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ON THE DENSITY TYPE TOPOLOGIES IN
HIGHER DIMENSIONS
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Abstract

The topologies of the density type in Euclidean space of dimension higher than one are introduced.
Definitions are based on a notion of density point connected with a set of sequences of real numbers.
Our purpose is to study properties of these topologies and connections between them.
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Following an observation that the notion of a density point (see [6]) of a measurable
subset of the real line can be described by using a fixed sequence {n}n∈N, Filipczak and
Hejduk [1] introduced the notion of a density point of a measurable subset of the real
line with respect to a fixed unbounded and nondecreasing sequence of positive reals.
They proved that this notion coincides with that of a classical density point if and only
if the sequence in question tends to infinity not too fast.

We wish to investigate a similar notion, but on the plane and in Euclidean space
of dimension higher than two, where, even in the classical case, the situation is more
complicated (see [5, 6]). We shall use differentiation bases consisting of intervals of a
special type.

We begin by recalling some basic definitions. Let L2 stand for the family of all
Lebesgue measurable sets on the plane and let λ2 stand for two-dimensional Lebesgue
measure.

We say that a point (x0, y0) ∈ R2 is an ordinary density point of the set A ∈ L2 if
and only if

lim
h→0+

λ2(A ∩ ([x0 − h, x0 + h] × [y0 − h, y0 + h]))

4h2 = 1.

We say that a point (x0, y0) ∈ R2 is a strong density point of the set A ∈ L2 if and
only if

lim
h→0+,k→0+

λ2(A ∩ ([x0 − h, x0 + h] × [y0 − k, y0 + k]))

4hk
= 1.
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Obviously if (x0, y0) is a strong density point of A then it is also an ordinary density
point of A, but the converse need not be true.

As usual, let80(A) denote the set of all ordinary density points of a set A ∈ L2 and
let 8s(A) denote the set of all strong density points of A ∈ L2.

For brevity, let R((x, y), a, b) stand for the rectangle (x−a, x+a)×(y−b, y+b),
where x, y ∈ R, a, b ∈ R+, and S((x, y), a) := R((x, y), a, a).

Let S be the family of all unbounded and nondecreasing sequences of positive reals.
Sequences {sn}n∈N ∈ S are denoted by 〈s〉. We divide S into two sets:

S0 :=

{
〈s〉 ∈ S : lim inf

n→∞

sn

sn+1
= 0

}
and

S+ := S \ S0 =

{
〈s〉 ∈ S : lim inf

n→∞

sn

sn+1
> 0

}
.

DEFINITION 1. Let 〈s〉, 〈t〉 ∈ S . For A ∈ L2 we define an operator

8〈s〉〈t〉(A)=

{
(x, y) ∈ R2

: lim
n→+∞

λ2(A ∩ R((x, y), 1/sn, 1/tn))

4/sntn
= 1

}
.

It is well known (see [6]) that the fact that (x, y) belongs to 80(A) is equivalent to
the fact that

lim
n→∞

λ2(A ∩ R((x, y), hn, kn))

4hnkn
= 1

for each pair of sequences of positive numbers {hn}n∈N, {kn}n∈N tending to 0 and for
which there exists a number α ∈ (0, 1) (called the parameter of regularity) such that
α < hnk−1

n < α−1 for each n ∈ N.
With the latter we introduce a relation between sequences from S .
Let 〈s〉, 〈t〉 ∈ S . We say that 〈s〉 is regular to 〈t〉 (written 〈s〉 reg 〈t〉) if there exists

a number α ∈ (0, 1) such that α < snt−1
n < α−1 for each n ∈ N.

Here are some elementary properties of this relation.

PROPERTY 2. The relation reg is an equivalence relation in S .

PROPERTY 3. If 〈s〉 ∈ S+ and 〈t〉 ∈ S0 then 〈s〉 cannot be regular to 〈t〉.

PROPERTY 4. Let 〈s〉, 〈t〉 ∈ S , 〈s〉 reg 〈t〉 and put kn =max(sn, tn) for n ∈ N. Then
〈k〉 reg 〈s〉.

Just from the definitions and the condition equivalent to the definition of an ordinary
density we get the following proposition.

PROPOSITION 5. For any A ∈ L2,⋂
〈s〉,〈t〉∈S
〈s〉reg〈t〉

8〈s〉〈t〉(A)=80(A).
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COROLLARY 6. For any A ∈ L2 and for any 〈s〉, 〈t〉 ∈ S such that 〈s〉 reg 〈t〉,

80(A)⊂8〈s〉〈t〉(A).

Let 〈n〉 denote the increasing sequence of all natural numbers.

PROPOSITION 7. For any A ∈ L2,

8〈n〉〈n〉(A)⊂80(A).

PROOF. Let A ∈ L2 and (x, y) ∈8〈n〉〈n〉(A), that is,

lim
n→+∞

λ2(A ∩ S((x, y), 1/n))

4/n2 = 1. (1)

Let {hn}n∈N be a nonincreasing sequence tending to 0. Set

h n =max
{

1
k
: k ∈ N ∧

1
k
≤ hn

}
and hn =min

{
1
k
: k ∈ N ∧

1
k
≥ hn

}
for n ∈ N. Then the quotients h n/hn and hn/hn tend to 1. Since

h2
n

h2
n

λ2(A ∩ S((x, y), h n))

4h2
n

≤
λ2(A ∩ S((x, y), hn))

4h2
n

≤
h

2
n

h2
n

λ2(A ∩ S((x, y)hn))

4h
2
n

,

Equation (1) gives

lim
h→0+

λ2(A ∩ S((x, y), h))

4h2 = 1. 2

COROLLARY 8. For any A ∈ L2,

80(A)=8〈n〉〈n〉(A).

PROPOSITION 9. For every 〈s〉 ∈ S+, 〈u〉 ∈ S and for every A ∈ L2,

8〈s〉〈s〉(A)⊂8〈u〉〈u〉(A).

PROOF. Let 〈s〉 ∈ S+, 〈u〉 ∈ S , A ∈ L2 and (x, y) ∈8〈s〉〈s〉(A). Denoting the
complement of A by B, we assert that limn→+∞ λ2(B ∩ S((x, y), 1/sn))/(4/s2

n)= 0
and lim infn→+∞ sn/sn+1 = g > 0.

Let ε > 0. There exists n0 ∈ N such that for every n ∈ N, n > n0, we get

λ2(B ∩ S((x, y), 1/sn))

4/s2
n

< ε ·
g2

4
and

sn

sn+1
>

g2

4
.
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There exists k0 ∈ N such that sno ≤ uk0 . Fix k ∈ N, k > k0. There exists n ∈ N, n ≥ n0,
such that sn ≤ uk ≤ sn+1. Thus

λ2(B ∩ S((x, y), 1/uk))

4/u2
k

≤
λ2(B ∩ S((x, y), 1/sn))

4/(sn+1)2

=
λ2(B ∩ S((x, y), 1/sn))

4/s2
n

·

(
sn+1

sn

)2

< ε ·
g2

4
·

4

g2 = ε,

so (x, y) ∈8〈u〉〈u〉(A). 2

COROLLARY 10. For every 〈s〉 ∈ S+, 〈u〉 ∈ S0 and for every A ∈ L2,

8〈s〉〈s〉(A)=80(A)⊂8〈u〉〈u〉(A).

COROLLARY 11. For every A ∈ L2,⋂
〈s〉∈S

8〈s〉〈s〉(A)=80(A).

PROPOSITION 12. Let 〈s〉 ∈ S . If 8〈s〉〈s〉(A)=80(A) for every A ∈ L2 then
〈s〉 ∈ S+.

PROOF. Let 〈s〉 ∈ S0. By [3, Theorem 3] there exists Y ⊂ R such that 0 is not a
density point of Y and

lim
n→+∞

λ1(Y ∩ (−1/sn, 1/sn))

2/sn
= 1.

Define

A :=
⋃

y∈Y∩[0;+∞)

(({−y, y} × [−y, y]) ∪ ([−y, y] × {−y, y})).

By [3, Corollary 2.7] the set A cannot have 0 as its ordinary density point on the plane.
Analysis similar to that in [3, proof of Theorem 2.6] shows that (0, 0) ∈

8〈s〉〈s〉(A). 2

Summarizing, we have the following theorem.

THEOREM 13. Let 〈s〉 ∈ S . The set of ordinary density points of A is equal to
8〈s〉〈s〉(A) for every A ∈ L2 if and only if the sequence 〈s〉 belongs to S+.

We are led to the following stronger version of Corollary 11.

PROPOSITION 14. For every A ∈ L2,⋂
〈s〉∈S0

8〈s〉〈s〉(A)=80(A).
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PROOF. One inclusion comes from Corollary 10.
To show the second one, suppose that there exists a point (x, y) ∈⋂
〈s〉∈S0

8〈s〉〈s〉(A) \80(A). Then

lim inf
h→0+

λ2(A ∩ S((x, y), h))

4h2 < 1,

hence there exists a sequence 〈s〉 ∈ S such that

lim
n→+∞

λ2(A ∩ S((x, y), 1/sn))

4/s2
n

< 1.

We choose a subsequence 〈t〉 ⊂ 〈s〉 such that 〈t〉 ∈ S0. Thus

lim
n→+∞

λ2(A ∩ S((x, y), 1/tn))

4/t2
n

< 1,

so (x, y) /∈8〈s〉〈s〉(A), which is a contradiction. 2

We wish to investigate whether we obtain something different by considering
rectangles described by sequences.

PROPOSITION 15. For every 〈s〉, 〈t〉 ∈ S+ such that 〈s〉 reg 〈t〉, 8〈s〉〈t〉(A)⊂80(A)
for every A ∈ L2.

PROOF. Let A ∈ L2, 〈s〉, 〈t〉 ∈ S+, 〈s〉 reg 〈t〉. Put kn =max(sn, tn) for every n ∈ N.
It suffices to prove that 8〈s〉〈t〉(A)⊂8〈k〉〈k〉(A), since Properties 4 and 3 show that
〈k〉 ∈ S+ and 8〈k〉〈k〉(A)=80(A), by Theorem 13.

Suppose that there exists a point (x, y) ∈8〈s〉〈t〉(A) \8〈k〉〈k〉(A). Let B := R2
\ A.

Then

lim sup
n→+∞

λ2(B ∩ S((x, y), 1/kn))

4/k2
n

> 0,

so there exist γ > 0 and a subsequence {knl }l∈N of {kn} such that

lim
l→+∞

λ2(B ∩ S((x, y), 1/knl ))

4/k2
nl

= γ.

From this there exists l0 ∈ N such that for every l ∈ N, l > l0,

λ2(B ∩ S((x, y), 1/knl ))

4/k2
nl

>
γ

2
.

Hence

λ2(B ∩ R((x, y), 1/snl , 1/tnl ))

4/(snl tnl )
≥
λ2(B ∩ S((x, y), 1/knl ))

4/k2
nl

·
tnl

knl

·
snl

knl

>
γ

2
λ2 > 0,

and (x, y) /∈8〈s〉〈t〉(A), which is a contradiction. 2
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COROLLARY 16. If 〈s〉, 〈t〉 ∈ S+ and 〈s〉 reg 〈t〉, then 80(A)=8〈s〉〈t〉(A) for every
A ∈ L2.

PROPOSITION 17. Let 〈s〉, 〈t〉 ∈ S+ or 〈s〉, 〈t〉 ∈ S0. If 8〈s〉〈t〉(A)=80(A) for every
A ∈ L2, then 〈s〉 reg 〈t〉.

PROOF. Let 〈s〉, 〈t〉 ∈ S+ or 〈s〉, 〈t〉 ∈ S0. Assume that 〈s〉 reg 〈t〉 fails, that is, for
every α ∈ (0, 1) there exists n ∈ N such that (sn/tn)≤ α or (sn/tn)≥ (1/α). Therefore
there exists a subsequence {nk}k∈N such that {snk/tnk }k∈N tends monotonically to
+∞ or to zero. We will assume that the second case holds, for the first case is
analogous. We will assume additionally, by choosing a subsequence if necessary, that
snk+1 > 2snk .

Define a function f : (0, 1/2sn1] → R, where f (1/2snk )= 1/tnk for n ∈ N and f
is linear and continuous on the intervals [1/2snk+1, 1/2snk ], k ∈ N.

Since for every x ∈ (1/2snk+1, 1/2snk ) the quotient f (x)/x is between

f (1/2snk )

1/2snk

=
2snk

tnk

and
f (1/2snk+1)

1/2snk+1

=
2snk+1

tnk+1

,

it follows that

lim
x→0+

f (x)

x
= 0.

Set
A = [−1, 1]2 \ {(x, y) : x ∈ (0, 1/2sn1) ∧ y ∈ (0, f (x))}.

Then
λ2(A ∩ [−h, h]2)

4h2 ≥
3h2
+ h(h − f (h))

4h2 = 1−
f (h)

4h
→ 1

for h→ 0+, so (0, 0) ∈80(A). However,

λ2((R2
\ A) ∩ R((0, 0), 1/snk , 1/tnk ))≥

1
2
·

1
snk

·
1

tnk

,

therefore (0, 0) /∈8〈s〉〈t〉(A). Thus we have found a set A for which 8〈s〉〈t〉(A) 6=
80(A). 2

Summarizing Corollary 16 and Proposition 17, we have the following theorem.

THEOREM 18. Let 〈s〉, 〈t〉 ∈ S+. The set of ordinary density points of A is equal to
8〈s〉〈t〉(A) for every A ∈ L2 if and only if 〈s〉 reg 〈t〉.

PROPOSITION 19. For every A ∈ L2,⋂
〈s〉,〈t〉∈S

8〈s〉〈t〉(A)=8s(A).
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PROOF. Let A ∈ L2. By the Heine definition of limit, each point of strong density
of A belongs to 8〈s〉〈t〉(A) for every 〈s〉, 〈t〉 ∈ S .

Suppose that there exists a point (x, y) belonging to
⋂
〈s〉,〈t〉∈S 8〈s〉〈t〉(A) but which

is not a strong density point of A. Hence there exist decreasing sequences {kn}n∈N and
{hn}n∈N tending to 0 such that

lim
n→+∞

λ2(A ∩ R((x, y), hn, kn))

4hnkn
< 1.

Then for sn=1/hn , tn=1/kn , n∈N, we obtain (x, y) /∈8〈s〉〈t〉(A), which is a
contradiction. 2

PROPOSITION 20. For every 〈s〉 ∈ S there exists 〈t〉 ∈ S which is not regular to
〈s〉 and there exists a set A ∈ L2 such that the difference 8〈s〉〈s〉(A) \8〈s〉〈t〉(A) is
nonempty.

PROOF. Let 〈s〉 ∈ S . Define tn := s2
n for n ∈ N. Then 〈t〉 is not regular to 〈s〉. Set

A := {(x, y) : y > x2
∨ y <−x2

}. It is clear that

(0, 0) ∈8(A)⊂8〈s〉〈s〉(A) and
λ2(A ∩ R((0, 0), 1/sn, 1/s2

n))

4/s3
n

=
2
3
,

so (0, 0) /∈8〈s〉〈t〉(A). 2

PROPOSITION 21. For every 〈s〉 ∈ S there exists 〈t〉 ∈ S which is not regular to 〈s〉
and there exists a set A ∈ L2 such that the difference 8〈s〉〈t〉(A) \80(A) is nonempty.

PROOF. Let 〈s〉 ∈ S . Define tn := n · sn for n ∈ N. Then 〈t〉 is not regular to 〈s〉.
Moreover, 〈t〉 ∈ S0 if and only if 〈s〉 ∈ S0. We choose a subsequence {tnk }k∈N ⊂
{tn}n∈N such that tnk+1 > 2tnk . Set

A := [−1, 1]2\
⋃
k∈N
[1/2tnk , 1/ttnk

]
2

and denote by B the complement of the set A.
We now consider two cases. If 1/tn ∈ (1/2tnk , 1/tnk ) then

λ2

(
B ∩ R

(
(0, 0),

1
sn
,

1
tn

))
≤

1
tn
·

1
2tnk

+

(
1
tn
−

1
2tnk

)2

+

(
1

tnk

−
1

tnk

)(
1
tn
−

1
2tnk

)
≤

1
tn
·

1
2tnk

+

(
1
tn
−

1
2tnk

)2

+
1

2tnk

(
1
tn
−

1
2tnk

)
=

(
1
tn

)2

.

If 1/tn ∈ (1/tnk+1, 1/2tnk ) then B ∩ R((0, 0), 1/sn, 1/tn)⊂ [0, 1/tn]2.
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Therefore
λ2(B ∩ R((0, 0), 1/sn, 1/tn))

4/sntn
≤
(1/tn)2

4/sntn
=

1
4n
,

so (0, 0) ∈8〈s〉〈t〉(A).
The point (0, 0) is clearly not an ordinary density point of A since

λ2(B ∩ S((0, 0), 1/tnk ))≥
1
4
(1/tnk )

2.

This concludes the proof. 2

After a slight modification of the last proof we can obtain the following proposition.

PROPOSITION 22. For every 〈s〉 ∈ S0 there exists 〈t〉 ∈ S , which is not regular to 〈s〉,
and there exists a set A ∈ L2 such that the difference 8〈s〉〈t〉(A) \8〈s〉〈s〉(A) is
nonempty.

PROPOSITION 23. For every 〈s〉 ∈ S0 there exists 〈t〉 ∈ S , such that 〈s〉 reg 〈t〉 and
there exists a set A ∈ L2 such that the difference 8〈s〉〈s〉(A) \8〈s〉〈t〉(A) is nonempty.

PROOF. Let 〈s〉 ∈ S0. Define tn := 2sn for n ∈ N. Then 〈s〉 reg 〈t〉. Let {snk }k∈N be a
subsequence of 〈s〉 such that

lim
k→+∞

snk

snk+1
= 0.

Set

B :=
⋃
k∈N

((
−

1
snk+1

,
1

snk+1

]
×

([
−

2
snk+1

,−
1

snk+1

]
∪

[
1

snk+1
,

2
snk+1

]))
.

Let ε > 0. There exists k0 ∈ N, such that for any k > k0 we have snk/snk+1 <
√
ε/2.

Set k(n) :=min{k ∈ N : snk ≥ sn} and choose n0 for which k(n0) > k0. Then for every
n > n0,

λ2(B ∩ S((0, 0), 1/sn))

4/s2
n

≤
8(1/snk(n)+1)

2

4(1/snk(n))
2 = 2

(
snk(n)

snk(n)+1

)2

< ε,

so, denoting by A the complement of B, we get (0, 0) ∈8〈s〉〈s〉(A).
Since for every k ∈ N,

λ2(B ∩ R((0, 0), 1/snk+1, 1/tnk+1))≥ 2 ·
1

snk+1
·

1
tnk+1

,

then

lim sup
n→+∞

λ2(B ∩ R((0, 0), 1/sn, 1/tn))

4/sntn
> 0.

Therefore (0, 0) /∈8〈s〉〈t〉(A). 2

PROPOSITION 24. For every 〈s〉 ∈ S0 there exists 〈t〉 ∈ S such that 〈s〉 reg 〈t〉 and
there exists a set A ∈ L2 such that 8〈s〉〈t〉(A) \8〈s〉〈s〉(A) 6= ∅.
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PROOF. Let 〈s〉 ∈ S0. Define tn := (1/2)sn for n ∈ N. Then 〈s〉 reg 〈t〉. Let {snk }k∈N
be a subsequence of 〈s〉 such that limk→+∞ snk/snk+1 = 0.

Set

B :=
⋃
k∈N

([
−

1
snk+1

,
1

snk+1

]
×

([
−

1
snk+1

,−
1

2snk+1

]
∪

[
1

2snk+1
,

1
snk+1

]))
and let A be the complement of B.

For every k ∈ N,

λ2(B ∩ S((0, 0), 1/snk+1))= 2/snk+1,

hence

lim sup
n→+∞

λ2(B ∩ S((0, 0), 1/sn))

4/s2
n

> 0,

so (0, 0) /∈8〈s〉〈t〉(A).
Let ε > 0. There exists k0 ∈ N such that for any k > k0 we have (snk/snk+1) <

√
2ε.

Set k(n)=min{k ∈ N : snk ≥ sn} and choose n0 for which k(n0) > k0. Then for every
n > n0,

λ2(B ∩ R((0, 0), 1/sn, 1/tn))

4/sntn
<

4 · (1/snk(n)+1)
2

8/s2
n

<
1
2

(
sn(k)

snk(n)+1

)2

< ε.

Therefore (0, 0) ∈8〈s〉〈t〉(A). 2

We have considered connections between operators8〈s〉〈t〉 depending on sequences
〈s〉, 〈t〉 ∈ S . Now let us mention general results on such operators.

PROPOSITION 25. For every 〈s〉, 〈t〉 ∈ S and for every A ∈ L2 the set8〈s〉〈t〉(A) is an
Fσδ set.

PROOF. We first observe that

8〈s〉〈t〉(A)=
∞⋂

k=1

∞⋃
m=1

∞⋂
n=m

{
(x, y) :

λ2(A ∩ R((x, y), 1/sn, 1/tn))

4/sntn
≥ 1−

1
k

}
for every 〈s〉, 〈t〉 ∈ S and every A ∈ L2.

Since for a fixed n the function

λ2(A ∩ R((x, y), 1/sn, 1/tn))

4/sntn

is a continuous function of (x, y) the set

∞⋂
n=m

{
(x, y) :

λ2(A ∩ R((x, y), 1/sn, 1/tn))

4/sntn
≥ 1−

1
k

}
is closed, so 8〈s〉〈t〉(A) is an Fσδ set. 2
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THEOREM 26. For every 〈s〉, 〈t〉 ∈ S and for every A, B ∈ L2:

(1) 8〈s〉〈t〉(∅)= ∅, 8〈s〉〈t〉(R2)= R2;
(2) 8〈s〉〈t〉(A ∩ B)=8〈s〉〈t〉(A) ∩8〈s〉〈t〉(B);
(3) A ∼ B H⇒ 8〈s〉〈t〉(A)=8〈s〉〈t〉(B);
(4) A ∼8〈s〉〈t〉(A),

where A ∼ B means that λ2(A 4 B)= 0.

PROOF. (1), (2) and (3) are obvious. (4) is a simple consequence of the inclusion
8s(A)⊂8〈s〉〈t〉(A) (Proposition 19) and the fact that the operator 8s is a lower
density operator (which means it satisfies conditions (1)–(4)). 2

We now recall results presented in [4]. Let (X, S, I ) denote a measurable space,
where S is a σ -algebra of subsets of X and I is a proper σ -ideal of S-measurable sets.
The space (X, S, I ) is said to have the hull property if whenever A ⊂ X , there is a set
B ∈ S such that A ⊂ B and if Z ∈ S and A ⊂ Z , then B \ Z ∈ I .

For every lower density operator 8 on S let T8 := {A ∈ S : A ⊂8(A)}.

THEOREM 27 [4]. Let (X, S, I ) be a measurable space having the hull property.
Then for every lower density operator 8 the family T8 is a topology on X.

For every 〈s〉, 〈t〉 ∈ S we define a family T〈s〉〈t〉 := {A ∈ L2 : A ⊂8〈s〉〈t〉(A)}. Since
the assumptions of the last theorem are fulfilled T〈s〉〈t〉 is a topology on the plane.

For a deeper discussion of properties of this type of topology following from the
properties of the operator, we refer the reader to [2].

We will need only one additional property of general lower density operators.

THEOREM 28. Let 81, 82 be lower density operators in a measurable space
(X, S, I ). Then T81 = T82 if and only if 81 =82.

PROOF. Sufficiency is obvious.
Suppose that T81 = T82 but that there exists a set A ∈ S such that 81(A) \

82(A)= ∅. Since 81 is a lower density operator, 81(A) belongs to T81 and, by
our supposition, belongs also to T82 , which means that 81(A)⊂82(81(A)), but
A 481(A) ∈ I , so 82(A)=82(81(A)). Therefore 81(A)⊂82(A), which is a
contradiction. 2

By virtue of the above theorem and the properties shown earlier we get relations
between topologies T〈s〉〈t〉, 〈s〉, 〈t〉 ∈ S .

THEOREM 29.

(1)
⋂
〈s〉,〈t〉∈S
〈s〉reg〈t〉

T〈s〉〈t〉 = T0, where T0 denotes the ordinary density topology on the

plane.
(2)

⋂
〈s〉∈S0

T〈s〉〈s〉 = T0.
(3) For every 〈s〉 ∈ S , T〈s〉〈s〉 = T0 if and only if 〈s〉 ∈ S+.
(4) For every 〈s〉, 〈t〉 ∈ S+T〈s〉〈t〉 = T0 if and only if 〈s〉 reg 〈t〉.
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(5)
⋂
〈s〉,〈t〉∈S T〈s〉〈t〉 = Ts , where Ts denotes the strong density topology on the plane.

(6) For every 〈s〉 ∈ S there exist 〈p〉, 〈t〉 ∈ S which are not regular to 〈s〉 and such
that T〈s〉〈s〉 \ T〈s〉〈t〉 6= ∅ and T〈s〉〈p〉 \ T〈s〉〈s〉 6= ∅.

(7) For every 〈s〉 ∈ S0 there exist 〈p〉, 〈t〉 ∈ S such that 〈t〉 reg 〈s〉, 〈p〉 reg 〈s〉,
T〈s〉〈s〉 \ T〈s〉〈t〉 6= ∅ and T〈s〉〈p〉 \ T〈s〉〈s〉 6= ∅.

Here are some natural properties of the T〈s〉〈t〉 topologies. Property (5) from the
next theorem makes property (2) from the previous theorem more interesting since the
topology T0 is invariant under similarity but, as we will see, T〈s〉〈s〉 for 〈s〉 ∈ S0 is not.

We will use the following notation: for A ∈ R2 and x, y ∈ R, write A + (x, y)
for {(a + x, b + y) : a, b ∈ A}, −A for {(−a,−b) : a, b ∈ A} and (x, y) · A for
{(xa, yb) : a, b ∈ A}.

THEOREM 30. For every A ∈ L2 and for every 〈s〉, 〈t〉 ∈ S :

(1) for every x, y ∈ R, if A ∈ T〈s〉〈t〉 then A + (x, y) ∈ T〈s〉〈t〉;
(2) if A ∈ T〈s〉〈t〉 then −A ∈ T〈s〉〈t〉;
(3) for every m, p ∈ R, such that |m| ≥ 1 and |p| ≥ 1, if A ∈ T〈s〉〈t〉 then (m, p) · A ∈

T〈s〉〈t〉;
(4) for every A ∈ L2 and for every 〈s〉, 〈t〉 ∈ S+ such that 〈s〉 reg 〈t〉 and for every

m ∈ R \ {0}, if A ∈ T〈s〉〈t〉 then (m, m) · A ∈ T〈s〉〈t〉;
(5) for every 〈s〉 ∈ S0 there exists a set A ∈ L2, A ∈ T〈s〉〈s〉 such that for every m ∈ R,

|m|< 1, the set (m, m) · A does not belong to T〈s〉〈s〉.

PROOF. Properties (1)–(4) follow from the definition of the topology T〈s〉〈t〉 and
Theorem 29 point (4). We give the proof only for (5).

Fix 〈s〉 ∈ S0. Let {snk }k∈N be a subsequence of 〈s〉 such that

lim
n→∞

snk

snk+1
= 0.

Let

X :=
∞⋃

k=1

[
1

snk+1
,

1
√

snk snk+1

]
.

As was mentioned at the beginning, the one-dimensional version of a density
topology with respect to a fixed sequence was considered in [1]. The definitions of
the operator 8〈s〉 and the topology T〈s〉 for the fixed sequence 〈s〉 are analogous to
those in the two-dimensional case so we omit them.

The set Y := (R \ X) ∪ {0} belongs to T〈s〉 (see [1, proof of Theorem 3]).
Define

A :=
⋃

y∈Y\R−

(({−y, y} × [−y, y]) ∪ ([−y, y] × {−y, y})).

An analysis similar to that in [3, proof of Theorem 2.6] shows that A ∈ T〈s〉〈s〉.
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For m = 0 it is obvious that (m, m) · A /∈ T〈s〉〈s〉.
Without loss of generality we assume now that m ∈ (0, 1).
Let k0 be a positive integer such that

√
snk/snk+1 < m for k > k0. Then the set

m · Ym , where

Ym := (R \ Xm) ∪ {0} and Xm :=

∞⋃
k=k0

[
1

snk+1
,

1
√

snk snk+1

]
,

does not belong to T〈s〉 (see [1, proof of Theorem 4]) and, again following ideas
from [3, proof of Theorem 2.6], we get that the set

(m, m) ·

[ ⋃
y∈Ym\R−

(({−y, y} × [−y, y]) ∪ ([−y, y] × {−y, y}))

]
does not belong to T〈s〉〈s〉, so neither does the set (m, m) · A. 2

The next theorem expresses the connection between T〈s〉〈t〉 and the product topology
T〈s〉 × T〈t〉.

THEOREM 31. For every 〈s〉, 〈t〉 ∈ S the product topology T〈s〉 × T〈t〉 is contained
in T〈s〉〈t〉.

PROOF. Let 〈s〉, 〈t〉 ∈ S and let E ∈ T〈s〉 × T〈t〉. Fix any point (x0, y0) ∈ E and
a subsequence {nk}k∈N of the sequence of all natural numbers. Define Rk :=

R((x0, y0), 1/snk , 1/tnk ).
Since E ∈ T〈s〉 × T〈t〉, there exist sets A, B ⊂ R, such that A × B ⊂ E , x0 ∈ A ⊂

8〈s〉(A) and y0 ∈ B ⊂8〈t〉(B). Therefore for every ε > 0 there exists k0 ∈ N such
that for every natural k, k > k0,

λ1((−1/snk , 1/snk ) \ A)

2/snk

<
ε

2
and

λ1((−1/tnk , 1/tnk ) \ B)

2/snk

<
ε

2
.

Since

Pk\E ⊂ (((−1/snk , 1/snk )\ A)× (−1/tnk , 1/tnk ))

∪((−1/snk , 1/snk )× (−1/tnk , 1/tnk )\B),

it follows that

λ2(Rk \ E)≤
ε

2
·

2
snk

·
2

tnk

+
2

snk

·
ε

2
·

2
tnk

= ε · λ2(Rk).

Hence (x0, y0) ∈8〈s〉〈t〉(E). 2

THEOREM 32. For every 〈s〉 ∈ S0 and 〈t〉 ∈ S the topologies T〈s〉 × T〈t〉 and T〈s〉〈t〉 are
different.
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PROOF. Let 〈s〉 ∈ S0 and 〈t〉 ∈ S . Then T〈s〉 ⊂ T〈t〉 (see [1]). Define G := (R2
\1) ∪

{(0, 0)}, where 1= {(x, x) : x ∈ R}. Then G ∈ T〈s〉〈t〉 is a set of full measure. If G ∈
T〈s〉 × T〈t〉 then there exist sets A ∈ T〈s〉 and B ∈ T〈t〉 such that (0, 0) ∈ A × B ⊂ G.
Let C := A ∩ B. Then C is nonempty and C is open in T〈t〉, so C \ {0} cannot be
empty. Then (C × C \ {(0, 0}) ∩1 6= ∅, but C × C ⊂ G, which is impossible, so
G ∈ T〈s〉〈t〉 \ T〈s〉 × T〈t〉. 2

For the sake of simplicity we have presented all results in R2 but they can be easily
generalized to Euclidean spaces of dimension higher than two. In Rm we consider
sets of m sequences from the family S : {〈s p

〉 : p ∈ {1, . . . , m}}. For such a set we
can define a density operator which for measurable set A ⊂ Rm is the set of all points
(x1, . . . , xm) for which

lim
n→+∞

λm(A ∩ ((x1 − 1/s1
n , x1 + 1/s1

n)× · · · × (xm − 1/sm
n , xm + 1/sm

n )))

2m/s1
n · · · sm

n
= 1.

Following Saks (see [5]), a set of sequences {〈s p
〉 : p ∈ {1, . . . , m}} will be called

regular if there exists a positive number α such that

minp∈{1,...,m} s p
n

maxp∈{1,...,m} s p
n
> α for n ∈ N.

Having defined these notions we can prove theorems analogous to the two-dimensional
case. The same line of reasoning applies to higher-dimensional versions.
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[6] W. Wilczyński, Density Topologies, (ed. E. Pap) (North Holland, Amsterdam, 2002), Chapter 15 in

Handbook of Measure Theory, pp. 675–702.
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