
Appendix D

Computation of the holographic stress tensor

In this appendix we give some details of the computation of the holographic stress
tensor for the fluid metric discussed in Section 7.2. The basic tool is the rela-
tion (5.51) between the boundary theory stress tensor and the curvature of the bulk
metric whose derivation we reviewed in Section 5.3.2, and which we repeat here
for convenience:

〈T μν〉 = lim
z→0

1

8πG N

Rd+2

zd+2

(
Kμν − gμν K − d − 1

R
gμν

)
, (D.1)

where gμν is the induced metric on a constant-z hypersurface !z . We will denote
its inverse by gμν . We shall henceforth denote 〈T μν〉 by just T μν as we have done
in Chapter 7 and as is standard in the hydrodynamic literature. In this appendix we
shall consider a bulk metric of the general form

ds2 = N 2dz2 + gμν(dxμ + Nμdz)(dxν + N νdxν) (D.2)

where N and Nμ are functions that specify the explicit form of the metric. The
extrinsic curvature of a hypersurface of constant z is given by

Kμν = 1

2N

(
∂zgμν − DμNν − Dν Nμ

)
(D.3)

where Nμ = gμν Nμ and Dμ is the covariant derivative associated with gμν .

D.1 Holographic stress tensor for the AdS black brane

Before considering the fluid metric of Section 7.2, let us first consider a simpler
example as a warmup. Consider a diagonal metric with Nμ = 0 and

gμν = R2

z2
hμν(x

μ, z), N 2 = R2

z2
n2 , (D.4)
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meaning that the metric is now specified by the functions hμν and n. For a metric
with this form,

Kμν = R

z

1

n

(
1

2
∂zhμν − 1

z
hμν

)
, K = z

R

1

n

(
1

2
hμν∂zhμν − d

z

)
(D.5)

and thus

Tμν = Rd−1

8πG N
lim
z→0

1

zd−1

1

n

(
1

2
∂zhμν − 1

2
hμνhλρ∂zhλρ + d − 1

z
hμν(1 − n)

)
.

(D.6)
The AdS black brane metric dual to plasma at rest in thermal equilibrium with
temperature T is given by

ds2 = R2

z2

(
− f dt2 + 1

f
dz2 + d �x2

)
(D.7)

with f (z) = 1 − zd

zd
0

and where z0 is related to the temperature by T = d
4π z0

. This

metric is therefore an instance of the general form that we have introduced above,
with

n = 1√
f

= 1 + zd

2zd
0

+ · · · , hμν = ημν + zd

zd
0

δμ0δν0 . (D.8)

We thus find that

Tμν = Rd−1

8πG N

1

2zd
0

(
ημν + d δμ0δν0

) = Rd−1

16πG N

(
4πT

d

)d (
ημν + d δμ0δν0

)
,

(D.9)
which is indeed the stress tensor for the strongly coupled plasma at rest, in thermal
equilibrium, which we have derived for d = 4 in Eqs. (6.6) in Section 6.1. (Recall
from (5.12) that for d = 4 we have R3/G N = 2N 2

c /π .)

D.2 Computation of the holographic stress tensor for the fluid metric

We now compute the stress tensor corresponding to the metric (7.26) discussed
in Section 7.2.1 that describes the hydrodynamic fluid in motion. Henceforth, we
specialize to d = 4. When we write the metric (7.26), in terms of the standard
representation (D.2) we find

N 2 = R2

z2
n2, n2 ≡ −uμhμνuν, gμν = R2

z2
hμν, Nμ = R2

z2
uμ, Nμ = hμνuν,

(D.10)
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where hμν is the inverse of hμν . Recall that in our convention uμ = ημνuν . Note
that Dμ is also the covariant derivative associated with hμν . From (D.3) and (D.10),

Kμν = R

z
kμν, kμν = 1

2n

(
∂zhμν − 2

z
hμν + Dμuν + Dνuμ

)
. (D.11)

We then find that

Tμν = R3

8πG5
tμν, tμν = lim

z→0

z−3

n

(
1

2
∂zhμν + D(μuν) − Ahμν

)
, (D.12)

where

A = 1

2
hμν∂zhμν + Dμuμ + 3

z
(n − 1) . (D.13)

In the discussion of Section 7.2, we write hμν in a derivative expansion as

hμν = h(0)
μν + εh(1)

μν + ε2h(2)
μν + · · · (D.14)

with h(0)
μν and its inverse given by

h(0)
μν = − f uμuν + �μν, hμν

(0) = − f −1uμuν + �μν , (D.15)

and h(1)
μν given by the expression (7.58). The inverse hμν has the expansion

hμν = hμν

(0) − εhμν

(1) + · · · , (D.16)

where hμν

(1) is obtained from h(1)
μν by raising the indices using hμν

(0). We can then write
tμν in a derivative expansion as

tμν = t (0)μν + ε t (1)μν + · · · . (D.17)

Upon evaluating (D.12) up to zeroth order (i.e. no derivatives) we find

t (0)μν = lim
z→0

z−3

n(0)

(
1

2
∂zh

(0)
μν − A(0)h(0)

μν

)
, A(0) = 1

2
hμν

(0)∂zh
(0)
μν + 3

z
(n(0) − 1) .

(D.18)
Using (D.15), we have

n(0) = f − 1
2 , ∂zh

(0)
μν = −∂z f uμuν = 4(πT )4z3uμuν + O(z4), (D.19)

and from these expressions we obtain

A(0) = −1

2
(πT )4z3 + O(z4) (D.20)

which then yields

t (0)μν = 2(πT )4uμuν + (πT )4

2
ημν . (D.21)

https://doi.org/10.1017/9781009403504.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.014


D.2 Computation of the holographic stress tensor for the fluid metric 413

This is the zeroth order stress tensor describing a fluid in motion, which we stated
as Eqs. (7.35) and (7.36) in Section 7.2. For a fluid at rest this reproduces the stress
tensor (D.9).

Now let us consider the contributions to the stress tensor that are first order in
derivatives. In the iterative procedure described in Section 7.2, there are two types
of contributions to t (1)μν . One type comes from the expansion to higher order of
terms that are already present at zeroth order, i.e. terms that arise in t (0)μν (T, uμ)

if we take T = T (0) + εT (1) + · · · and uμ = u(0)
μ + εu(1)

μ + · · · and which can
therefore be absorbed into a redefinition of T and uμ. It is straightforward to derive
the contributions of this type, and as they do not affect the structure of tμν they
are not what is of interest to us here. The second type of contribution gives new
first derivative terms which are not present in t (0)μν . We will concentrate on these
contributions, which can be written as

t (1)μν = lim
z→0

z−3

n(0)

(
1

2
∂zh

(1)
μν + D(0)

(μ u(0)
ν) − A(0)h(1)

μν − A(1)h(0)
μν

)
− lim

z→0

n(1)

n(0)
t (0)μν , (D.22)

where

A(1) = 1

2
(hμν∂zhμν)(1) + D(0)

μ uμ

(0) + 3

z
n(1) . (D.23)

In these terms the differences between T, uμ and T (0), u(0)
μ can be neglected since

these differences only contribute at higher order. For notational simplicity below
we can drop all superscripts on these variables. After some algebra we then find that

t (1)μν = −(πT )3

2
σμν , (D.24)

where σμν was defined in (7.3), which yields the result (7.59).
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