SINGULAR INTEGRALS ON ULTRASPHERICAL SERIES

CHARLES F. DUNKL

1. Introduction. One of the main uses of harmonic analysis on the sphere is to discover new theorems about series of ultraspherical (Gegenbauer) polynomials. In this paper, we will construct singular integral operators from scalar functions on the sphere to vector functions. These operators when restricted to zonal functions give L^p -bounded (1 operators on ultraspherical series.

We will use [7, Chapter 9] as our main reference. Let G denote a compact group, with identity e, and \hat{G} its dual, the set of equivalence classes of continuous irreducible unitary representations of G. Choose $T_{\alpha} \in \alpha$, where $\alpha \in \hat{G}$; then T_{α} is a continuous homomorphism of G into $U(n_{\alpha})$, the unitary group on complex n_{α} -space. For $1 \leq i, j \leq n_{\alpha}$, the function

$$T_{\alpha_{ij}}: x \mapsto T_{\alpha}(x)_{ij} \ (x \in G)$$

is the matrix entry function in T_{α} . Define the character χ_{α} of α by $\chi_{\alpha} = \sum_{i=1}^{n_{\alpha}} T_{\alpha_{i}i}$. Then each integrable (with respect to the normalized Haar measure m_{G} of G) function f has the *Fourier series*

$$f \sim \sum_{\alpha \in \hat{G}} n_{\alpha} \chi_{\alpha} * f.$$

Henceforth, *representation* means a continuous unitary finite dimensional representation.

Let *H* be a closed subgroup of *G*; then put $G/H = \{Hx: x \in G\}$, the space of right cosets of *H*, a compact homogeneous space. Functions on G/H are identified with the functions on *G* which satisfy the condition:

(1-1)
$$f(hx) = f(x) \quad (h \in H, x \in G).$$

Now let (τ, V) be a representation of H (here, τ is the homomorphism, V is the vector space). We will consider various linear spaces of functions of G into V satisfying the following condition:

(1-2)
$$f(hx) = \tau(h)f(x) \quad (h \in H, x \in G).$$

Further, G acts on such spaces by right translation R, where R(x)f(y) = f(yx) $(x, y \in G)$. A function f on G is said to be zonal if $R(h)f = f(h \in H)$.

Observe for each $\alpha \in \hat{G}$, that $T_{\alpha}|H$ splits into a direct sum of irreducible representations of H.

Received May 19, 1971. During the preparation of this paper, the author was partially supported by NSF Grant GP-19852.

SINGULAR INTEGRALS

PROPOSITION 1. Suppose that there is an $\alpha \in \hat{G}$ such that $T_{\alpha}|H = 1 \oplus \tau \oplus \sigma$, where τ is irreducible, $\tau \neq 1$ (the representation $H \to \{1\}$), and σ is a representation of H which does not involve 1 or τ in its decomposition. Then there exists a nonzero, unique (up to multiplication by a scalar) zonal function satisfying (1-2), whose Fourier series has only an α -term.

Proof. Choose an orthonormal basis $\{v_i\}_{i=1}^n$ for V (where τ acts on V, an *n*-dimensional space); then denote the matrix entries of $\tau(h)$ by $\tau(h)_{ij}$ $(h \in H; 1 \leq i, j \leq n)$. For a continuous function $f: G \to V$ we write $f = \sum_{i=1}^n f_i v_i$, with f_i scalar-valued, and let

$$||f||_{2} = \left(\int_{G} \left(\sum_{i=1}^{n} |f_{i}|^{2}\right) dm_{G}\right)^{1/2}.$$

Now choose a matrix representation for T_{α} so that $T_{\alpha}(h)_{00} = 1$, $T_{\alpha}(h)_{ij} = \tau(h)_{ij}$ for $1 \leq i, j \leq n$, and $T_{\alpha}(h)_{ij} = 0$ if

- (i) i = 0, j > 0,
- (ii) i > 0, j = 0,
- (iii) $1 \leq i \leq n, j > n$,
- (iv) $i > n, 1 \leq j \leq n$,

for all $h \in H$. Now let $\phi_{\alpha\tau} = \sum_{i=1}^{n} T_{\alpha_i 0} v_i$. It is easy to check that $\phi_{\alpha\tau}$ is the required function. Further, it is uniquely determined (up to a constant of absolute value 1) by the additional hypothesis that

$$||\phi_{\alpha\tau}||_2 = (n/n_{\alpha})^{\frac{1}{2}}.$$

Definition. A trig polynomial is a (possibly vector-valued) function on G which has a terminating Fourier series. For a representation τ of H, let $C_f(\tau)$ denote the space of trig polynomials which satisfy condition (1-2). In particular, $C_f(1)$ is the algebra (under pointwise operations) of trig polynomials on G/H, and each $C_f(\tau)$ is a $C_f(1)$ module.

We will consider G-operators (linear maps which commute with each $R(x), x \in G$) from $C_f(1)$ to $C_f(\tau)$. Note that each $C_f(\tau)$ is dense in the appropriate L^p -space, $1 \leq p < \infty$. If f is a trig polynomial on G, then $f \in C_f(1)$ if and only if $m_H * f = f$ (where m_H is the normalized Haar measure of H). Thus, each $f \in C_f(1)$ has the Fourier series $\sum_{\alpha \in \hat{G}} n_\alpha \phi_\alpha * f$, where $\phi_\alpha = \chi_\alpha * m_H$ (a spherical function).

PROPOSITION 2. If the pair (G, H) has the property that for $\alpha \in G$, $T_{\alpha}|H$ never contains two copies of the same irreducible representation of H, and, further, if J is a G-operator: $C_f(1) \to C_f(\tau)$, with τ irreducible, then there exists complex numbers $j_{\alpha}(\alpha \in \hat{G})$ such that

$$Jf = \sum_{\alpha \in \widehat{G}} n_{\alpha} j_{\alpha} \phi_{\alpha \tau} * f \qquad (f \in C_f(1)).$$

Proof. Let $f \in C_f(1)$; then $Jf = \sum n_\alpha (J\phi_\alpha) * f$, since J commutes with right convolution. Further, $J\phi_\alpha$ is zonal. The rest is straightforward. Note that $\phi_\alpha = 0$ whenever $T_\alpha | H$ does not contain 1, and $\phi_{\alpha\tau} = 0$ unless $T_\alpha | H$ contains both 1 and τ .

CHARLES F. DUNKL

1 1

LEMMA 3: Let ρ_0 be a linear map: $C_f(\tau) \to V'$ such that $\rho_0(R(h)f) = \tau'(h)\rho_0(f)$ $(f \in C_f(\tau), h \in H)$, where (τ', V') is a representation of H. Then there exists a unique G-operator $\rho: C_f(\tau) \to C_f(\tau')$ such that $\rho_0(f) = \rho f(e)$ $(f \in C_f(\tau))$, and ρ is defined by $\rho f(x) = \rho_0(R(x)f)$ $(x \in G)$.

2. The rotation group and ultraspherical polynomials. The rotation group is denoted by SO(n). For technical reasons, we require $n \ge 4$, but the case n = 3 will be discussed later. The unit sphere

$$S^{n-1} = \{s \in \mathbf{R}^n : |s| = (\sum s_j^2)^{\frac{1}{2}} = 1\}$$

is expressed as $\mathrm{SO}(n)/H$, by choosing $p = (1, 0, \ldots, 0) \in S^{n-1}$ and letting $H = \{g \in \mathrm{SO}(n): pg = p\}$; that is, $H = \{g \in \mathrm{SO}(n): g_{11} = 1\} \cong \mathrm{SO}(n-1)$. The irreducible representations of $\mathrm{SO}(n)$ realized on $C_f(1)$ (trig polynomials on S^{n-1}), are those equivalent to right translation acting on \mathscr{H}_m^n , the space of harmonic homogeneous polynomials, in n real variables, of degree m, for $m = 0, 1, 2, \ldots$. The degree of the representation on \mathscr{H}_m^n is denoted

$$D_m^{\ n} = \binom{n+m-3}{m} \left(\frac{2m}{n-2}+1\right).$$

Further, each $f \in C_f(1)$ has the Fourier series

$$\sum_{m=0}^{\infty} D_m^{\ n} \phi_m * f, \text{ where } \phi_m(g) = P_m^{(n-2)/2}(g_{11}).$$

Here, P_m^s is the ultraspherical polynomial of degree k and index s > 0, and is normalized by $P_k^s(1) = 1$. A generating function for these is given by

$$(1 - 2rt + r^{2})^{-s} = \sum_{m=0}^{\infty} \frac{\Gamma(2s + m)}{m! \Gamma(2s)} r^{m} P_{m}^{s}(t).$$

For later use we state the identity (see [8, p. 141]) (with k = 0, 1, 2..., and n > 3):

(2-1)
$$t^{k} = \sum_{j=0}^{\lfloor k/2 \rfloor} a_{kj} P_{k-2j}^{(n-3)/2}(t)$$

where

$$a_{kj} = \frac{(2k-4j+n-3)(n+k-2j-4)!k!}{2^k((n-1)/2)_{k-j}(n-3)!(k-2j)!j!}$$

Here, [u] is the largest integer $\leq u$, and $(u)_s = u(u+1) \dots (u+s-1)$, for $s = 1, 2, \dots$.

We will use the following representations of H: for $k = 0, 1, \ldots, \tau_k$ is right translation of H acting on \mathscr{H}_k^{n-1} ; for convenience, we write the elements of \mathscr{H}_m^{n-1} as functions of points like $x = (x_2, \ldots, x_n) \in \mathbb{R}^{n-1}$, since $H = \{g \in SO(n): g_{11} = 1\}$. The space \mathscr{H}_k^{n-1} is furnished with the inner product

$$[p,q] = \int_{|x|=1}^{p} p(x) \overline{q(x)} d\omega(x),$$

where ω is the normalized *H*-invariant measure on the unit sphere S^{n-2} . An element of $C_f(\tau_k)$ has the form f(g, x) with

$$f(hg, x) = f(g, xh)$$
 $(h \in H, g \in SO(n), x \in \mathbb{R}^{n-1}),$

and for fixed $g, x \mapsto f(g, x)$ is in \mathscr{H}_k^{n-1} .

Our next aim is to find the function ϕ_{mk} , the zonal function in $C_f(\tau_k)$ with only an *m*-term in its Fourier series. By the Branching Theorem [4], the pair (SO(n), H) has the property described in Proposition 2, so we will construct a differential SO(n)-operator: $C_f(\tau_0) \rightarrow C_f(\tau_k)$ (note that $\tau_0 = 1$) and use Propositions 1 and 2 to compute ϕ_{mk} . The Branching Theorem shows that $\phi_{mk} = 0$, unless $m \geq k$.

Definition. Let $1 \leq p < q \leq n$, $-\pi < \theta < \pi$, and let $r^{pq}(\theta) \in SO(n)$ be defined by

$$[r^{pq}(\theta)]_{ij} = \delta_{ij}(1 + (\delta_{ip} + \delta_{iq})(\cos \theta - 1)) + (\sin \theta)(\delta_{ip}\delta_{jq} - \delta_{iq}\delta_{jp}) \quad (1 \le i, j \le n).$$

For a trig polynomial f on SO(n), define

$$R_{pq}f(g) = (d/d\theta)f(gr^{pq}(\theta))|_{\theta=0} \quad (g \in \mathrm{SO}(n)).$$

Observe that

$$R_{pq}(R(g)f) = \sum_{1 \le i < j \le n} (g_{pi}g_{qj} - g_{qi}g_{pj})R(g)R_{ij}f.$$

Let τ_k' be the representation of H on \mathscr{P}_k^{n-1} , the homogeneous polynomials of degree k, in x_2, \ldots, x_n .

PROPOSITION 4. Let $f \in C_t(\tau_k)$ (k = 0, 1, ...) and define ∂f by

$$\partial f(g,x) = \sum_{i=2}^{n} x_i R_{1i}(R(g)f)(e,x).$$

Then ∂ is an SO(n)-operator: $C_f(\tau_k) \to C_f(\tau_{k+1})$.

Proof. By Lemma 3, it suffices to show that $\partial f(h, x) = \partial f(e, xh)$ $(x \in \mathbb{R}^{n-1}, h \in H)$. Now,

$$\partial f(h, x) = \sum_{i=2}^{n} x_i R_{1i}(R(h)f)(e, x)$$
$$= \sum_{i,j=2}^{n} x_i h_{ij} R(h) R_{ij} f(e, x)$$
$$= \sum_{j=2}^{n} (xh)_j R_{1j} f(h, x)$$
$$= \sum_{j=2}^{n} (xh)_j R_{1j} f(e, xh)$$
$$= \partial f(e, xh).$$

https://doi.org/10.4153/CJM-1972-008-1 Published online by Cambridge University Press

CHARLES F. DUNKL

Thus, the map ∂^k is an SO(*n*)-operator: $C_f(\tau_0)$ to $C_f(\tau_k')$. There is a canonical *H*-projection π_k of τ_k' onto τ_k (which can be described as a convolution operator over S^{n-2}).

Definition. Let ∇_k be the map $\pi_k \circ \partial^k$ of $C_f(\tau_0)$ to $C_f(\tau_k)$; then ∇_k is an SO(n)-operator, and is a differential operator of order k.

LEMMA 5. Let $y = (y_2, \ldots, y_n) \in \mathbb{R}^{n-1}$ be fixed, $k = 1, 2, \ldots$, and let $p(x) = (\sum_{i=2}^{n} x_i y_i)^k$. Then $p \in \mathscr{P}_k^{n-1}$ and

$$\pi_{k}p(x) = |x|^{k}|y|^{k}a_{k0}P_{k}^{(n-3)/2}\left(\sum_{i=2}^{n} x_{i}y_{i}/|x||y|\right),$$

where a_{k0} is described in (2-1). Denote $\pi_k p(x)$ by $\psi_k(x, y)$.

For $g \in SO(n)$, let g_{*1} denote the vector $(g_{21}, g_{31}, \ldots, g_{n1}) \in \mathbf{R}^{n-1}$; then $|g_{*1}| = (1 - g^2_{11})^{1/2}$.

THEOREM 6. For k = 1, 2, ..., m = 1, 2, ...,

$$\nabla_k \phi_m(g, x) = A_{km} \psi_k(x, g_{*1}) P_{m-k}^{k+(n-2)/2}(g_{11}),$$

and

64

$$\phi_{mk}(g, x) = \frac{A_{km}}{C_{km}} \psi_k(x, g_{*1}) P_{m-k}^{k+(n-2)/2}(g_{11}),$$

where

$$C_{km} = \frac{k!}{2^{k}((n-1)/2)_{k}} \left(\frac{m!(n+k+m-3)!}{(m-k)!(n+m-3)!}\right)^{1/2} \sim m^{k}$$

as $m \to \infty$ ($a_m \sim b_m$ as $m \to \infty$ means $a_m/b_m \to$ some constant as $m \to \infty$) and

$$A_{km} = \frac{m!(n+k+m-3)!}{(m-k)!(n+m-3)!} \frac{1}{2^{k}((n-1)/2)_{k}},$$

determined by

$$\left(\frac{d}{dt}\right)^{k} P_{m}^{(n-2)/2}(t) = A_{km} P_{m-k}^{k+(n-2)/2}(t).$$

Proof. First, we compute $\partial u(g, x)$ where u is a function of g_{11} only, obtaining $\partial u(g, x) = (\sum_{i=2}^{n} g_{i1} x_i) u'(g_{11}).$

Let $v(g, x) = \sum_{i=2}^{n} u_{i=2} x_{i} g_{i1}$, and note that $\partial v(g, x) = -g_{11}|x|^2$; then we claim that $\partial_k u(g, x) = [v(g, x)]^k u^{(k)}(g_{11}) + |x|^2$ {terms composed of lower powers of v, g_{11} , lower order derivatives of u, and powers of $|x|^2$ }. The expression in { } is a polynomial in x homogeneous of degree k - 2. To prove the claim, observe that $\partial^r u$ is a sum of terms of the form $v^m |x|^{r-m} f(g_{11})$ (r - m even), since

$$\partial \left(v^{m} | x |^{r-m} f(g_{11}) \right) = -m v^{m-1} | x |^{r-m+2} g_{11} f(g_{11}) + v^{m+1} | x |^{r-m} f'(g_{11}).$$

The only term in $\partial^k u$ which does not contain a nonzero power of $|x|^2$ is $v^k u^{(k)}$; thus,

$$\pi_k \partial_0^k u = \pi_k(v^k u^{(k)}) = \psi_k(x, g_{*1}) u^{(k)}(g_{11})$$

(see Lemma 5). The result for $\nabla_k \phi_m$ follows by setting $u = P_m^{(n-2)/2}$.

The L^2 -norm on $C_f(\tau_k)$ is

$$||f||_{2} = \left\{ \int_{SO(n)} \int_{|x|=1} |f(g,x)|^{2} d\omega(x) dg \right\}^{1/2},$$

and $||\nabla_k \phi_m||_{2^2} = |C_{km}|^2 D_k^{n-1} / D_m^n$. We choose $C_{km} > 0$, and obtain the stated value. The computation involves

$$\int_{-1}^{1} (P_r^{s}(t))^2 (1-t^2)^{s-1/2} dt,$$

for various r, s.

3. Particular operators.

Definition. For $f \in C_f(\tau_k)$, $1 \leq p < \infty$, define the L^p -norm by

$$||f||_{p} = \left\{ \int_{SO(n)} \left(\int_{|x|=1} |f(g,x)|^{2} d\omega(x) \right)^{p/2} dg \right\}^{1/p}$$

Then $L^p(\tau_k)$ is the completion of $C_f(\tau_k)$ under the norm $||\cdot||_p$.

Definition. For $\lambda > 0, 1 \leq p < \infty$, let $L_{\lambda}^{p}(-1, 1)$ be the space of measurable functions u on (-1, 1) such that

$$\int_{-1}^{1} |u(t)|^{p} (1-t^{2})^{\lambda-1/2} dt < \infty.$$

Let

$$||u||_{p} = \left[K_{\lambda} \int_{-1}^{1} |u(t)|^{p} (1-t^{2})^{\lambda-1/2} dt\right]^{1/p} \quad (1 \leq p < \infty),$$

where

$$K_{\lambda} = \left[\int_{-1}^{1} (1 - t^2)^{\lambda - 1/2} dt \right]^{-1}.$$

PROPOSITION 7. Let $\lambda = n/2 - 1$, $k = 0, 1, 2, \ldots, 1 \leq p < \infty$, and let u be measurable on (-1, 1) such that $u(t)(1 - t^2)^{k/2} \in L_{\lambda}^p(-1, 1)$; then there exists an element $U_k u \in L^p(\tau_k)$, such that

$$||U_k u||_p = ||u(t)(1 - t^2)^{k/2}||_p$$

The map U_k is linear, one-to-one, and onto the zonal functions in $L^p(\tau_k)$, and is given by

$$U_k u(g, x) = \frac{(D_k^{n-1})^{1/2}}{a_{k0}} u(g_{11}) \psi_k(x, g_{*1}).$$

Proof.

$$\begin{split} ||U_{k}u||_{p}^{p} &= \int_{SO(n)} dg \bigg\{ \int_{|x|=1}^{n} \frac{D_{k}^{n-1}}{a_{k0}} |u(g_{11})|^{2} |\psi_{k}(x, g_{*1})|^{2} d\omega(x) \bigg\}^{p/2} \\ &= \int_{SO(n)} |u(g_{11})|^{p} (1 - g_{11}^{2})^{kp/2} dg \\ &= K_{\lambda} \int_{-1}^{1} |u(t)(1 - t^{2})^{k/2}|^{p} (1 - t^{2})^{\lambda-1/2} dt \\ &= ||u(t)(1 - t^{2})^{k/2}||_{p}^{p}. \end{split}$$

Thus, $U_k u \in L^p(\tau_k)$. As u runs through finite linear combinations of $\{P_{m-k}^{(n+2k-2)/2}(t): m \ge k\}$, $U_k u$ runs through finite linear combinations of $\{\phi_{mk}: m \ge k\}$. These two sets are dense in $L_{\lambda}^p(-1, 1)$ and $\{f \in L^p(\tau_k): f \text{ is zonal}\}$, respectively; thus, U_k is onto.

PROPOSITION 8. Let $u \in \{f \in L^1(\tau_k): f \text{ is zonal}\}$; thus, u has a Fourier series $\sum_{m=k}^{\infty} D_m^n \hat{u}_m \phi_{mk}$ (\hat{u}_m scalar), and if $f \in L^p(\tau_0)$, $1 \leq p < \infty$, then $u * f \in L^p(\tau_k)$,

$$||u * f||_p \leq ||u||_1 ||f||_p$$

and

$$u * f \sim \sum_{m=k}^{\infty} D_m{}^n \hat{u}_m \phi_{mk} * f.$$

Proof. The inequality is a standard convolution inequality.

For the subsequent theorems we need information about some special series given in the work of Askey and Wainger [3].

LEMMA 9. Let $N = 3, 4, ..., 1 \leq r \leq N - 1$, $\{a_m\}$ be a sequence of complex numbers such that

$$a_m = \sum_{j=\tau}^{N-1} \alpha_j m^{-j} + a_m',$$

 $a_m' = O(m^{-N})$ as $m \to \infty$, $\alpha_r, \ldots, \alpha_{N-1}$ fixed. Then there exists

$$u \in L^{1}_{(N-2)/2}(-1, 1)$$

such that

$$u \sim \sum_{m=0}^{\infty} D_m^{N} a_m P_m^{(N-2)/2}$$

(this is the ultraspherical expansion of u),

$$a_m = \hat{u}_m = K_{(N-2)/2} \int_{-1}^1 u(t) P_m^{(N-2)/2}(t) (1-t^2)^{(N-3)/2} dt),$$

and

$$u(t) = \sum_{j=0}^{N-r-2} \beta_j \theta^{j+(r+1-N)} + \gamma \log \theta + E(\theta)$$

where $\cos \theta = t$, $0 \leq \theta \leq \pi$, β_j , γ are constants, $E(\theta)$ is continuous on $[0, \pi]$.

66

Askey and Wainger's result deals directly with series of the form $\sum D_m{}^n m^{-j}P_m{}^{(N-2)/2}$, and the series $\sum D_m{}^n a_m{}'P_m{}^{(N-2)/2}$ converges absolutely. The Laplacian Δ is defined by $\sum_{i < j} R^2{}_{ij}$; then for $f \in C_f(\tau_0)$,

$$\Delta f = -\sum_{m=1}^{\infty} D_m^n m(m+n-2)(\phi_m * f).$$

Definition. Let Λ be the SO(n)-operator on $C_f(\tau_0)$ defined by

$$\Delta f = \sum_{m=1}^{\infty} D_m^{\ n} (m(m+n-2))^{-1/2} \phi_m * f.$$

Note that $\Delta \Lambda^2 f = f_0 - f$, where

$$f_0 = \int_{\mathrm{SO}(n)} f.$$

For $k = 1, 2, \ldots, f \in C_f(\tau_0)$ we obtain

$$\nabla_k \Lambda f = \sum_{m=k}^{\infty} D_m^n C_{km} (m(m+n-2))^{-k/2} \phi_{mk} * f$$

(by Theorem 6). We will now show that $\nabla_k \Lambda^k$ is L^p -bounded, 1 , and is a singular integral SO(*n*)-operator.

THEOREM 10. For each k = 1, 2, ..., there exists a measurable function F_k on (-1, 1) such that

$$\nabla_k \Lambda^k f = (F_k(g_{11})\psi_k(x, g_{*1})) * f,$$

where the convolution integral is a principal value (to be defined in the proof), and is defined for $f \in L^{p}(\tau_{0})$, $1 , with <math>||\nabla_{k}\Lambda^{k}f||_{p} \leq B_{kp}||f||_{p}$, B_{kp} a constant depending only on k and p ($f \in C_{f}(\tau_{0})$).

Proof. Formally, we write

$$\nabla_k \Lambda^k f \sim \left\{ \sum_{m=k}^{\infty} D_m^{\ n} (m(m+n-2))^{-k/2} A_{km} \psi_k(x, g_{*1}) P_{m-k}^{k+(n-2)/2}(g_{11}) \right\} * f.$$

Let

$$a_{m} = \left[(m+k)(m+k+n-2) \right]^{-k/2} A_{k,m+k} \frac{D_{m+k}^{n}}{D_{m}^{n+2k}};$$

then $\{a_m\}$ satisfies the hypotheses of Lemma 9 with N = n + 2k, r = k; thus, there exists $F_k \in L^1_{(N=2)/2}(-1, 1)$ such that

$$F_k(t) \sim \sum_{m=0}^{\infty} D_m^{n+2k} a_m P_m^{(n+2k-2)/2}(t)$$

and

$$F_k(t) \sim \beta_0 (1 - t)^{-(n+k-1)/2}$$

as $t \to 1_-$ (since $\theta \sim [2(1-t)]^{1/2}$ as $\theta \to 0$, $t = \cos \theta$). For $0 < \epsilon < 1$, let

$$K_{\epsilon}(t) = \begin{cases} 1 & -1 \leq t \leq 1 - \epsilon \\ 0 & 1 - \epsilon < t \leq 1; \end{cases}$$

then

$$K_{\epsilon}(g_{11})F_{k}(g_{11})\psi_{k}(x, g_{*1}) \in L^{1}(\tau_{k})$$

and $K_{\epsilon}F_{k}\psi_{k} * f$ is defined for all $\epsilon > 0, f \in C_{f}(\tau_{0})$ and

$$K_{\epsilon}F_{k}\psi_{k}*f(g,x) = \int_{y_{1}\leq 1-\epsilon}\psi_{k}(x,y)F_{k}(y_{1})f(s)d\omega_{n}(s),$$

where

$$y_i = \sum_{j=1}^n g_{ij} s_j$$
 $(i = 1, ..., n)$

(let s = pg'; then

$$(gg'^{-1})_{i1} = \sum_{j} g_{ij} g'_{1j} = \sum_{j} g_{ij} s_{j} = y_{i},$$

where ω_n is the normalized SO(*n*)-invariant measure on S^{n-1} ; see [7, Chapter 9] for expressing SO(*n*)-convolutions as integrals over S^{n-1}). The integrand has a singularity at $s = pg(y_1 = 1)$ of order $(1 - y_1)^{-(n-1)/2}$, and since the great circle distance between pg and s is $\arccos y_1 \sim 2(1 - y_1)^{1/2}$, this is (distance)⁻⁽ⁿ⁻¹⁾. Further, the integral of the kernel with respect to s around any (n - 2)-sphere centred at pg is easily seen to be zero; take any $s \neq pg$ and the required sphere through s is $\{sg^{-1}hg: h \in H\}$, since $(pg) \cdot (sg^{-1}hg) =$ $p \cdot (sg^{-1}h) = (pg) \cdot s$, and if $u \in L^1(\tau_k)$, then

$$\int_{H} u(g(g'g^{-1}hg)^{-1}, x) dm_{H}(h) = \int_{H} u(hgg'^{-1}, x) dm_{H}(h)$$
$$= \int_{H} u(gg'^{-1}, xh) dm_{H}(h)$$
$$= 0,$$

for pg' = s, k = 1, 2, 3, ... (note that $p \cdot q = \sum_{i=1}^{n} p_i q_i$).

Now, by a local transfer argument similar to that used by Seeley in [11], it follows that the Calderón-Zygmund inequality holds locally. But S^{n-1} is compact, so we can conclude

$$||K_{\epsilon}F_{k}\psi_{k}*f||_{p} \leq B_{kp}||f||_{p} \ (1$$

where B_{kp} is independent of ϵ , and $\lim_{\epsilon \to 0_+} K_{\epsilon} F_k \psi_k * f$ exists in L^p . Thus, $\nabla_k \Lambda^k$ extends to a bounded SO(n)-operator: $L^p(\tau_0) \to L^p(\tau_k)$.

THEOREM 11. Let $\{a_m: m \ge k\}$ be a sequence of complex numbers such that

$$a_m = \sum_{j=0}^{n+k-1} \alpha_j (m-k)^{-j} + a_m',$$

 $a_m' = O(m^{-k-n})$ as $m \to \infty$, and let $f \in L^p(\tau_0)$, 1 ; then the map

$$J: f \mapsto \sum_{m=k}^{\infty} D_m^{\ n} a_m \phi_{mk} * f$$

68

is bounded in L^p , and

$$Jf(g, x) = \alpha_0 \frac{2^k ((n-1)/2)_k}{k!} \nabla_k \Lambda^k f(g, x) + (F(\cdot, x) * f)(g),$$

where $F \in L^1(\tau_k)$ and F is zonal.

Proof. By Lemma 9, there exists $u \in L^{1}_{k+(n-2)/2}(-1, 1)$ (N = n + 2k, r = 1), such that

$$\left[\alpha_0 \frac{2^k ((n-1)/2)_k}{k!} F_k(g_{11}) + u(g_{11})\right] \psi_k(x, g_{*1}) \sim \sum_{m=k}^{\infty} D_m^{\ n} a_m \phi_{mk},$$

and

$$u(t) \sim (1 - t)^{-(n+k-2)/2}.$$

Then

$$||u\psi_k||_1 = c \int_{-1}^1 |u(t)| (1-t^2)^{(k+n-3)/2} dt < \infty$$

(c some constant; see Proposition 7), and

$$||u\psi_k * f||_p \leq ||u\psi_k||_1 ||f||_p \ (1$$

THEOREM 12. Let $\{a_m\}$ be as above and $f \in L^p_{(n-2)/2}(-1, 1)$ (1 ;then there is a linear map

$$J_0: f \mapsto J_0 f \in L^{1}_{k+(n-2)/2}(-1, 1)$$

such that

$$J_0 f \sim \sum_{m=k}^{\infty} D_m^{\ n} a_m \hat{f}_m \frac{A_{km}}{C_{km}} P_{m-k}^{k+(n-2)/2},$$

a n d

$$J_0 f(t) (1 - t^2)^{k/2} \in L^p_{(n-2)/2}(-1, 1)$$

with

$$||J_0 f(t) (1 - t^2)^{k/2}||_p \leq B'_{kp} ||f||_p \ (1$$

Proof. Let J be defined as above; then

$$J(U_0f) \in L^p(\tau_k), \quad ||J(U_0f)||_p \leq B_{kp}||f||_p,$$

and

$$J(U_0f) \sim \sum_{m=k}^{\infty} D_m^{\ n} a_m \hat{f}_m \phi_{mk}$$
$$\sim \sum_{m=k}^{\infty} D_m^{\ n} a_m \frac{A_{km}}{C_{km}} \hat{f}_m P_{m-k}^{(k+(n-2)/2)} \psi_k.$$

Then

$$J_0 f = \frac{a_{k0}}{(D_k^{n-1})^{1/2}} U_k^{-1} J U_0 f$$

is the required map. Hölder's inequality shows that $J_0 f \in L^{1}_{k+(n-2)/2}(-1, 1)$, which justifies the series

$$J_0 f(t) \sim \sum_{m=k}^{\infty} D_m^n a_m \hat{f}_m \frac{A_{km}}{C_{km}} P_{m-k}^{k+(n-2)/2}(t).$$

Remark. For

$$k = 1, a_m = \frac{1}{n-1} \left\{ 1 + \frac{n-2}{m} \right\}^{-1/2},$$

the conjugate series theorem of Stein and Muckenhoupt [10] is obtained. This theorem is a "transplantation" theorem. For results dealing with transplantation between Fourier and ultraspherical series, see Askey and Wainger [2].

4. Remarks.

The case n = 3. The propositions and theorems of § 3 are still valid when n = 3. Note that the polynomials P_k^0 are the Tchebyshev polynomials given by $P_k^0(\cos \theta) = \cos k\theta$ (k = 0, 1, ...). The main change in § 2 is that τ_k is no longer irreducible for $k \ge 1$, but breaks up into 2 one-dimensional components. So $D_0^2 = 1$, and $D_k^2 = 2$, for k = 1, 2, ... In the expression (2-2) given for a_{ki} , the limit as $n \to 3_+$, is found to be

$$a_{kj} = \left(\frac{k}{j}\right) \frac{1}{2^k} b_{k-2j},$$

where $b_p = 2$ for p > 0 and $b_0 = 1$.

Vector bundles. Some of the results obtained could be phrased in the language of vector bundles. For example, one may construct singular integrals on $C_f(\tau_0)$ of any desired symbol (a symbol here is essentially a "smooth" function u on SO(n) $\times S^{n-2}$ such that

$$u(hg, x) = u(g, xh) \ (g \in SO(n), h \in H, x \in S^{n-2}).$$

Now let

$$Jf(g) = \int_{|x|=1}^{\infty} \sum_{k=0}^{\infty} c_k \nabla_k \Lambda^k f(g, x) u(g, x) d\omega(x),$$

for suitable constants c_k , independent of f and u (see [6]), where $\nabla_0 \Lambda^0$ is the identity map. Then J has the symbol u. By replacing $\nabla_k \Lambda^k$ in the above formula by $\nabla_k \Delta^j$, various j, one may construct differential operators with any specified symbol (note that $\nabla_k \Delta^j$ is a differential SO(n)-operator of order k + 2j of $C_j(\tau_0)$ into $C_j(\tau_k)$).

Calderón and Zygmund [5] first constructed singular integrals on \mathbb{R}^n . Seeley [11; 12] extended the theory to vector bundles over manifolds. Levine [9] has also investigated singular integrals on spheres.

SINGULAR INTEGRALS

References

- 1. M. Abramowitz and I. Stegun, *Handbook of mathematical functions*, National Bureau of Standards (Dover, New York, 1964).
- R. Askey and S. Wainger, A transplantation theorem between ultraspherical series, Illinois J. Math. 10 (1966), 322-344.
- 3. ——On the behaviour of special classes of ultraspherical expansions. I, J. d'Anal. Math. 15 (1965), 193-220.
- 4. H. Boerner, Representations of groups (North-Holland, Amsterdam, 1963).
- 5. A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.
- 6. C. Dunkl, Linear functionals on homogeneous polynomials, Can. Math. Bull. 11 (1968), 465-468.
- 7. C. Dunkl and D. Ramirez, *Topics in harmonic analysis* (Appleton-Century-Crofts, New York, 1971).
- 8. L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Amer. Math. Soc. Translation (Amer. Math. Soc., Providence, R.I., 1963).
- 9. D. Levine, Systems of singular integral operators on spheres, Trans. Amer. Math. Soc. 144 (1969), 493-522.
- 10. B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92.
- 11. R. T. Seeley, Singular integrals on compact manifolds, Amer. J. Math. 81 (1959), 658-690.
- 12. —— Integro-differential operators on vector bundles, Trans. Amer. Math. Soc. 117 (1965), 167–204.

University of Virginia, Charlottesville, Virginia