in the category of A–⊗̂-bimodules. Hence, by [17,
Lemma 2.2], Hn(A, X) ∼= {0} for all n � 1 and H0(A, X) ∼= TorAe

0 (X, A+) is Hausdorff.
�
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Example 6.2. A countable direct product
∏

i∈J Mni
(C) of full matrix algebras is a

contractible Fréchet algebra [23].

Example 6.3. Let G be a compact Lie group and let E∗(G) be the strong dual to the
nuclear Fréchet algebra of smooth functions E(G) on G with the convolution product,
so that E∗(G) is a complete nuclear DF -space. This is a ⊗̂-algebra with respect to
convolution multiplication: for f, g ∈ E∗(G) and x ∈ E(G), 〈f ∗ g, x〉 = 〈f, y〉, where
y ∈ E(G) is defined by y(s) = 〈g, xs〉, s ∈ G, and xs(t) = x(st), t ∈ G. Taylor [23] proved
that the algebra of distributions E∗(G) on a compact Lie group G is contractible.

Example 6.4. Fix a real number 1 � R � ∞ and a non-decreasing sequence α = (αi)
of positive numbers with limi→∞ αi = ∞. The power-series space

ΛR(α) =
{

x = (xn) ∈ CN : ‖x‖r =
∑

n

|xn|rαn < ∞ for all 0 < r < R

}
is a Fréchet–Köthe algebra with pointwise multiplication. The topology of ΛR(α) is deter-
mined by a countable family of semi-norms {‖x‖rk

: k ∈ N}, where {rk} is an arbitrary
increasing sequence converging to R.

By [21, Corollary 3.3], ΛR(α) is biprojective if and only if R = 1 or R = ∞.
By the Grothendieck–Pietsch criterion, ΛR(α) is nuclear if and only if

lim
n

log n

αn
= 0 for R < ∞

and

lim
n

log n

αn
< ∞ for R = ∞

(see [20, Example 3.4]).
By [21, Proposition 3.15], for the Fréchet–Köthe algebra Λ1(α), the following condi-

tions are equivalent:

(i) Λ1(α) is contractible;

(ii) Λ1(α) is nuclear;

(iii) Λ1(α) is unital.

By [21, Corollary 3.18], if Λ∞(α) is nuclear, then the strong dual Λ∞(α)∗ is a nuclear,
contractible Köthe ⊗̂-algebra which is a DF -space.

The algebra ΛR((n)) is topologically isomorphic to the algebra of functions holomor-
phic on the open disc of radius R, endowed with Hadamard product, that is, with ‘coor-
dinatewise’ product of the Taylor expansions of holomorphic functions.

Example 6.5. The algebra H(C) ∼= Λ∞((n)) of entire functions, endowed with the
Hadamard product, is a biprojective nuclear Fréchet algebra [21]. The strong dual H(C)∗

is a nuclear contractible Köthe ⊗̂-algebra which is a DF -space.
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Example 6.6. The algebra H(D1) ∼= Λ1((n)) of functions holomorphic on the open
unit disc, endowed with the Hadamard product, is a biprojective nuclear Fréchet algebra.
Moreover, it is contractible, since the function z �→ (1−z)−1 is an identity for H(D1) [21].

Example 6.7. The nuclear Fréchet algebra of rapidly decreasing sequences

s =
{

x = (xn) ∈ CN : ‖x‖k =
∑

n

|xn|nk < ∞ for all k ∈ N

}
is a biprojective Köthe algebra [20]. The algebra s is topologically isomorphic to Λ∞(α)
with αn = log n [21]. The nuclear Köthe ⊗̂-algebra s∗ of sequences of polynomial growth
is contractible [23].

Theorem 6.8. Let the category for underlying spaces Φ be Fr or the category of
complete nuclear DF -spaces. Let A and B be unital ⊗̂-algebras, let Y be a unital
B–⊗̂-bimodule and let X be a unital A–⊗̂-bimodule. Suppose that H0(A, X) is Hausdorff
and Hn(A, X) = {0} for all n � 1; in particular, let A be contractible. Suppose that all
boundary maps of the standard homology complex C∼(B, Y ) have closed ranges. Then
the following hold.

(i) Up to topological isomorphism in the category of complete nuclear DF -spaces and
in the category Fr under the assumption that either A and X or B and Y are
nuclear, for all n � 0, we have

Hn(A ⊗̂ B,X ⊗̂Y ) ∼= X/[X, A] ⊗̂ Hn(B, Y ).

(ii) Up to topological isomorphism in the category of complete nuclear DF -spaces and
in the category Fr under the assumption that A, X, B and Y are nuclear, for all
n � 0, we have

Hn((C∼(A ⊗̂ B, X ⊗̂Y ))∗) ∼= (Hn(A ⊗̂ B, X ⊗̂Y ))∗

∼= CenA X∗ ⊗̂Hn((C∼(B, Y ))∗).

(iii) Up to isomorphism of linear spaces, in the category Fr under the assumption that
either A and X or B and Y are nuclear, for all n � 0, we have

Hn((C∼(A ⊗̂ B, X ⊗̂Y ))∗) ∼= (Hn(A ⊗̂ B, X ⊗̂Y ))∗

∼= (X/[X, A])∗ ⊗̂(Hn(B, Y ))∗.

Proof. By assumption, H0(A, X) is Hausdorff, and so H0(A, X) ∼= X/[X, A]. The
result follows from Theorem 5.4. �

Example 6.9. Let H = lim−→i
Hi be a strict inductive limit of Hilbert spaces. Suppose

that H1 and Hm+1/Hm, m = 1, 2, . . . , are infinite-dimensional spaces. Consider the
Fréchet locally C∗-algebra L(H) of continuous linear operators T on H that leave each
Hi invariant and satisfy TjPij = PijTj for all i < j, where Tj = T |Hj

: Tj(η) = T (η) for
η ∈ Hj and Pij is the projection from Hj onto Hi. By [15, Example 6.6], for all n � 0,
we obtain Hn(L(H),L(H)) = {0}.
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Corollary 6.10. Let C be the Fréchet locally C∗-algebra L(H) of continuous linear
operators on a strict inductive limit H = lim−→i

Hi of Hilbert spaces such that H1 and
Hm+1/Hm, m = 1, 2, . . . , are infinite-dimensional spaces. Suppose that A = D ⊗̂ C, where
D is a Fréchet algebra belonging to one of the following classes:

(i) D is a unital nuclear Fréchet algebra such that all boundary maps of the standard
homology complex C∼(D,D) have closed ranges (e.g. D is a contractible nuclear
Fréchet algebra);

(ii) D = 	1(Zk
+).

Then, Hn(A,A) ∼= {0} and Hn(A,A) ∼= {0} for all n � 0;

HHn(A) ∼= HHn(A) ∼= {0} for all n � 0,

HCn(A) ∼= HCn(A) ∼= {0} for all n � 0,

and

HPm(A) ∼= HPm(A) ∼= {0} for m = 0, 1.

Proof. By [15, Example 6.6], for the Fréchet locally C∗-algebra L(H),

Hn(L(H),L(H)) ∼= {0}

for all n � 0. In (i) we apply Theorem 5.4, to get Hn(A,A) ∼= {0} for all n � 0. In (ii)
we use induction on k and apply Theorem 5.5 for the Fréchet locally C∗-algebra L(H),
to get Hn(A,A) ∼= {0} for all n � 0.

The triviality of the continuous cyclic and periodic cyclic homology and cohomology
groups follows from [15, Corollory 4.7]. �

The space of continuous traces on a topological algebra A is denoted by Atr, that is,

Atr = CenA A∗ = {f ∈ A∗ : f(ab) = f(ba) for all a, b ∈ A}.

The closure in A of the linear span of elements of the form {ab−ba : a, b ∈ A} is denoted
by [A,A]. Recall that b0 : A ⊗̂ A → A is uniquely determined by a ⊗ b �→ ab − ba.

Corollary 6.11. Let the category for underlying spaces Φ be Fr or the category of
complete nuclear DF -spaces. Let A and B be unital ⊗̂-algebras such that H0(A,A) and
H0(B,B) are Hausdorff, and

Hn(A,A) ∼= Hn(B,B) ∼= {0}

for all n � 1. Then the following hold.

(i) Up to topological isomorphism in the category of complete nuclear DF -spaces and
in the category Fr under the assumption that either A or B is nuclear, we have

HH0(A ⊗̂ B) ∼= Hnaive
0 (A ⊗̂ B) ∼= A/[A,A] ⊗̂ B/[B,B],

HHn(A ⊗̂ B) ∼= Hnaive
n (A ⊗̂ B) ∼= {0} for all n � 1;

HC2�(A ⊗̂ B) ∼= A/[A,A] ⊗̂ B/[B,B], HC2�+1(A ⊗̂ B) ∼= {0} for all 	 � 0.

⎫⎪⎬⎪⎭
(6.1)
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(ii) Up to topological isomorphism in the category of complete nuclear DF -spaces and
in the category Fr under the assumption that A and B are nuclear, we have

HH0(A ⊗̂ B) ∼= H0
naive(A ⊗̂ B) ∼= (A ⊗̂ B)tr

HHn(A ⊗̂ B) ∼= Hn
naive(A ⊗̂ B) ∼= {0} for all n � 1;

HC2�(A ⊗̂ B) ∼= (A ⊗̂ B)tr, HC2�+1(A ⊗̂ B) ∼= {0} for all 	 � 0.

⎫⎪⎪⎬⎪⎪⎭ (6.2)

(iii) Up to topological isomorphism in the category Fr under the assumption that A and
B are nuclear and up to isomorphism of linear spaces in the category of complete
nuclear DF -spaces and in the category Fr under the assumption that either A or
B nuclear, we have

HP0(A ⊗̂ B) ∼= A/[A,A] ⊗̂ B/[B,B], HP1(A) ∼= {0};

HP0(A ⊗̂ B) ∼= (A ⊗̂ B)tr, HP1(A ⊗̂ B) ∼= {0}.

}
(6.3)

Proof. Since A and B are unital, Hbar
n (A ⊗̂ B) ∼= {0} for all n � 0. By Theorem 6.8,

up to topological isomorphism,

Hnaive
0 (A ⊗̂ B) ∼= A/[A,A] ⊗̂ B/[B,B]

and so is Hausdorff, and Hnaive
n (A ⊗̂ B) ∼= {0} for all n � 1. The result follows from [17,

Theorem 5.4]. Note that, by definition, the Hausdorff

Hnaive
0 (A ⊗̂ B) ∼= (A ⊗̂ B)/[A ⊗̂ B,A ⊗̂ B].

�
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