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DIFFERENTIAL CALCULUS
IN FRECHET SPACES

Duone MinH Duc

We apply Keller's method to the study of differential calculus in
Frechet spaces and establish an inverse mapping theorem. A

special case of this theorem is similar to a theorem of Yamamuro.

Introduction
Let E and F be two Fréchet spaces over the field R of the reals.
We let Ln(E, F) denote the space of all continuous #n-linear mappings
from E' into F .

In [1] Keller has introduced a new method in the study of the

differential calculus in locally convex spaces. He has used the topology

of simple convergence in Ln(E, F) 1in order to define the nth

derivatives. The notions of continuity of these derivatives are based on

the stronger convergence structures on Ln(E, F) . 1In this paper we shall

apply this idea to the case of Fréchet spaces.

In the case of Banach spaces it is well known that the Banach fixed
point theorem plays an important role in the proof of the inverse mapping
theorem. This relies on the properties of the topology of uniform

convergence on bounded subsets.

Therefore we shall find a convergence structure on Ln(E, F) such

that we can use the fixed point theorems of Sadovskii [3]. 1In this paper
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we shall use the degree theory of limit compact vector fields. This theory

was introduced by Sadovskii in [3].

In the case of Hausdorff measure of noncompactness (ef. Example 1.1)
our inverse mapping theorem is similar to Yamamuro's theorem in [4], but we
still cannot compare them in detail. In the case of Kuratowski measure of
noncompactness (cf. Example 1.2) our theorem is clearly convenient for

application to the problems concerned with the a-ball-contractions.

This paper consists of four sections. In the first section we shall
introduce the notations and definitions of measure of noncompactness and
the topological degree of limit-compact vector fields and study the class

of M-bounded operators. The second section is devoted to defining the
convergence structures on Ln(E, F) and studying their properties. In the

third section we define the Cn—differentiable mappings, and we shall give

the inverse mapping theorem in the last section.

Throughout the paper we shall adhere to the following list of

notations.
R : the field of real numbers
C : the field of complex numbers

E, F, G : TFréchet spaces over K (K=R or C )
V(E), V(F) : families of all open convex balanced neighborhoods
of 0 in E, F

A zax ... xA (n times)
A or clA : closure of 4
co A : closure of the convex hull of A4

94 : Dboundary of A

A\B = {x € 4 : z { B}

A+ B={z+y : x €¢ 4 and y € B}
tA = {tx : = € A}

I : +the identity mapping on FE

2E : the family of all subsets of £ .

1. Measure of noncompactness and M-bounded mappings

In this section we shall introduce the notations and definitions of

measure of noncompactness and the topological degree of limit-compact
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Differential calculus in Fréchet spaces 95

vector fields, and study some basic properties of M-bounded mappings.

DEFINITION 1.1, 1Let P be a nonvoid set and P be the set of all
mappings of P into [0, ®] . The order, addition and multiplication are

defined on P as usual (0°*® = 0)

Let & € P ; we shall say that h 1is finite if h(p) < © for every
p in P.

DEFINITION 1.2, Let P be as in Definition 1.1, and L be a
mapping of 2E into P ; then L is called a measure of noncompactness
on EF , if for every A, B € 2E we have:

(M.1) L(4) = 0 if and only if A is relatively compact (that

is, its closure 4 is compact);
(M.2) L(A u B) = max(L(4), L(B)) ;
(M.3) L(A+B) < L(4) + L(B) ;
(M.b) L{co 4) = L(4) ;
(M.5) L(-4) = L(4) ;

(M.6) for each p € P and d > 0 there exists V € V(E) such
that L(V)(p) < d .

In [3] Sadovskii has given many examples of measure of noncompactness
(ef. §1.2 of [3]). By Theorem 1.2.3 in [3] we have the two following

useful examples of measures of noncompactness.

EXAMPLE 1.1. Let P be a family of continuous seminorms on £ such
that P defines the topology of E . For each A € o and each p €P

we write

L(A)(p) = inf{there exist Al’ e, A € 2E such that

k
k
r >0 : sup{p(z-y) : =, y € Aj} <r for all j and A c U Aj
1

where inf & = o« |,

Then L 1is a measure of noncompactness on E and is called the

P-Hausdorff measure of noncompactness on E .

EXAMPLE 1.2, Let E ©be a Fréchet space and d be a translation
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invariant metric on E such that d is compatible with the topology of E

and {x : d(0, x) < r} is convex and balanced for every r > 0 . For each

A in 2E we write

L(A) = inf{there exist Al’ v Ak € 2E such that
k
r >0 : supldlz, y) : z, y € Aj} <r for all j and A c U Aj
1

Then L is a measure of noncompactness on E and is called the
d-Kuratowski measure of noncompactness on E . If E is a Banach space
and d(x, y) = llz-=yll , where I Il is the norm on E , L 1is called the

norm-Kuratowski measure of noncompactness on E .

Throughout this paper we assume that there exist a fixed set P and
the given measures of noncompactness L, M, N on E, F, G respectively,

as in Definition 1.2.

DEFINITION 1.3. Let A4 € 2° and f be a mapping of 4 into F
and B C A ; we write
k(L, M, B, f) = inf{k > 0 : M(f(C)) < KL(C) for every C < B}
If M(f(A)) is finite, f 1is called a M-bounded mapping on 4 .
REMARK |.l, Let D %bve a nonvoid open subset of E£ and f be a
continuous IL-bounded mapping of D into £ such that
k(L, L, D, f) <k <1.

Let A be the limit range of f on D (ef. Definition 1.1.3 in
[3]). By definition, A = co f(4 nD) . Thus by (M.4), (M.2) and

Definition 1.3, we have
(1.1) L(A) = L(f(4 n D)) = kL(A n D) = kL(4) .

Because L(f(D)) is finite and L(f(4 n D)) = L(Ff(D)) , from (1.1) it
follows that L{f(A n D)) and L(A) are finite and L(A) < kL(4) . But
k <1 ; it follows that L(A) = 0. Then, by (M.1), A4 is compact.

Therefore, by Definition 1.1.3 in [3], f is a limit-compact mapping on

D .

Let g € EN(I-f){ D) and put fa(x) = f(x) + q for every x €D .
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Differential calculus in Fréchet spaces 97

Because fb(A) c f(4) + {g} for every A € oF , by properties of measure
of noncompactness we see that fb is a continuous [L-bounded mapping on D
and k(L, L, D, f&) <k <1 . Therefore f& also is a limit-compact

mapping on D and for every x € 9D , fb(x) fx.

Let R =E ; by Definition 3.1.4 of [3], the rotation of (I-fb) on

D with respect to R 1is defined and denoted by Y(I—f&, Zﬂ .

We shall write deg(I-f, D, q) = Y(I—f&, D) and deg(I-f, D, q) is

called the topological degree of (I-f) at g on D . By the results in
§3.0 and §3.2 of [3], we have the following properties of the topological

degree:
(D.1) if q € D, then deg(I, D, q) =1 ;
(D.2) if deg(I-q, D, q) # O there exists x € D such that
(I-f)(z) = q 3

(p.3) if D

ik ., D, are pairwise disjoint open subsets of D

k

k
such that ¢ € E\(I-f)|D \ U Dj , we have
1

k
deg(I-f, D, q) =Y deg(I-f, D q)
1

(D.4) let F be a continuous mapping of [0, 1] x D into E
such that

(i) there exists a positive number %k < 1 such that
L(F([0, 1] x B)) < kL(B) for every Bc D ,

(ii) L(P([0, 1] x D)) is finite;
let g € EN{z-F(t, =) : (t, =) € [0, 1] x 3D} ; then
deg(7-F(0, *), D, q) = deg(r-F(1, +), D, q)

The properties (D.1), (D.2) and (D.3) follow directly from Theorems
3.0.8, 3.2.6 and 3.2.5 in [3] respectively. Let F and ¢ be as in
(D.4); we put
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Eh(t, z) = F(t, x) + q for every (t, z) € [0, 11 XD .

Arguing as above we can show that Fq is a limit-compact mapping on
(0, 1] x D . Then, by Theorem 3.2.2 in [3], we have (D.h).

Now we shall establish some basic properties of M-bounded mappings.

PROPOSITION 1.1, et 4 ¢ 2F , B¢ of , f and g be two mappings

of A into B, and h be a mapping of B into G . Suppose that
K(L, M, 4, ), kKL, M, 4, g) and k(M, N, B, h)} arve finite. Then we have

(<) k(L, M, A, f+g) = k(L, M, A, F) + k(L, M, 4, g) ;
(ii) (L, N, A, h o F) < k(L, 4, A, fIk(, ¥, B, ) ;

(i21) if f is M-bounded or h +is N-bounded then h o f is
N-bounded;

(iv) if E=F=¢, k(L, L,4, f) <1, and f is

L-bounded: and suppose that (I-f) <is a one-to-one
-1
)

mapping of A onto B and h = (I-f) = ; then

k(L, L, B, h) = (1-k(L, L, 4, f))'l 5

(v) let A, B, f and h be as in (1v). Suppose that A 1is
closed and f 1s continuous on A . Then h 1is

continuous on B .

Proof. Because (f+g)(C) < f(C) + g(C) ana N(h o F(C)) = kL(F(C))
for every C € 2E and every k > k(M, N, B, h) , we have () and (i%).

since N(h o f(4)} < min{N(R(B)), k(M, N, B, h)M(f(4))} , we have
(121).

Let k € Jk(L, L, A, f), 1[ , D bve a subset of B and we put
D, = h(D) . Because (I—f)(Dl) =D we have D, <D+ f(Dl) . Then

L(Dl) < L(D) + L(f(Dl)) < L(D) + kL(Dl) . Hence it follows that

(1.2) L(n(D)) = L(p

<1
) = T HO)

Therefore k(L, L, B, h) = i%z-, which completes the proof of (Zv).
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Now let {yj} be a sequence converging to y in B . Put

D= {yj} u {y} . Then D 1is compact and D, = h(D) = (I—f)-l(D) is
closed.

Because L(D) = 0 , by (1.2), L(Dl] = 0 . Hence it follows that Dl
is compact. Put xj = h(yj) and let x be an adherent point of {xj} 5
that is, ® 1is the 1limit of a subsequence of {xj} . By the continuity of

f, (I-fY(x) =y . But (I-f) is one-to-one: it follows that {xj} has

an unique adherent point & , which is its limit. It is clear that

h(y) = x . Therefore h 1is continuous at y . Then % is continuous on
B . /!

PROPOSITION 1.2. Let f be a mapping of (0, 1] x [0, 1] x 4 into
F , where A ¢ 2E . Suppose that:

(a) f(t, «) Zs M-bounded on A for every t € [0, 1] x [0, 1] ;

(b) there exists a real number k such that k(L, M, A, f(t, *))
is in [0, k[ for every ¢ € [0, 1] x [0, 11 ;

(e) for each U € V(F) there exists d > 0 , such that for every
s, t € [0, 1] x [0, 1] and |s-t|| <d, and for every x € A

we have
(flt, x)-f(s, x)) €U .
Then we have
(2) M(f(lo, 1] x [0, 1] x 4)) s finite,
(iz) M(f({o, 1] x [0, 1] x B)) < kL(B) for every B A ,

(i17) for each x € A let glx) be the Riemann integral

1 (1
I I flt, s, z)dtds .
0’0

Then g 1is M-bounded on A and
k(L, M, A, g) =k .

Proof. Let B be a subset of 4 , let U € V(F) , then by condition

(c) there exist ¢ tk in [0, 1] x [0, 1] such that

1° *
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k
f(lo, 1} x [0, 1] x B) c U f({tj} x B) +U .
1

Thus, by (M.2), (M.3) and (M.6), it follows that for each p € P and
d > 0 , there exist E1s vees by in [0, 1] x {0, 1] such that

(o, 11 x [0, 11 x B))(p) = max (M(f({t;} x B))(p)) + d .
dJd

Hence it follows from (a) and (b) that (Z) and (Z7) hold.

Let B<A ; we have g(B) < co f([0, 1} x [0, 1] x B) . Thus, by
(2), (i7), (M.2), and (M.L4), we have (iiZ). //

PROPOSITION 1.3, Let V € V(E) and f be a continuous linear
mapping of E 1into E . Assume that

(a) f is L-bounded on V and k(L, L, V, f) <1,
(b) f(v) civ.
Then we have
(i) (I-H(V) > iv,

(i) (I-f) is a homeomorphism of E onto E ,

(iii) k(L. L, iV, (-7 = (-k(z, L, 7, £)7F .
Proof. (i) TFor each (£, x) € [0, 1] x V we put
F(t, z) = tflz) .

Then for every A < V we see that F([0, 1] x A) is contained in
co(f(4) u{0}) . Let k € Ik(L, L, V, f), 1[ ; then, by (a),
L F([0, 1] x V) 1is finite and

L(F([0, 1] x 4)) < kL(4) for each AC TV .

On the other hand, for each ¢ € and x € V , by (b), we see that

for each ¢t € [0, 1] , q + F(t, x) €

-
;V
%V . But %V is contained in V .
)

Hence it follows that for every (¢, x) belonging in [0, 1] X 3V we have
(1.3) x - P(t, x) £ q .

Then by (D.4) and (D.1) we have

deg(I‘F(la .)’ V’ q) = deg(I-F(O, .)a V’ Q)
deg(I, V, q) =1 .

deg(I"f3 V, q)
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Then by (D.2) there exists x € V such that (I-f)(x) =gq .
Therefore (I-f)(V) > %7 .

(i) We shall show that (I-f) is one-to-one. Indeed let xz € E
such that Cx-f(x)) (I-f)(x) = 0 ; hence (I-f)(tx) = 0 for every real
number t . Put A =Rx ; by (1.3), A ndW =@ . Then ACV and
fly) =y for every y € A ; hence f(4) =4 . But, by (al, L(f(a)) is

finite and

(1.4) L(4) = L(f(4)) = xL(4)

It follows that L(4) is finite. Because k <1 , (1.4) implies that
L(A) = 0 and A 1is relatively compact. Hence it follows that x = 0 ,
vhich implies that (I-f) is one-to-one. Now, by (Z) and by Proposition

1.1, (I-f) is a homeomorphism of E onto E .

(ii1) By Proposition 1.1 we have (117). //

Let f be a toplinear isomorphism of F onto F , that is
f € L{E, F) and f—l € L(F, E) , f 1is said to be bibounded if there
exist V € V(E) and W € V(F) such that M(F(v)), L(f (W) ,

k(L, M, 7, f) and k(M, L, W, f1) are finite. Let H(E, F) denote the

set of all bibounded toplinear isomorphisms of EF onto F .

PROPOSITION 1.4. Let g € H(E, F) , V € V(E) . Then there exist
U€V(F) and r > 0 such that for each continuous linear mapping h of

E into F which satisfies the following conditions,
(a) h is M-bounded on V and h(V) C U,
(b) k(L, M, V,h) <xr,
we have
(<) (g-n)(V) >V,

(i2) (g-h) € H(E, F) ,

(iii) kM, L, U, (g-h)™) < 2k(m, L, T, ¢7%)

Proof. Let U € V(F) be such that k(M, L, U, g°%) is rinite and

g-l(a) is contained in 3V , and let r € Jo, 3(1+k(M, L, U, g_l))-l[-

Now if h satisfies conditions (a) and (b), we have
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(a') g_l o h is L-bounded on V and k(L, L, V, g"l oh) <%,

) (g7t e n)(V) < tv.

4

By Proposition 1.3 it follows that [I—(g_l o h)] is a homeomorphism
of E onto E and

(I-(g—l o h))(-V-) > %VD g-l(U)
and
(L, 2, 37, (g™ o m))) = (1k(2, £, 7, g7 o)) s 2.

Because (g-h) =g o [I-(g_l o h)) , we have (), (ii) and (iii). //

2. The topology on B*(E, F)

In this section we shall define the topology on Bn(E, F) and study

its basic properties.

DEFINITION 2.1. Let B™(E, F) denote the set of all continuous
n-linear mappings T  of E' into F satisfying the following conditions;
(B.1) there exists V € V(E) such that for each ¥ € V(F) we

can find U € V(E) such that 7(V"! x 1) < W ;
(B.2) there exists V € V(E) and a positive real number Kk
such that for every y € 71 , T(y, *) is M-bounded on

7 anda sup{k(z, M, V, Ty, *)) :y € 7"} <k .
For each T € BYZ, F) and each V € V(E) we put
k(n, L, 4, V, T) = supl{k(L, M, 7, T(y, *)) : y € V'] .

DEFINITION 2.2. Let T € BYE, F) ; then T is said to be totally
symmetrical if T(xf(l)’ ey xf(n)] = T[xl, e zn) for every

(xl, cees xn) ¢ ' and every permutation f ot {1, ..., n}.

We put
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L&, F) = {T ¢ Y&, F) : T is totally symmetrical} .

If n=1 we write L(E, F) instead of Ll(E, F) .

REMARK 2.]. Let E and F be two Banach spaces, || || and | ||’
be the norms on £ and F , L and M be the norm-Kuratowski measures of

noncompactness on E and F (ef. Example 1.2) and V = {x € E : ||| <1}.

Let T %be a continuous n-linear mapping of E onto F , then there

exists a positive real number X such that

1
(2.1) HT(xl, caes xn)H < kalH cen ”an for all =, ..., &, €E .

It is clear that T satisfies (B.l) and (B.2); thus T € Bn(E, F) .
We have just proved that Bn(E, F) 1is the set of all continuous n-linear
mapping of E into F in the case of Banach spaces.

DEFINITION 2.3. For each V € W(E) , U € V(F) , f € BYE, F) and
k>0, we let B(n, V, U, k) denote the set of all T belonging in
Bn(E, F) and satisfying the following conditions:

(i) T, V and k satisfy the conditions (B.1) and (B.2);

(ii) there exists W € V(F) . such that T(?n) +WcU.
We put
B(n, f, V, U, k) = f + B(n, V, U, k)

In the case n =1 we write B(V, U, k) and B{(f, V, U, k) instead
of B(1, V, U, k) and B(1, f, V, U, k) .

REMARK 2.2, Let V € VE) , U, U', U" € V(F) , », s >0 and
g €B(n, V, U, ») such that g(V') + U" € U . Then it is clear that
B{n, V, Un U', min{r, 8)) < B(n, V, U, *) nB(n, V, U', 8) ,
B(n, g, V, sU", r-k(n, L, M, V, g)) € B(n, V, U, r) .
DEFINITION 2.4. By the foregoing remark there exists an unique

topology on BY(E, F) such that {B(n, f, V, U, k) : U € ¥(F), k > 0} is
a basis of neighborhoods of f in this topology. We denote this topology

by T If n =1, we write TV instead of T

V,n * v,1°
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. n
Let N, , denote the topology induced by T, , on L°(E, F)
bl 2

REMARK 2.3, The notions and the topology defined in Definitions 2.1

and 2.3 are not symmetrical with respect to coordinates xl’ ceen T of

En . But our aim is the study of the differentiability. In this problem

n
all mappings are in L (E, F) and for each T € Ln(E, F) the notions in

Definition 2.1 become symmetrical with respect to coordinates xl, cees T

of En . We also have the symmetry of nV n
2

REMARK 2.4, Ve assume that E, F, L, M, V are as in Remark 2.1. By
(2.1) we can show that n is the topology of uniform convergence on
b

7” . Therefore TV n is the topology T of uniform convergence on
b

bounded subsets of Bn(E, F) . Furthermore if W and U are in V(E)

and W< U , then T is finer than T . Hence it follows that
Un W.n

R

TW n is T for every bounded neighborhood ¥ of O in E .
E]

REMARK 2.5, Let V € V(E) ; we see that

{B(n, V, U, k) : U € V(F), k > 0}
is a base of a filter FV on Ln(E, F)

We assume that L and M are as in Examples 1.1 and 1.2. Let
t €R, B¢ 2F and m be an integer such that |t| =m ; we have

M(tB) < mM(B) . Then if T € Bn(E, F) , we have that ¢T ¢ Bn(E, F} and

k(n, L, M, V, tT) < mk(n, L, M, 7, T) . Hence it follows that tF, = F,

for every T # 0 .

Now let V be the filter of all neighborhoods of 0 in R . It
follows from the preceding result that V’FV = FV . Then, as in §0.7 of

[1], one can find a unique separated convergence structure on L*(E, F)
which is invariant with respect to translations and determined by the set

{F, : v € V(E)} of rilters which converge to 0 . It is clear that this

convergence structure is finer than the convergence structure 6 defined
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in §0.7 of [11.
In this paper we shall use the classical terminology of topology
instead of notions of convergence structure.

For each integer n and V € V(E) we shall denote Bn(E, F), Tn
k]

and [L”(E, F), by BYE, F, V) and LME, F, V)

nV,n
DEFINITION 2.5, Let 7n be an integer,

J = {il, e im} cf{1, ..., n}

C < < < 1
such that 11 Lg e zn . We put

E if 1 €dJ ,

H. =
7
{0} ifr 1 ¢J,
and let P;, denote the projection of ' onto Hl X ... X Hn . In some
>
cases we shall identity Hl X ... Hn with E' and write p; instead of
pJ,n :
In the following lemma let {Il, . Ir} be a partition of

{1, ..., n} and m; be the cardinal of Ij , =1, ..., r . We put
pP.=p and consider the following lemma.
J I.n

J

LEMMA 2.1, Let T € L'(F, G) and W € V(F) satisfying (B.1) and

m,
(B.2). Let 5, €L “(B, F) and V € V(E) satisfying (B.1) and (B.2), and

m,
assume that Si(; ?) W forevery i =1, ..., r . Put

= i . 14 .
k m;n (k(mJ, L, MV, SJ]) s
R=7To (Sl ° pl, ey SI" ° pI']

Now for every v ¢ V(E) such that VSV for every j in

{1, ..., r} , we have
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(z) R and V satisfy (B.l) and (B.2),

M = -1 s
(iz) RVl L XVr]CT[ XSJ.[VJ. ]] for all
Jj=1, ..., r,

(i22) &(m, L, N, V, R) < k*k(r, M, N, ¥, T) .

m,

Proof. Because T 1is totally symmetrical and Sj[Vﬁa] c W for every
j , we have (Z1). We can suppose that k@jr, L,M,V, S8 ) = k , then by
Definition 2.1 and Proposition 1.1 we have

k(x, W, 7, Rly, ) = kek(L, M, V, 5,(p,(y, 0), +)) for ell y e V'™ .

This implies (i2Z); thus we also have (7). //
PROPOSITION 2.1. Let =, mj, pj be as in Lemma 2.1, let V € V(E)
and W € V(F) . Let T, S. be continuous mappings of a topological space

m.
X into L'(F, G, W), L 9(E, F, V) respectively. Suppose that (T(x), W)

and (Sj(x), V) satisfy the conditions (B.1) and (B.2) for every x € X
and g =1, ..., r. For each x € X we put
R(z) = T(z) o (S;(x) o p , ..., () o p)
Then for each a € X there exist U € V(E) and a neighborhood Y of
a in X such that the restriction h|Y of h on Y 1is a continuous
mapping of Y into Bm(E, G, U) .

Proof. For the sake of simplicity we carry out the proof of this
proposition in the special case »r =2 . The general case can be dealt

with using essentially the same arguments.

Let a € X ; we choose U € V(E}) such that Uc V and

m, m,
5,(@)(T7) vsy(a)(U®) it
Let Y bve a neighborhood of a in X such that

(2.2) Sy(x) € B(ml, v, 5,(a), W, 1) for every x €Y, i=1,2.

Then if x, y € Y and < € {1, 2} we have
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m.
(2.3) si(:c)(ﬁ Yelw,
m.,
(2.4) [Si(x)-Si(y)] Y ecw,

(2.5)  k(m;, L, M, U, S (x)) sk; =1 +k(m, L, MV, s;(a)) .

On the other hand we have
(2.6) R(z) - Rly) = T(x) o (Sl(x) ° Py, [52(x)—52(y)] o p2)
+ 7(z) o ([5,(2)-5,()] o pys S,(y) © p,)
+ (T(z)-T(y)) o (Sl(y) °p;s Sz(y) ° pz) .
By (2.3), (2.4), (2.5), (2.6) and Lemma 2.1 we see that R|Y is a
continuous mapping of Y into Bm(E', G, U) . //
We consider now the last proposition of this section.
PROPOSITION 2.2. Let ¢ : H(E, F) >~ H(E, F) ,
olg) =gt .

Let g € H(E, F) , V € V(E) be given, Then there exist r > 0 and
U € V(F) such that

(i) Blg, V, U, r) € H(E, F) ,
(<i) ¢|B(G, V, U, r) ' is continuous from (B(g, v, U, r), TV)
into (4(F, E), 1) .

Proof. Let U and r be as in Proposition 1.4; then for each f

in B(g, V, U, ») we have

(2.7) f €H(E, F) ,
(2.8) oV,
(2.9) k(M, L, U, o(f)) = 2x(M, L, U, ol(g)) .

On the’ other hand for each f, h € B(g, V, U, r) we have
o(f) - o(h) = ¢(h) o (h-F) o o(f) .

Thus by (2.8), (2.9) and Proposition 1.1, ¢]B(g, V, U, r) is continuous
from (B(g, v, U, r), TV) into (H(F, E), TU] . //
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3. Functions of class ("

By a similar method to that used in §2 of [1] we shall define notions

of differentiability, but we use here the topology T instead of the

Von
convergence structure © defined in [!]. 1In this section X is a given

open subset of E , and BO(E, F) = LO(E, F) = F and Ln(E, F) is defined

as in Definition 2.2.

DEFINITION 3.1. A function f : X » BYE, F) will be called weakly

m-times differentiable if there exist functions
e x> 8" e, P, k=01, ..., m,

such that Dof = f and for each x € X , each % € E and each
k € {0, 1, ..., p-1} we have

vim ¢ L (D)F (e th) DK f(2)) = DK

>0
tekK

flx)h

where the limit exists in F if #n =k = 0 , and with respect to the

topology of simple convergence in Bn+k(E, F) if n+k>0. If k=1,

we shall write f' instead of Df in some cases.

By Theorem 2.4.0 of [1] we can use only the totally symmetrical
n-linear mappings in order to define the functions of class Cn as
follows.

DEFINITION 3.2. Let m=>1 . A function f : X » L'(E, F) is said

to be differentiable of class " or Cm—diffbrentiable if f 1is weakly
m-times differentiable and for each k € {0, 1, ..., m} and each x € X

there exist V € V(E) and a neighborhood Y of x in X such that
Dkf|Y is continuous from Y into F , if n + k =0 and into

RE, P, V) ir n+ ko .

If f is of class Cm for every integer m , f 1is said to be
differentiable of class o s or CFLdifTérentiabZe.

REMARK 3.1. As in Remark 2.5 we see that if f 1is weakly m-times
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differentiable (respectively, of class Cm ) on X , then it is also weakly
m-times differentiable (respectively of class Cg ) in the sense of §2 of
Lrl.

REMARK 3.2. Assume that E and F are Banach spaces, and L[ and

M are norm-Kuratowski measures of noncompactness on F and F . Then, by

Remark 2.4, f is of class ® on X if and only if f is n-times

continuously Fréchet differentiable on X .

By Remark 3.1 and by Proposition 2.2.0 and Theorem 2.8.1 in [1] we

have the following elementary properties of functions of class .

PROPOSITION 3.1. Let f be a "-differentiable mapping of X into
F. Let x €X and Y be a neighborhood of x in X as in Definition
3.2, and h € E such that {x+th : ¢t € [0, 1]} €Y . Then

1
(i) |0 ()0 () |k = j D*f(z+th)(h, kK)dt for every

0
k € En-l 3

(i1) we put
n
R flz, k) = fla+h) - Y = D"Fx)(h, ..., B)
n om.

Then there exists a continuous seminorm p on E such that x +VcY,
where V ={y €E : ply) < 1} and for each continuous seminorm q on F,

we can define a function Bp q : V>R such that

3

(3.1) limo_ (k) =0,
k-0 p»sq
(3.2) q(Rnf(x, k) = 6p q(k)[p(k)]n for every k €V .

It follows from (3.2) that if k € E and Rk < V , then

(3.3) p(k) = 0 and flx+k) = flx) + Df(x)h .

Let us consider an example of Cn-differentiable mappings.

PROPOSITION 3.2. Assume that E and F are two Fréchet spaces over
C. Let g : X+ F be continuwous and weakly n-times differentiable on
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X . Suppose that g(X) <is relatively compact. Then g <is of class c*
on X .

Proof. Let a € X and W € V(E) such that (a+3(n+1)W) C X . Let
m<=n, x € (a+t2W) and u, A eees h, h € 2W , and 2z, w € € such that
lz|, lw] < % and I'={z € C: |z| =1} positively oriented. By the
Cauchy formula for scalar analytic functions, the Hahn-Banach theorem and

the induction we have

g(x-}-zh) = ﬁ [F L(ztz_h) ds N
_ 2w (x+sh)
(3.3) glx+zh) - glz+wh) = Z= JF (o) & >

(3.4) Dlglaszh) (by, ..., k)

o g (x+zh+slhl+ ...+s k)
= ——(2“.)’” - . 2.32 > dsl dsm .
1 Sl 2...Sm
It follows from (3.3) and (3.4) that
(3.5) |Dmg(x+zh)—Dmg(x)|(hl, cees k)

B 2 g(x+slhl+...+smhm+sh] s p

= — . > 5 g o smds
(omz) r r sl...sm(z-s)s

On the other hand we have

Fg(x) (hys - By gy 0)

) 1 J J g(x+slhl+...+sm_lhm_l) 5 s
omi)™ I r .82 1 m-1

Then
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gz) (k) ..oy B wh_)

m-~1" m

Dmg(x)(hl, cees B s Whm) + Dmg(x)(hl, s By 0)

_ I ] glats h+.. .45 wh )og(z+s i+ 45, (0 ) i .
.\m ot 2 2 100 m
(en) T r 818,
Hence by (3.3) we have
(3.6) Dg@)(hy, ..., b,  , vh)
glx+s h +...4s sh )
- '_‘liﬁi“'J . J P P s ds
(eng )™ Jr r 31...Sm_lsm(84d)s

We put 4 = co g(X) ; then A is bounded, which implies that for
every U € V(F) then there exists ¢ > 0 such that S84 € U for every
g €C and |s| =t . By (3.4) and (3.5), for every = € (a+2W) and
y €tU , t € 10, 1[ we have

(3.7) g(z)(7") c 4,
(3.8) [Dmg(x+y)—Dmg(x)] (B_/m) c thd .

Because M(4) = 0 , by (3.6), (3.7) and (3.8), U'g(x) and W
satisfy the conditions (B.1l) and (B.2) for every « € (a+W) and every
k > 0 . Hence it follows from (3.8) that Dmgl(a+W) is continuous from
(a+W) into B'(E, F, W) .

Applying Theorem 2.4.0 of [1] we have Dmg(x) € Lm(E, F) for every
x € (a+W) , which completes our proof. //

By Proposition 1.2, in the preceding proposition we can replace the

condition "g(X) is relatively compact" by the following conditions:

(E.1) M(2B) = |z3|M(B) for each z € C and B ¢ 2F ;

.

(E.2) M(Q(X)) and k(L, M, X, g) are finite;

(E.3) g(X) is bounded in F .

Now we shall show some basic properties of Cn-differentiable

mappings.
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PROPOSITION 3.3. Let D be an open subset of F . If f :X=>D

and g : D > G are of class s s then h =g o f is of class * on
X .

Proof. At first using the induction we shall show that h is weakly

“-times differentiable on X , and for every % € D and every integer

m=n, Dmh(m) can be written in the form
m i ml mi

(3.9) Y Y apflg=) o |0 g@) op; , ..., D glx) op;
=0 J€J(n) 1 i

where J is a partition {J J.} of {1, ...,m} , and mj is the

1* 0 Y4

cardinal of {j , and a, €K .

In the case m =1 , this assertion is clearly true. Now suppose that
it is true for m=r <n . In order to prove this assertion in the case
m=r + 1 it is sufficient to show that for each partition

J = {Jl, - Ji} of {1, ..., m} we have

i ml m.
z+> D f(glz)) o {D “glz) o Py > «++s D Yg(x) o Py
1 1

is weakly differentiable and its derivative at x can be written in the
form

m

. m.
“f(g(x)) o [DYgz) 0 py , ey D Yglx) 0 py L Dgl@) o B,y
1 i

D

i Gt & "'
+ Dflgx)) o |07 glz) e p, (13, D glx) o p; , ..., D glz) o p;
1 2 i

i ml mi+1
+ ...+ D f(g(=)) o (D QW)opﬁ,.”,D gu)oq%“hn
But this follows from a simple differential calculus and Proposition

m
2.1. Then D h(x) can be written in the form (3.9). Now applying
Proposition 2.1 and by Theorem 2.4.0 in [!] we see that % is of class c*

on X . //
J i 1
Now let f : X~>LY(E,E), g: X~>L(E, E) be of class C  on
X . Let (I, J) be a partition of {1, ..., i+j-1} , such that the
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cardinal of J 1is equal to 1 . For each x € X we put

h(z) = f(x) o (pI, glx) o pJ) . It is clear that h is weakly
differentiable on X and
Dh(z) = Df(x) o (pry;51> 9(2) © py) + fla) o (o Dg(2) © pyes,0y) -
By induction we have the following lemma.

LEMMA 3.1. Let f, g : X > L(E, E) be of class c* . For each
x € X we put hix) = f(x) o glx) . Then h <is weakly n-times
differentiable on X and for each x € X and m <n we have

D"n(zx) = %:(IZ;) aI,JDjfo) o [pI, Dig(x) °py| + Dm-l[f(x) ° Dg(x)] .

Furthermore by induction and by Proposition 2.1, we see that % is of

class (' . (Here we remark that py can be written in the form
(p{l}, seey p{?:}) if I = {l, cs ey 7:} .]

Now we shall give a proposition about the differentiability of the

mapping ¢ (cf. Proposition 2.2).

PROPOSITION 3.4. Let f : X » L(E, E) be of class C' on X ;
suppose that f(x) € H(E, E) for every x € X . Put

g(z) = ¢(f(z)) for every =z € X .
Then g 1is of class b oon x.
Proof. Let x, y € X ; we have
gly) - glz) = gly) o [flx)-fly)] o g(x)
Hence it follows that g is weakly differentiable on X and
Dg(x) = -g(x) o Df(x) o (p{l}, glzx) o p{e})
Applying the arguments of Proposition 2.1, by Lemma 3.1 and induction

we see that g is of class * on x. //

4. The inverse mapping theorem

In this section we shall establish an inverse mapping theorem for
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*-differentiable mappings. At first let us consider the case of

homeomorphisms.
THEOREM 1. Let D be an open subset of E and f : D> F be of

class ¢ on D. Suppose that [ is a homeomorphism of D onto an open
subset of F , and there exists a D such that Df(a) is in H(E, F) .

Then there exists an open neighborhood X of a in D such that if
g = (f'|X)'1 and Y = f(X) then g 1is of class * on Y and for every
y € Y we have Dgly) = [Df[g(y))]-l .

Proof. By Proposition 1.4 we can find an open neighborhood X of a
in D such that Df(x) € H(E, F}) for every & € X . Fixan Y €Y ; we
shall show that g 1is weakly differentiable at Yy and

pg(y) = Prlgw))]t .

By Proposition 2.1 we can suppose that E =F , y =g{y) =0 , and
fr(o) =1 .

Let p, V, Gp . for f and x = 0 as in Proposition 3.1. Let

U € V(E) such that U c %V and Uc f(V) and

ep,p(h) = % for every h € f_l(U)

Now let k € U , t €K such that 0 < || < 1 . Then there exists

ht,k € V such that g(tk) = ht,k . We shall show that

(4.1) plt™in <1 if k€U and 0 < |t| <1 .
t,k

Indeed if there exist k € U, ¢ €K such that 0 < |¢t| <1 and

t_lh >1 , there exists s € ]0, 1[ such that s t—lh =1.
p p
t,k t,k

But

tk = £ln, ) - £(0) = £1(O)n, , + BF(0, R, )
where
(4.2) Rf(z, k) = flz+h) - f(z) - Df(x)n .

Because Df(0) = I , we have
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(4.3) t™hh, = k- 7370, B, )
On the other hand, by (3.2) we have
- -1 -1
p[St lRf(oa ht,k)] = st p(Rf(O, ht,k)) st p(ht,k)ep,p(ht,k)

1

tA

- - X
SP[t ht,k]ep,p(ht,k) =0, o) =5
since p(sk) =1 , by (4.3) it follows that

1= p[st_lht’k] = P(Sk) + p[St_lRf(os ht,k)] =

wln

This contradiction shows (L4L.1). Now let ¢ be an arbitrary

continuous seminorm on E | let Bp q be as in Proposition 3.1. We have
k]

as above
-1
q[t rf (o, ht,k)] =8, o(ry 1)

Since 1lim ht ¥ =0, by (3.1) we have 1lim t-lRf(O, h
t0 O £+0

the other hand, by (4.3) we have

t,k) =

(h.1) £ g(tk)-g(0)] = [DF(0)) 7k - ¢7'RF(0, &, ,)

Therefore ¢ is weakly differentiable at y and Dg(y) is equal to

|Df(g(y))|_l . By Proposition 2.2, g is of class Cl on Y . Nowif

n>1, we put h(y) = ¢(Df(g(y))) for every y € Y . Then by
Propositions 3.3 and 3.4, h is of class Cl on Y , hence g is of
class C° on Y . By induction g is of class * on Y. //

We shall establish an inverse mapping theorem for vector fields, but

first we need the following lemma.

LEMMA 4.1. Let W be anopenin E, f=(I-g) : W+ E be of
class C* on W . Suppose that k(L, L, W, g} < k <1 and for every
a €W, f'(a) € H(E, E) and k(L, L, W, I-9(Df(a))) < i—:-’;-:- Let a € W ;
then there exist U, V € V(E) such that a + V< W and for each
(t, q) € [0, 1] x U we have
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(7)  tiflatx)-fla)] - (1-t)f'(a)(x) #q for all x € oV , or
t{fly)-fla)] - (1-t)f'(a)ly-a) # q for all y € a+dV ;

(i) flx+a) # fla) for all =x € V\{0} .
Proof. Fix an a € W ; we have S € B(E, E) such that

% and o(f'(a)) =I+5. Put £ =o(0fl@) o f.

k(L, L, W, S) <
Then Df'l(a)=I and fl=I—gl » where g, =g+ Sog-S5. By
Proposition 1.1 we have

k(z, L, W, gl) < &k(L, L, W, g) + k(L, L, W, So g) + k(L, L, W, 3)

(1-k)k

< k + 1ok

1-k _
+m-l.

We see that if the lemma holds for f. , then it holds for f . Then

we can suppose that Df{a) = I and a = fla) = 0 . By Proposition 3.1 we
can choose W' € V(E) such that W' < W and Df|W’ 1is a continuous

mapping from W' into B(E, E, W') and
(4.5) f(x) = f'(0)x = x for every x € W' such that Kz c W' .

Let V ¢ V(E) such that Vc W' and
(L.6) (Fr(0)-f"(x)) € B(W', tW', 1) for all = €7 .

By Proposition 3.1 we have

1
glx) = IO (£'(0)-f"(sx))xds for all =z € W' .
Put
F= {tflx)-(1-t)x = x-tg(x) : (£, =) € [0, 1] x av} .

We shall show that F 1is closed and does not contain O , which implies

(i),
Now let {(tj, xJ)} be a sequence in [0, 1] X 3V such that {yJ}

converges to y in F , where yj = xj - tjg[:cj) . We can suppose that

{tj} converges to t in [0, 1] . Put 4 = {xJ} , B= {yJ} v {yl} and

C = cofg(4) u {0}) . Since Ti=ysot tjg(:cj) , we see that AC B + C .

b]

Arguing as in the proof of Proposition 1.1 we see that 4 is relatively
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compact. Let x be an adherent point of {xj} , then x € 9V . By

Proposition 3.1, f is continuous on D ; thus ¢tf(z) + (1-t)x =y .

Then F is closed.

Now suppose that there exists (£, x) € [0, 1] X 9V such that

1
tflx) + (1-£)f'(0)x = (I-tg)(z) = x - ¢ J (f'(o)—f'(sx))xds

0
=0.

If Kec W' , by (4.5), F'(0) =0 ; hence x = 0 , which contradicts
the condition x € 9V .

Then there exists ¢ € K such that cx € oW' ; hence we have
1
ex = J (f'(o)-f'(sx))tcxdb .
0

By (4.6) it follows that cx € éﬁ' C W' , which contradicts the

condition ex € W' . Then F does not contain O .

(1) Let x € V such that f(x) = 0 ; we shall show that x = 0 .
If Ke< W' | then by (4.5), f'(0)r =x =0 . Now if there exists ¢t € K

such that tx € 3W' , we have
1
tf(x) = t(I-g)(x) = tx - J (f’(o)—f'(sx))txds =0 .
0

Arguing as in (i) we can find a contradiction, which completes our

proof. //

Applying Theorem 1 and Lerma 4.1 we can show the following inverse

mapping theorem for vector fields.
THEOREM 2. Let D be anopen in E, f = (I-g) : D+ E be of

class C' on D . Suppose that 0 € D and f(0) =0, f'(0)=I, g
is L-bounded on D and k(L, L, D, g) <1 . Then there exists an open
neighborhood X of O such that X< D and flX is a homeomorphism of

X onto an open subset Y of E . Put h = (f|X)_l ; then h is of

elass ' on Y and for every y €Y we have

ni(y) = r(ry)] ™ .
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Proof. By Proposition 2.2 we can choose W, W', V and U for a=0
as in Lemma 4.1 such that U< V. Now let p € U . By Lemma 4.1 and
(D.4) we have

(4.7) deg(f, V, p) = deg(f'(0), V, p) = deg(I, V, p) =

y (4.6) and Remark 1.1, for each a € V and each V' € V(E) such
that a+ V' < W', g'(a) is a limit-compact mapping on a + V' . By
(4.6) and Proposition 3.1, (I-tg’(a)) € H(E, E) , which implies that
(I—tg'(a))(y—a) # 0 for every Yy € a+dV' . Arguing as in Proposition 3.1,
by (D.1) and (D.4) we have

(4.8) deg(f'(a)(+-a), a+V', 0) = deg((I-g'(a))(+-a), a+V', 0)
= deg(I(+-a), a+V', 0) = deg(I, a+V', a) = 1 .

Put 4 = (f|7)_l({p}) = ((I—g)|7)_l({p}) . Arguing as in the proof of
Lemma 4.1, we see that A is compact. Then by Proposition 1.3 and by (Z%)

of Lemma 4.1, A consists only of isolated points. Then

= {al, ceey am}

By Lemma 4.1 we can choose V' € V(E) such that V' < ¥' and

{aj+V, =1, ..., m} is a family of pairwise disjoint open subsets of
V and for every J € {1, ..., m} we have, by (L4.8),
des(f, a+v’, p) = dea(f, a 7', £la))) = des(I-(g+F(a,)), @V, 0)

deg(f—f(aj) s a +V', 0)
deg(f' (a )(-a) a#v', 0) =

From (4.3) and (D.3) it follows that

1 = deg(f, V, p) =Zdeg[f, aJ.+V', p) =m .
J

Hence it follows that for each p € U there exists an unique x € V
such that f(x) =p . Put Y=U and X =V n f.l(Y)

Then f|X maps X onto Y . Analogously flX also is an open

mapping of X onto Y . Therefore f|X is a homeomorphism of X onto
Y . DNow applying Theorem 1, we have the desired results. //
REMARK 4.1. 1In Theorem 2 we can replace the condition f'(0) = I by

the condition f'(0) € H(E, E) . This result relies on the study of the
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spectrum of L-bounded linear operators and will appear elsewhere.

DEFINITION 4.1, 1Let be an open in E , f : D> F be of class

Cl on D . For each x € D put Rf(x, h) as in (4.2). We shall say

that f satisfies the condition (C) on D if

(C) for each x € D and each d > 0 , there exists a
neighborhood X of x in D such that
k(L, M, X-z, Rf(x, *)) < d .
REMARK 4.2, 1If E and F are Banach spaces, D is an open subset

of E, L and M are the norm-Kuratowski measures of non-compactness on

E and F and f : D=+ F is of class ¢t . Then f satisfies the

condition (C) on D .

In fact, let * €D, d>0 and V € V(E) such that x+V< D . Let
h, k € V; we have

Rf(z, h) - Rf(z, k) = f(x+h) - f(x+k) - Df(x)(h-k)

1
J [Df (x+t(h-k)) -Df ()] (h-k)dt .
6]

Thus

IRf(z, h)-Rf(x, K)l = sup WDF(x+t(h-k))-Df(z)INn-kll .
0=t=1

Therefore if V is small enough, k(L, M, V, Rf(x, ')) <d.

REMARK 4.3, Let E, F, X, g, x, W be as in Proposition 3.2. By
(3.5), Dg(x)(W) is relatively compact, then Rg(x, W) also is relatively
compact; hence k(L, M, W, Rg(x, ')) =0 . Then g satisfies the
condition (C) on X . Since D(T+g) =T + Dg for every T € B(E, F) ,
R(T+g)(xz, *) = Rg(x, *) . Then T + g satisfies the condition (C) on X
for every T € B(E, F) .

Now we can announce the inverse mapping theorem for the general case

as follows.

THEOREM 3 (Inverse mapping theorem). Let D be an open in E ,

f: D>F be of class * on D and a € D such that f'(a) € HE, E) .
Suppose that [ satisfies the condition (C) on D . Then there exists an
open neighborhood X of a in D such that flX s a homeomorphism of
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X onto anopen Y of F . Put g = (f[)()-l ; then g is of class ("

and satisfies the condition (C) on Y . For every y € Y we have

g'(y) = [F'g)] ™.

Proof. We can suppose that a= fla) =0 . Put T= QUTO))_l and
h=To f; we have h'(0) = I and h(0) = 0. For each x € D we have

h(x) = T(f(x)-f(0)) = T(Df(0)x+Rf(0, x)) = (I-(T o Rf(0, *)))(x) .
Since f satisfies the condition (C) and T € B(F, E) , there exists
an open neighborhood D' of 0 in D such that
k(L, L, D', T o Rf(0, *)) <1 .

Then by Theorem 2, there exist an open neighborhocod X of 0 in D’
such that h|X is a homeomorphism of X onto an open U in E . Then
-1

(

f|X is a homeomorphism of X onto Y =T (U) . By Proposition 2.2, we

can suppose that f'(x) € H(E, F) for every & € X . Thus by Theorem 1,
g = (fl)()_l is of class (' on Y and for every y €Y we have

g'(y) = (f’(g(y)))_l . Now we shall show that g satisfies the condition
(C) on Y.

Fix an y €Y ; for the sake of simplicity we suppose y = 0 and
consider Rg(0, *) . By (L.L), Rh-l(o, *) = 2Rf(0, ) o #Y . Then

(4.9) Rg(0, *) = -Rf(0, *) o Wt o1 .

Since k(L, L, D', T o Rf(0, *)) <1 and h=1I-To Rf(0, *) , by
Proposition 1.1, k(L, L, U, h-l) is finite. Then by Proposition 1.1 and
(4.9), g satisfies the condition (C) at y . This completes the proof of

the theorem. //

Let S be a compact linear mapping of E into E , that is, there
exists V € V(E) such that S(V) is relatively compact. It is well known
that if (I-S)(E) = E , then it is a homeomorphism from E onto E , and

(I—S)—l =7+ (I--S)_l © S . Because (I-S)—1 o S 1is compact, we see that
(I-S) € H(E, E) . Then by Remark 4.3, Proposition 3.2 and Theorem 3 we

have the following theorem.
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THEOREM 4 (The inverse mapping theorem for analytic vector fields).
Let E and F be two Fréchet spaces over € . Let g be a continuous
and weakly n-times differentiable from an open set D in E into E .
Suppose that g(D) is relatively compact and (I-g'(a)) is surjective for
an a € D . Then there exists an open neighborhcod X of a in D such
that f = (I-g)|X s a homeomorphism of X onto an open Y in E , and

f and f'—l are of class ' on X and Y repsectively and for each
y €Y we have
~1 -1 -1
DFf (y) = [oF(F ()] .

With the product topology E X F also is a Fréchet space. We shall
identify E x {0} and {0} X F to be E and F respectively. Let pr

1
and pr, be the projections of F X F onto EF and F . Assume that
there exists a measure of noncompactness & on E X F such that pry and
pr, are the elements of B(ExF,ExF). Let L and M be the

s E . F s
restrictions of @ on 2 and 2 . Because the projections are open, L

and M are measures of noncompactness on E and F .

Using the notions and arguments in §7 of Chapter V and §2 of Chapter
VI in [2], and applying Theorem 3 we have the following theorem.

THEOREM 5 (The implicit function theorem). Let V X U be an open

setin EXF and f : Vx UG be of class A, and (a, ) e V x U,
Assume that f satisfies the condition (C) on V x U and the partial
derivative with respect to the second variable Dgf(a, b) € H(F, G) and

fla, b) = 0. Then there exists a continuous mapping g from V0 s, an

open neighborhood of a , into U such that gla) =b and flz, glx)) =0
for every x € Vo -

If VO is taken to be sufficiently small, then g 1is uniquely

determined and is a Cn-différentiable mapping on Vo -
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