
1 QFT in Zero Dimensions

1.1 Introduction

It makes no sense to talk about elementary particles without either special relativity
or quantum mechanics. For now, we concentrate on the quantum-mechanical nature of
nature1. The fundamental object associated with particles is a quantum field.2 Such a field
assigns one or more numbers to every point in spacetime. So it is a pretty complicated
thing; its behavior cannot be described trivially, especially since it also undergoes quantum
fluctuations. It is a good idea to first build up some expertise, in a more controllable situ-
ation. Therefore we shall simplify the whole four-dimensional spacetime arena of particle
physics. We shall reduce spacetime to a single point, a zero-dimensional arena.3 Now we
have only a single point to assign numbers to, and the simplest quantum field is a single
stochastic, or random, number. We can already learn many of the techniques of quantum
field theory studying this simple case! We shall meet path integrals, Green’s functions, the
Schwinger–Dyson equation, Feynman diagrams and the effective action, in a quite natural
way.

1.2 Probabilistic Considerations

1.2.1 Green’s Functions and the Path Integral

Let us imagine a quantum field ϕ that can take on all real values from −∞ to +∞. Since
it is a random variable, the most we can hope to specify about it is its probability density
P(ϕ),4 which we write as5

P(ϕ) = N exp
(
− S(ϕ)

)
, N−1 =

∫
exp
(
− S(ϕ)

)
dϕ. (1.1)

1 In a moment you will understand why relativity does not enter – yet.
2 In many treatments quantum fields are considered to be distribution-valued operators. In this book I am not

interested in the internal details of quantum states, but rather in the scattering amplitudes; we shall adopt
Feynman’s approach and use what are called c-number fields.

3 That’s why.
4 This is what it means to be a random variable.
5 If not explicitly indicated otherwise, integrals run from −∞ to +∞.
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2 QFT in Zero Dimensions

The function S(ϕ) is called the action of the particular quantum field theory; it defines the
theory. For the probability density to be acceptable, S(ϕ) must go to infinity sufficiently fast
as |ϕ| → ∞.6 Since the quantum field is a random variable, the most that can be known
about it7 is the collection of its moments, in the jargon called Green’s functions:8

Gn ≡
〈
ϕn〉 ≡ N

∫
exp
(
− S(ϕ)

)
ϕn dϕ, n = 0, 1, 2, 3, . . . . (1.2)

We shall assume that Gn exists for all n. By construction, we must always have

G0 =
〈
ϕ0
〉
= 〈1〉 = 1. (1.3)

The most fruitful way9 of discussing the set of all Green’s functions is in terms of a
generating function:

Z(J) =
∑
n≥0

1

n!
Jn Gn. (1.4)

This is called the path integral, for reasons that will become clear later. It can be written as

Z(J) = N
∫

dϕ PJ(ϕ), PJ(ϕ) = exp
(
− S(ϕ)+ Jϕ

)
. (1.5)

The number J, which here serves purely as a device to distinguish the various Green’s
functions, is called a source, again for reasons that will become apparent later. Once Z(J)
is known, an individual Green’s function is extracted by differentiation:

Gn =
⌊

∂n

(∂J)n Z(J)

⌋
J=0

. (1.6)

The path integral Z(J) contains all the information about the Green’s functions, and hence
about the probability density P(ϕ). The same information is, therefore, also contained in
its logarithm. We write

W(J) = log Z(J) ≡
∑
n≥1

1

n!
Jn Cn. (1.7)

6 Barring elaborate unnatural counter examples, of course; see the remarks on paralysis in the introduction.
7 You are here approaching a career decision! You may decide simply to measure the value of ϕ: in that case

you have decided to become an experimentalist rather than a theorist.
8 We need to clear up, in advance, a possible confusion. In this book, the Green’s functions are simply defined

to be expectation values. This may appear to contrast with the use of Green’s functions in the solution of
inhomogeneous linear differential equations such as are encountered in classical electrodynamics, where we
use them to compute the electromagnetic field configurations for given sources. The difference is only apparent
since, as we shall recognize, the latter type of Green’s functions are in our treatment simply the two-point
connected Green’s functions; and for theories such as electrodynamics, where the electromagnetic fields do
not undergo self-interaction, the two-point functions are in fact the only nonzero connected Green’s functions.
Be not, therefore, misled into thinking that there are somehow two sorts of Green’s functions. The Green’s
function formulation of electrodynamics will in fact appear as the classical limit of the Schwinger–Dyson
equation discussed below.

9 Kids! Do this at home. Whenever an infinite collection of objects with some kind of relation between them
occurs, generating functions are always a good idea.
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3 Probabilistic Considerations

The quantities Cn (with, obviously C0 = 0 since G0 = 1) are called the connected Green’s
functions of the theory, and will play an important rôle in what follows. The connected
Green’s functions can be recognized to be the cumulants of the probability density:1

C0 = 0 by normalization,
C1 = 〈ϕ〉 the mean,
C2 =

〈
(ϕ − 〈ϕ〉)2

〉
the variance,

C3 =
〈
(ϕ − 〈ϕ〉)3

〉
the skewness,

(1.8)

and so on. Since W(0) = C0 = 0, all information about the probability density is also
contained in its derivative, the field function:

φ(J) ≡ ∂

∂J
W(J) =

∑
n≥0

1

n!
Jn Cn+1. (1.9)

Since from its definition, we have

φ(J) =
[∫

dϕ ϕ PJ(ϕ)

] [∫
dϕ PJ(ϕ)

]−1

, (1.10)

we can say that φ(J) is the expectation value of the quantum field ϕ in the presence of
sources: to denote this, we might write

φ(J) = 〈ϕ〉J , (1.11)

which explains the similar typographies for the quantum field and the field function.10 We
should not, however, forget the difference in status of these objects! ϕ is the physical entity,
an unknowable, fluctuating random field; but φ(J) is a perfectly well-defined function that
contains all the information about the probability density of ϕ and is computable once the
action is given.11

1.2.2 The Free Theory

The simplest probability density is probably12 the Gaussian one, given by the action

S(ϕ) = 1

2
μϕ2, (1.12)

with μ a positive real number. For any action, we shall call the part quadratic in the fields
(or bilinear in the case of several fields) the kinetic part. This action, called the free action,
consists of only a kinetic part. The path integral is now simply computed by

Z(J) = N
∫

exp

(
−1

2
μϕ2 + Jϕ

)
dϕ

= N
∫

exp

(
−1

2
μ

(
ϕ − J

μ

)2

+ J2

2μ

)
dϕ = exp

(
J2

2μ

)
. (1.13)

10 Try this out: “phi of J equals phi with J”.
11 In principle, if not in practice easily or completely.
12 A uniform density may be thought even simpler, but then it cannot run from ϕ = −∞ to ϕ = +∞. As a

matter of fact, ask a mathematician or physicist to name you a nice probability density over the whole real
line, and she will almost certainly suggest the Gaussian.
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4 QFT in Zero Dimensions

It is not even necessary13 to actually calculate the value of N. By Taylor expansion of the
exponential, we immediately find that

G2n = (2n)!

(2μ)nn!
, G2n+1 = 0, n = 0, 1, 2, . . . . (1.14)

The connected Green’s functions follow from

W(J) = log Z(J) = J2

2μ
, φ(J) = J

μ
, (1.15)

so that the only nonvanishing connected Green’s function is C2 = 1/μ. The fact that here
only the two-point connected Green’s function is nonvanishing is the reason for calling
this model the free theory. Again, things will become clearer later on, in a more realistic
spacetime – after all, what does “freedom” mean if you are confined to a single point?

1.2.3 Theϕ4 Model and Perturbation Theory

An action S(ϕ) may contain other terms than just the quadratic one. Such terms are called
interaction terms: they may be linear, but more usually they are of higher power in the field
ϕ. The simplest acceptable interacting theory in our probabilistic setting is therefore given
by the action

S(ϕ) = 1

2
μϕ2 + 1

4!
λ4ϕ

4. (1.16)

The (nonnegative!) real number λ4 is called a coupling constant: this model is called the
ϕ4 theory.14 Computing the path integral is now a much less trivial matter. A possible2
approach is to assume that, in some sense, the ϕ4 theory is close to a free theory, that is, in
the same some sense, λ4 is a small number. We can then expand the probability density in
powers of λ4:

exp(−S(ϕ)) = exp

(
−1

2
μϕ2

) ∑
k≥0

1

k!

(
−λ4

24

)k

ϕ4k. (1.17)

This procedure is called perturbation theory. Having thus reduced the problem to the pre-
vious case of the free theory, we cavalierly15 interchange the series expansion in λ4 with
the integration over ϕ and arrive at the following expression for the Green’s functions:

G2n = H2n/H0,

H2n = 1

μn

∑
k≥0

(4k + 2n)!

22k+n(2k + n)! k!

(
− λ4

24μ2

)k

. (1.18)

13 Because we must always have Z(0) = 1.
14 An action in which ϕ3 is the highest power does not lead to a convergent integral over the real axis (see,

however, Appendix F). Of course, an action of the form S(ϕ) = μϕ2/2 + λ3ϕ
3/3!+λ4ϕ

4/4! is perfectly
acceptable, and we shall consider this “ϕ3/4 model” later on.

15 This interchange does not come without its price: see Appendix A. Nemo me impune lacessit.
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5 Probabilistic Considerations

For example, we have

H0 = 1− 1

8
u+ 35

384
u2 − 385

3072
u3 + · · · ,

1/H0 = 1+ 1

8
u− 29

384
u2 + 107

1024
u3 + · · · , (1.19)

with u ≡ λ4/μ
2. In this theory, also the normalization N has to be treated perturbatively,3

which explains the expression for 1/H0. For the first few nonvanishing Green’s functions
we find

G0 = 1,

G2 = 1

μ

(
1− 1

2
u+ 2

3
u2 − 11

8
u3 + · · ·

)
,

G4 = 1

μ2

(
3− 4u+ 33

4
u2 − 68

3
u3 + · · ·

)
,

G6 = 1

μ3

(
15− 75

2
u+ 445

4
u2 − 1585

4
u3 + · · ·

)
. (1.20)

The corresponding nonzero connected Green’s functions are given by

C2 = 1

μ

(
1− 1

2
u+ 2

3
u2 − 11

8
u3 + · · ·

)
,

C4 = 1

μ2

(
−u+ 7

2
u2 − 149

12
u3 + · · ·

)
,

C6 = 1

μ3

(
10u2 − 80u3 + · · ·

)
. (1.21)

Whereas the Green’s functions all have a perturbation expansion starting with terms con-
taining no λ4, the connected Green’s functions of increasing order are also of increasingly
high order in λ4: the higher connected Green’s functions need more interactions than the
lower ones.

1.2.4 The Schwinger–Dyson Equation

Although the path integral is, generally, a very complicated function of J, we can easily
find an equation that describes it completely. This is the Schwinger–Dyson equation (SDe),
which we construct as follows. Let the action be given by the general expression

S(ϕ) =
∑
k≥1

1

k!
λk ϕk, (1.22)

where λ2 = μ.16 Now, from the observation that

∂p

(∂J)p Z(J) = N
∫

exp
(
− S(ϕ)+ Jϕ

)
ϕp dϕ, p = 0, 1, 2, 3, . . . , (1.23)

16 The sum starts at 1 since a constant, ϕ-independent term in the action is always immediately swallowed up by
the normalization factor N.
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6 QFT in Zero Dimensions

we immediately deduce that⎡
⎣−J +

∑
k≥0

λk+1

k!

∂k

(∂J)k

⎤
⎦Z(J)

= N
∫

exp
(
− S(ϕ)+ Jϕ

) ⎡⎣−J +
∑
k≥0

λk+1

k!
ϕk

⎤
⎦ dϕ

= N
∫

exp
(
− S(ϕ)+ Jϕ

) [
S′(ϕ)− J

]
dϕ = 0, (1.24)

where in the last lemma we have recognized a total derivative, and used the fact that the
integrand vanishes at the endpoints. Symbolically, we may write the SDe as⌊

∂

∂ϕ
S(ϕ)

⌋
ϕ=∂/∂J

Z(J) = S′
(

∂

∂J

)
Z(J) = JZ(J). (1.25)

For our sample model, the ϕ4 theory, the SDe reads174

1

6
λ4Z′′′(J)+ μZ′(J)− JZ(J) = 0. (1.26)

Using the series expansion of the path integral, we can express this as a relation between
different Green’s functions:

λ4

6
Gn+3 + μGn+1 − nGn−1 = 0, n ≥ 1. (1.27)

This relation may usefully be rewritten as follows:

Gn = 1

μ

(
(n− 1)Gn−2 − λ4

6
Gn+2

)
, n ≥ 2. (1.28)

If we start by assigning to the Green’s functions the values Gn = δ0,n, then repeated
applications of Eq. (1.28) will precisely reproduce the Green’s functions of Eq. (1.20).18

1.2.5 The Schwinger–Dyson Equation for the Field Function

From the definition of φ(J) as the derivative of the logarithm of the path integral, we can
infer that

1

Z(J)

∂p

(∂J)p Z(J) =
(
φ(J)+ ∂

∂J

)p

e(J). (1.29)

Here, e(J) is the unit function: e(J) ≡ 1. We immediately arrive at the form of the SDe for
the field function:5

17 The SD equation is, in general, of higher than the first order. It therefore has several independent solutions,
only one of which corresponds to the usual perturbative expansion. The nature of the other solutions is
discussed in Appendix F.

18 The correct way to do this is to subsequently evaluate G2, G4, G6, . . .. On the first iteration, the lowest-order
expressions are obtained. Each subsequent iteration gives one higher order in perturbation theory. If we want
to obtain the kth order term in Gn, the (k + 1)th order term in Gn+2 is needed, and so on. It is therefore
necessary to compute the lower-order terms for more Gns.
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7 Diagrammatics

S′
(
φ(J)+ ∂

∂J

)
e(J) = J. (1.30)

For the ϕ3/4 theory, it reads

φ(J) = J

μ
− λ3

2μ

(
φ(J)2 + ∂

∂J
φ(J)

)

− λ4

6μ

(
φ(J)3 + 3φ(J)

∂

∂J
φ(J)+ ∂2

(∂J)2
φ(J)

)
. (1.31)

Although this leads to very nonlinear relations between the various connected Green’s6
functions this form of the SD equation is actually even simpler to apply with φ(J) = 0 as
a starting point, iterating the assignment (1.31) then results19 in the correct form of φ(J),7
giving the connected Green’s functions of Eq. (1.21).8

1.3 Diagrammatics

1.3.1 Feynman Diagrams

There exists an extremely useful toolbox for computing Green’s functions and connected
Green’s functions: Feynman diagrams. In this section we shall first introduce these dia-
grams and their concomitant Feynman rules. Only after that shall we prove that these
diagrams do, indeed, correctly describe Green’s functions.

Feynman diagrams are constructs of lines and vertices. A vertex is a meeting point for
one or more lines.20 Diagrams are allowed in which one or more lines do not end in a
vertex but, in a sense move off toward infinity: such lines are called external lines. Lines
that are not external lines, and end up at vertices at both ends, are called internal lines.
Diagrams may be connected, in which case one can move between any two points in
the diagram following lines of that diagram; or they may be disconnected, in which case it
consists of two or more disjoint pieces that are themselves connected. Any graph21 consists
of a finite number of connected subgraphs. The “empty” graph E , containing no lines or
vertices whatsoever, also exists; it does not count as connected.22 Diagrams containing one
or more closed loops are perfectly allowed. Diagrams with no closed loops are called tree
diagrams. A few examples are

, ,

19 For this approach to work in practice, it turns out to be useful to truncate φ(J) as a power series in J, the
truncation order increasing by one with each iteration. If you don’t do this, each iteration triples the highest
power in J, leading to very unwieldy expressions with only the first few terms being actually correct.

20 In the mathematical world of graph theory, lines are often called edges for some reason.
21 For us, the terms “diagram” and “graph” are interchangeable.
22 Sophistry alert: it has no points between which to move.
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8 QFT in Zero Dimensions

where you see, respectively, a connected graph, a disconnected graph, and a connected tree
graph. The precise shape of the lines and the precise position of the vertices are irrelevant.
The important thing is the way in which the lines are connected to the vertices.23

1.3.2 Feynman Rules

The noteworthy thing about Feynman diagrams is that they have an algebraic interpreta-
tion; that is, they correspond to numbers that may be added and multiplied. The assignment
of a number to a Feynman diagram is governed by the Feynman rules, which postulate a
numerical object for every ingredient of a Feynman graph. In the simple zero-dimensional
theories that we consider here the Feynman rules are just numbers. We will use the
following rules:24

↔ 1

μ
, ↔ −λ3, ↔ −λ4, ↔ +J. (1.32)

A vertex at which a single line ends (and which carries a Feynman rule factor+J) is called a
source vertex. A disconnected diagram evaluates to the product of the values of its disjunct
connected pieces. Because of this multiplicative rule, the value of the empty diagram E is
taken to be unity. In addition, we assign to every Feynman diagram a symmetry factor. The
symmetry factor is the single most nontrivial ingredient of the diagrammatic approach, so
it deserves its own section.

1.3.3 Symmetries and Multiplicities

Feynman diagrams have, in general, an “inner” and an “outer” part. The “inner” part con-
sists of the various vertices and internal lines: the “outer” part is made up from the external
lines (if any). The inner part concomitates with the symmetry factor of the diagram, and
for the outer part we have what may be called the multiplicity, to be discussed below. Let
us first turn to the symmetry factor. The rules are as follows:

• for every set of k lines that may be permuted without changing the diagram, there will
be a factor 1/k!;

• for every set of m vertices that may be permuted without changing the diagram, there
will be a factor 1/m!;

• for every set of p disjunct connected pieces that maybe interchanged without changing
the diagram, there will be a factor 1/p!;

• a factor 1/k for every k-fold rotational symmetry;25

• a factor 1/2 for every mirror symmetry.

23 Throughout this book I try to avoid drawing Feynman diagrams with straight lines, or to draw blobs or
closed loops as circles. Many texts do employ only straight lines and circles. This not only leads to awfully
unæsthetic-looking pictures, but is also deeply misleading. There is a (natural) tendency to look at Feynman
diagrams with the idea that the lines represent “particles moving freely through space’ so that the lines “ought”
to be straight according to Newton’s first law. This is completely wrong! In the zero-dimensional world we
are dealing with for now, there cannot be any notion of movement yet, let alone any Newton to pronounce on
it. In fact, Newton’s first law ought to be derived from our theory, and we shall do so in due course.

24 These will make the diagrams do just what we want, see below.
25 Note: 1/k, not 1/(k! ).
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9 Diagrammatics

External lines cannot be permuted without changing the diagram.26 Therefore only vacuum
diagrams, that is diagrams without any external lines, can have a rotational symmetry. The
symmetry factor cannot be read off from the individual components of the diagram, but
depends on the topology of the whole diagram.27 As our universe grows from zero to more
dimensions, and as the particles considered acquire more properties, the Feynman rules
will grow in complication; but the symmetry factors remain the same.28

Let us look at a few examples of diagram values. First, consider the diagram

= λ3
2

μ5
. (1.33)

In this case, the symmetry factor is 1, since for a tree diagram, no internal lines or vertices
can be interchanged with impunity. The similar-looking diagram

= 1

2

λ3
2

μ5
J3. (1.34)

has a symmetry factor 1/2! since the upper two one-point vertices are interchangeable.
Then, there is the graph

= −1

2

λ4

μ3
.

Here, there is a symmetry factor 1/2 because the “leaf” can be flipped over without
changing the diagram.29 The diagram

= 1

6

λ4
2

μ5

carries a symmetry factor of 1/3! because the three internal lines are interchangeable. The
graph

= −1

4

λ4
3

μ7

carries a symmetry factor (1/2!)(1/2!) since there are now only two interchangeable internal
lines, and a single “leaf.” Finally, the diagram

= 1

48

λ4
2

μ4

has a symmetry factor (1/4!)(1/2!) since there are four equivalent internal lines, and
moreover the diagram can be “flipped over” without changing it.9

26 Think of them as anchored somewhere very far away.
27 This is what makes the automated evaluation of diagrams a nontrivial task: component factors of diagrams

can be easily assigned, but working out the symmetry factor of a diagram calls for very complicated computer
algorithms indeed.

28 This is only modified if we include lines of different types, or oriented lines, that is lines that are deemed to
run in a particular direction. Then again, the more-dimensional diagrams have the same symmetry factors as
their zero-dimensional siblings.

29 This is due to the fact that the line in the loop is not oriented: for oriented lines it will no longer hold.
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10 QFT in Zero Dimensions

Next, we address the multiplicity. This is the number of different ways the external lines
(that each have their own “individuality”) can be attached. To determine the multiplicity we
must imagine that the whole diagram, or a part of it, can be “flipped over” while retaining
the same attachment of the external lines. To illustrate this, we temporarily denote the
external lines with a letter, and then notice that the two diagrams

a

b

c

d
and

c

d

b

a

are, in fact, identical; the multiplicity of this graph is therefore 3, since there are three ways
to group four letters into two pairs without regard to ordering:

=
a

b

c

d
+

a

dc

b +
a b

d c
. (1.35)

We shall often use the product of the symmetry and multiplicity, which factor we shall
denote by sm.

We see that the diagram of Eq. (1.33) has, also, multiplicity 3, while that of Eq. (1.34)
has multiplicity 1. We see that replacing p external lines with p one-point source vertices
reduces sm by a factor of 1/p!; that will become important later on.30

The determination of symmetry factors may appear somewhat fanciful,31 but of course it
has a solid and unambiguous basis; the symmetry factor (and the multiplicity) can always
be computed. The procedure is somewhat involved and is outlined in Appendix B.2.

1.3.4 Vacuum Bubbles

There are Feynman diagrams that contain neither external lines nor source vertices. These
are called vacuum bubbles; the empty graph E is obviously a vacuum bubble. We may
consider the set of all vacuum bubbles, which we denote by H0. Let us assume that only
four-point vertices occur. Then, H0, given by

H0 = E + + + + + · · · (1.36)

(where the ellipsis denotes diagrams with more four-vertices) evaluates to

H0 = 1− 1

8

λ4

μ2
+ 1

2

(
1

8

λ4

μ2

)2

+ 1

16

λ4
2

μ4
+ 1

48

λ4
2

μ4
+ · · ·

= 1− 1

8

λ4

μ2
+ 35

384

λ4
2

μ4
+ · · ·, (1.37)

which, indeed, looks suspiciously like H0 for the ϕ4 theory.

30 In higher dimensions the symmetry factor is unchanged, but you may wonder what happens to the multiplicity.
Essentially, that is also unchanged although less visible: the multiplicity tells us how many diagrams of a
certain type there are, as in Eq. (1.35). Of course the values of these diagrams are generally no longer the
same since the external lines carry their own momentum.

31 The discussion of symmetry factors of Feynman diagrams goes, in practice, with a lot of remarks like “so
you flip over this leaf, you wriggle this set of internal lines, you shove these vertices back and forth . . . see?”
Although the symmetry factor is totally unambiguous, the arguments for a symmetry factor often come with a
lot of prestidigitatorial arguments accompanied by hand-waving and finger-wriggling in front of a blackboard.
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11 Diagrammatics

1.3.5 An Equation for Connected Graphs

We shall now construct an equation for a special set of diagrams. We do this for the set of
Feynman rules of Section 1.3.2. First, let us denote by Cn the set of all connected graphs
with no source vertices and precisely n external lines. Clearly this is a enumerably infinite
set. Next, we define the object �(J), denoted by the symbol

�(J) ≡ (1.38)

to be the set of all connected diagrams with precisely one external line, and any number of
source vertices. The shading indicates that all the diagrams in the blob must be connected.
Clearly, then, we have

�(J) =
∑
n≥0

1

n!
Jn Cn+1, (1.39)

where the extra factor 1/n! is the additional sm factor for n source vertices.
Let us now consider what can happen if we enter the blob of Eq. (1.38) along the single

external line. In the first place, we can simply encounter a source vertex, so that we have
Game Over!, and the diagram is

= J/μ. (1.40)

Alternatively, we may encounter another vertex. If this is a three-point vertex, the line splits
into two. Taking one of these branches, we may be able to come back to the vertex via the
other branch. In that case, the diagram has the form

On the other hand, it may happen that the two branches end up in disjunct connected pieces
of the diagram, which then looks like

These two alternative cases can be unambiguously distinguished because we have restricted
ourselves to using only connected graphs. Another important insight is that, in this last
diagram, the two final blobs (with their attached lines) are both exactly identical to the
original �(J) of Eq. (1.38), and therefore also to each other.32 In contrast, the closed-
loop blob of the first alternative is not equal to �(J) since it has not one but two lines
sticking out; but then again these two lines are completely equivalent. If we encounter a
four-point rather than a three-point vertex, the line splits into three, with three alternatives:
no branches meeting again further on, all three meeting again, or only two out of the three.

32 This is of course only possible because the blobs represent infinite sets of diagrams
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12 QFT in Zero Dimensions

We find the diagrammatic equation

= + + +

+ + . (1.41)

Now, realize that

=
∑
n≥0

Jn Cn+2

n!
= ∂�(J)

∂J
, =

∑
n≥0

Jn Cn+3

n!
= ∂2�(J)

(∂J)2
, (1.42)

so that we can translate the diagrammatic equation (1.41) into an algebraic equation for
�(J) by carefully implementing the correct Feynman rules, including the symmetry factors
for equivalent blobs and lines:

�(J) = J

μ
− λ3

μ

(
1

2
�(J)2 + 1

2

∂

∂J
�(J)

)

−λ4

μ

(
1

6
�(J)3 + 1

2
�(J)

∂

∂J
�(J) + 1

6

∂2

(∂J)2
�(J)

)
. (1.43)

Now Eq. (1.43), obtained from the Feynman diagrams via the Feynman rules, has exactly
the same form as Eq. (1.31), valid for the field function φ(J) – now you see how important
the symmetry factors are! Moreover, the iterative solution for φ(J) starts with φ(J) = J/μ,
also identical to the diagrammatic starting point . We therefore conclude that �(J) =
φ(J), in other words Cn = Cn (n ≥ 1). This proves that connected Green’s functions can be10

11

12

obtained by the following recipe: to obtain Cn (n ≥ 1), write out all connected Feynman
diagrams with no source vertices and precisely n external lines. Evaluate the diagrams
using the Feynman rules, and sum them.33

1.3.6 Semiconnected Graphs and the SDe

A useful notion, which allows us to write SDes more compactly, is that of semi-connected
graphs. We shall denote these with a lightly shaded blob, and they are defined as follows: a
semiconnected graph with n ≥ 1 lines at the left is a general graph with n lines on the left
(and any number of other external lines), with the constraint that each connected piece of
the semiconnected graph is attached to at least one of the lines indicated on the left. This
may sound more intimidating that is actually is: an example is

1

2

3

= 1

3

2 +
3

1

2 + 3

1

2

33 Of course we can also obtain the Gn, by allowing disconnected diagrams.
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13 Diagrammatics

+
1

3

2 + 2

1

3

. (1.44)

A single semiconnected graph with n indicated lines stands for B(n) diagrams with explicit
connected graphs, where B(n) is the so-called Bell number: the number of ways to divide
n distinct objects into nonempty groups.34 For ϕ3/4 theory, the SDe then becomes simply

= + + . (1.45)

You should keep in mind that a semiconnected graph acts as a symmetrizer: the lines enter-
ing it on the left are to be connected to whatever happens inside the blob in all admissible
ways. We shall use semiconnected diagrams to good effect in later chapters. Note that the
sum of the symmetry factors of all connected diagrams arising from a ϕp vertex must be
equal to B(p− 1)/(p− 1)!, which may serve as a check on your SDes.

1.3.7 The Path Integral as a Set of Diagrams

By affixing a source vertex to the single external line of �(J), we immediately have the
result that the generating function W(J) is the sum of all connected Feynman diagrams
without external lines and at least one source vertex. If we explicitly indicate the source
vertices, and recall that n source vertices in a diagram imply a factor 1/n!, we can write

W(J) = + + + + · · ·, (1.46)

where the ellipsis contains connected contributions with more source vertices. Vacuum
bubbles do not contribute to W(J). By taking careful account of the symmetry factor
assigned to identical connected parts of a disconnected diagram, we can see that

1

2!
W(J)2 = + +

+ + +

+ (lots of other diagrams). (1.47)

Similar arguments hold for higher powers of W(J). In addition, W(J)0 = E = 1. From
this it easy to see that the path integral Z(J) consists of all Feynman diagrams without
external lines, and without vacuum bubbles, but including the empty diagram.

34 For small n we have B(0) = 1, B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, and B(5) = 52 ; more general
values can be obtained from the generating function derived in Appendix T.7.
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14 QFT in Zero Dimensions

Why are the vacuum bubbles so conspicuously absent? Suppose that we would allow
the inclusion of arbitrary numbers of vacuum bubbles in Z(J). Then the Green’s function
G0 = 1 would be represented not by the single empty graph but by the whole set H0

discussed before: indeed, H0 is proportional to H0. In fact, any Green’s function Gn would
acquire exactly the same additional factor H0. The normalization factor N, that must be
chosen such as to make G0 equal to unity, therefore extracts exactly the factor H0 from
any Green’s function. In the jargon, the vacuum bubbles “disappear into the normalization
of the path integral.” This is not to say that vacuum diagrams are never important; but in
our approach to computing Green’s functions and connected Green’s functions they are
indeed irrelevant. Another way of seeing this is very simple: if we take our diagrammatic
prescription of Z(J) and then take J = 0, all diagrams disappear except the empty one, and
we find Z(0) = E = 1, just as we must.

1.3.8 Dyson Summation

Why is the Feynman rule for lines, stemming from the quadratic part of the action, so
different from those for the vertices, that come from the nonquadratic terms? To see that
our treatment is actually a consistent one, let us consider the action

S(ϕ) = 1

2
μϕ2 + 1

2
λ2ϕ

2 + 1

4!
λ4ϕ

4. (1.48)

If we wish, we may treat the λ2 term as an interaction, described by a vertex with two legs.
the SDe is then seen to be

= + + , (1.49)

corresponding to

φ(J) = J

μ
− λ2

μ
φ(J)− λ4

6μ

(
φ(J)3 + 3φ(J)

∂

∂J
φ(J)+ ∂2

(∂J)2
φ(J)

)
. (1.50)

Multiplying the equation by μ and transposing the λ2 term to the left, we obtain

φ(J) = J

μ+ λ2
− λ4

6(μ+ λ2)

(
φ(J)3 + 3φ(J)

∂

∂J
φ(J)+ ∂2

(∂J)2
φ(J)

)
, (1.51)

precisely what we would have obtained by taking the combination (μ+ λ2) as the kinetic
part from the start! This procedure, by which the effect of two-point (effective) vertices is
subsumed in a redefinition of the kinetic part, is called Dyson summation. In the present
example, the summation is of course trivial; but we shall see that two-point interactions
can also arise from more complicated Feynman diagrams corresponding to higher orders
in perturbation theory. The manner in which Dyson summation is usually treated is by
explicitly writing out the propagator, “dressed” with two-point vertices in all possible ways:

+ + + + · · ·
= 1

μ
− 1

μ
λ2

1

μ
+ 1

μ
λ2

1

μ
λ2

1

μ
− 1

μ
λ2

1

μ
λ2

1

μ
λ2

1

μ
+ · · ·
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= 1

μ

∑
k≥0

(
− λ2

μ

)k

= 1

μ

1

1+ λ2/μ
= 1

μ+ λ2
, (1.52)

where, no surprise, we cheerfully ignore all issues about convergence, in the spirit of per-
turbation theory. Every propagator line can (and must) be dressed in this way once any14
two-point vertex (either elementary, or effective, that is, as the result of a collection of
closed loops with two legs sticking out) occurs.

1.4 Synopsis of Feynman Rules

The Feynman rules for zero-dimensional ϕ3/4 theory found in this chapter are

↔ 1

μ
, ↔ −λ3,

↔ −λ4, ↔ +J. (1.53)

1.5 Exercises

Exercise 1 Green’s functions and connected Green’s functions
We have

Z(J) =
∑
n≥0

Gn
Jn

n!
, W(J) =

∑
n≥0

Cn
Jn

n!
, W(J) = log (Z(J))

1. Using that G0 = 1, and the expansion

− log(1− x) =
∑
n≥1

xn

n
= x+ x2

2
+ x3

3
+ x4

4
+ x5

5
− · · ·,

express C0,...,5 in terms of the G’s.
2. From Z′(J) = W ′(J)Z(J), prove the recursion relation

Gn = Cn +
n−1∑
m=1

(
n− 1

m− 1

)
CmGn−m, n ≥ 1

3. Prove this last result using Feynman diagrams. Show how the factor
(n−1

m−1

)
avoids double

counting.

Exercise 2 The problem with ϕ4 theory
Prove that in ϕ4 theory any positive real value for λ4 leads to a well-defined theory, while
a negative value of λ4 leads to an undefined theory. The limit λ4 → 0 is, actually, an
essentially singular situation!
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16 QFT in Zero Dimensions

Exercise 3 Actually doing it for ϕ4

This exercise shows how to express the path integral for the ϕ4 theory in terms of “known
functions.” We consider

H =
∫

dϕ exp

(
− μ

2�
ϕ2 − λ

24�
ϕ4
)

.

1. Show that the combination

g = �λ

μ2

is dimensionless.

2. Perform the substitution

ϕ =
√

3�

μg

(
ψ1/4 − ψ−1/4

)

to derive

H =
√

3�

4μg
e3/(4g)

∞∫
0

dψ ψ−3/4 exp

(
− 3

8g

(
ψ + 1

ψ

))
.

3. The so-called modified Bessel functions of the second kind, denoted by Kν(z), are
discussed in Appendix T.8. Use this to express H in terms of these Bessel functions.

4. The function Kν(z) has two expansions: one, an unattractive-looking but convergent
series in positive powers of z, and a nonconvergent, asymptotic series in terms of
negative powers of z, given in Eq. (T.54). Show that H therefore has a regular series
expansion in 1/g and an asymptotic one in g. Show that the leading term in the asymp-
totic expansion is independent of g (but not of μ), and compute the next two terms.
Compare your result with Eq. (1.19).

Exercise 4 The SDe for Z in another action
Find the SDe for the path integral Z(J) for the action

S(ϕ) = μ

2!
ϕ2 +

6∑
k=3

λk

k!
ϕk.

Exercise 5 Writing the SDe for φ

Prove Eq. (1.29). Do this using the fact that

Z(J) = exp

(
1

�

∫
dJ φ(J)

)
,

and then considering Z′, Z′′, and so on.

Exercise 6 The SDe for φ in another action
For the action of exercise 4, derive the SDe for φ(J).
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Exercise 7 A programming exercise
For this exercise you have to employ computer-algebra code that is at least capable of
series expansions35 (or, if you want to do it by hand, you have to really want to). Starting
with φ(J) = 0, iterate the SDe for ϕ4 theory a number of times, judiciously truncating
the series expansions at every iteration. I find it useful to replace the first term, J/μ, by
zJ/μ and expand in powers of z. That way, high powers of both J and � are truncated
simultaneously. Try to at least reproduce Eq. (1.21).

Exercise 8 Stepping equations
Consider the path integral for the ϕ3/4 theory:

Z(J) = Z(J,μ, λ3, λ4) = N
∫

dϕ exp

(
−μ

2
ϕ2 − λ3

6
ϕ3 − λ4

24
ϕ4 + Jϕ

)
,

where we have indicated all parameters this once.

1. Show that Z obeys the equation

μ
∂

∂J
Z − λ3

∂

∂μ
Z − λ4

∂

∂λ3
Z − JZ = 0.

2. Differentiating this equation with respect to J, show that the field function φ =
φ(J,μ, λ3, λ4) obeys the stepping equation

∂

∂J
φ = 1

μ
+ λ3

μ

∂

∂μ
φ + λ4

μ

∂

∂λ3
φ.

If we are given C1 = φ(0,μ, λ3, λ4), the stepping equation allows us to compute the
higher connected Green’s functions.

3. Prove the stepping equation diagrammatically.

Exercise 9 The symmetry factor of life, the universe, and everything
Devise a diagram (connected or disconnected) that has a symmetry factor of 1/42.

Exercise 10 Diagrammatic SDe for ϕ6 theory
Give the diagrammatic SDe for ϕ6 theory, and write it out algebraically.

Exercise 11 Actually doing it
Consider the diagrammatic SDe of Eq. (1.41). Starting with the empty diagram, iterate this
diagrammatic equation two or three times, and write down the resulting set of diagrams.

Exercise 12 Some diagrams to consider
Of the following 12 diagrams, determine the multiplicity factor, the symmetry factor, and
the number of loops:

35 I usually rely on Waterloo’s MAPLE package, but most other algebraic codes will serve as well.
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18 QFT in Zero Dimensions

Exercise 13 A multi-loop, multi-leg diagram
Consider the following diagram:

As before, determine the number of loops of this diagram, its symmetry factor, and its
multiplicity factor.

Exercise 14 The One Ring
The One Ring diagram

might be argued to evaluate to zero because of its ∞-fold rotational symmetry. In this
exercise we shall try to be more careful.

1. We consider a theory without any sources, with action

S(ϕ) = μ0

2
ϕ2 + δμ

2
ϕ2, δμ = μ− μ0,

where the second term is, for the moment, considered an interaction. The Feynman rules
are therefore

= 1/μ0, = −δμ.

Prove that the Dyson summation gives for the full propagator:

= + + + · · · = 1/μ.

2. Let us denote the two One Ring diagrams by

R(μ0) = , R(μ) =
From

= + + + + · · ·
prove that

R(μ) = R(μ0)− 1

2
log

(
μ

μ0

)
⇒ R(μ) = 1

2
log

(
c

μ

)
for some μ-independent constant c.

3. Introduce a ϕ3 interaction, and show that the stepping equation (exercise 8) gives the
correct one-loop tadpole.

4. Choose c = 2π . Show that for the sum of all vacuum diagrams:

E + + + + · · ·
we obtain precisely the correct unnormalized free-action path integral.
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