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SINGULAR INTEGRALS ON ULTRASPHERICAL SERIES 

CHARLES F. DUNKL 

1. Introduction. One of the main uses of harmonic analysis on the sphere 
is to discover new theorems about series of ultraspherical (Gegenbauer) 
polynomials. In this paper, we will construct singular integral operators from 
scalar functions on the sphere to vector functions. These operators when 
restricted to zonal functions give ZAbounded (1 < p < oo ) operators on 
ultraspherical series. 

We will use [7, Chapter 9] as our main reference. Let G denote a compact 
group, with identity e, and G its dual, the set of equivalence classes of con
tinuous irreducible unitary representations of G. Choose Ta £ a, where 
a £ G; then Ta is a continuous homomorphism of G into U(na), the unitary 
group on complex wa-space. For 1 :g i, j S na, the function 

Taij:x>-> Ta(x)ij (x G G) 

is the matrix entry function in Ta. Define the character x« of a by 
Xa = ^""i^iTaii' Then each integrable (with respect to the normalized Haar 
measure mG of G) function/ has the Fourier series 

Henceforth, representation means a continuous unitary finite dimensional 
representation. 

Let H be a closed subgroup of G; then put G/H = {Hx:x £ G}, the space 
of right cosets of H, a compact homogeneous space. Functions on G/H are 
identified with the functions on G which satisfy the condition: 

(1-1) f(hx) = f(x) (h e H,x e G). 

Now let (r, V) be a representation of H (here, r is the homomorphism, V is 
the vector space). We will consider various linear spaces of functions of G 
into V satisfying the following condition: 

(1-2) f(hx) = rQi)f(x) (A e H,x e G). 

Further, G acts on such spaces by right translation R, where R(x)f(y) = 
f(yx) (x,y G G). A function/ on G is said to be zonal if R(h)f = / (h G H). 

Observe for each a £ G, that Ta\H splits into a direct sum of irreducible 
representations of H. 
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PROPOSITION 1. Suppose that there is ana G G such that Ta\H = 1 0 r 0 o-, 
where r is irreducible, r ^ 1 (the representation H —> {1} ), and a is a representa
tion of H which does not involve 1 or r in its decomposition. Then there exists a 
nonzero, unique (up to multiplication by a scalar) zonal function satisfying 
(1-2), whose Fourier series has only an a-term. 

Proof. Choose an orthonormal basis {Vi\n
i=i for V (where r acts on V, an 

w-dimensional space); then denote the matrix entries of r(h) by r(h)ij 
(h £ H; 1 g i,j ^ n). For a continuous function f:G—>V we write 

/ = Ylni=ifivii wi th/ i scalar-valued, and let 

n / i h = ( X ( g i/*i2)^)1/2. 
Now choose a matrix representation for Ta so that Ta(h)0o = 1, Ta(h)tj = 

T(h)tj for 1 ^ i, j ^ #, and Ta(h)ij = 0 if 
(i) i = 0 , j > 0, 

(ii) i > 0 , j = 0, 
(iii) 1 ^ i ^ n,j > n, 
(iv) i > n, 1 ^ 7 ^ n, 

for all h £ H. Now let 0a r = S ^ i T ^ - ^ . It is easy to check that cj>aT is the 
required function. Further, it is uniquely determined (up to a constant of 
absolute value 1) by the additional hypothesis that 

||0«r||2 = (n/naf. 

Definition. A trig polynomial is a (possibly vector-valued) function on G 
which has a terminating Fourier series. For a representation r of H, let Cf(r) 
denote the space of trig polynomials which satisfy condition (1-2). In parti
cular, Cf(l) is the algebra (under pointwise operations) of trig polynomials 
on G/H, and each Cf(r) is a Cf(l) module. 

We will consider G-operators (linear maps which commute with each 
R(x), x G G) from Cf(l) to Cf(r). Note that each Cf(r) is dense in the appro
priate Lp-space, l ^ ^ < o o . I f / i s a trig polynomial on G, then / £ Cf(l) if 
and only if mH * / = / (where mH is the normalized Haar measure of H). Thus, 
each / £ Cf(\) has the Fourier series ^aç.Gna<t>a * / , where 0a = x<* * mH 

(a spherical function). 

PROPOSITION 2. / / ^ e pair (G, H) has the property that for a £ G, Ta\H never 
contains two copies of the same irreducible representation of H, and, further, 
if J is a G-operator: Cf(l) —> Cf(r), with r irreducible, then there exists complex 
numbers ja(a 6 G) such that 

/ / = S.€ô».j«*.r*/ ( / e c , ( i ) ) . 
Proof. L e t / Ç C/(l); then Jf = ^na(J(t>a) */, since / commutes with right 

convolution. Further, / $ a is zonal. The rest is straightforward. Note that 
<j>a = 0 whenever Ta|i7 does not contain 1, and 0aT = 0 unless r a | i f contains 
both 1 and r. 
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LEMMA 3: Let p0 be a linear map: Cf(r)-^Vr such that p0(R(h)f ) = 
r'(h)po(f ) ( / G Cf(r), h G H), where ( / , V) is a representation of H. Then 
there exists a unique G-operator p:Cf(r) —» Cf{r) such that po ( / ) = pf(e) 
( / G C/(r)), a?zd p is defined by pf(x) = p0(R(x)f ) (x G G). 

2. The rotation group and ultraspherical polynomials. The rotation 
group is denoted by SO(w). For technical reasons, we require n ^ 4, but the 
case w = 3 will be discussed later. The unit sphere 

s*-1 = {s e Rn:\s\ = (£*/ )* = i} 
is expressed as SO (n)/H, by choosing p = (1, 0, . . . 0) G 5W_1 and letting 
H = {g G SO(»):£g = £} ; that is, H = {g £ SO(n):gll = 1} ^ SO(rc - 1). 
The irreducible representations of SO(n) realized on Cf(l) (trig polynomials 
on .S*"1), are those equivalent to right translation acting onJ^V\ the space of 
harmonic homogeneous polynomials, in n real variables, of degree m, for 
m = 0, 1, 2, . . . . The degree of the representation on J4?m

n is denoted 

n n _ (n + w - S\ ( 2m \ 
Um " \ m / \n - 2 + V * 

Further, each / G C/(l) has the Fourier series 

É Dm
nd>m */, where c/>m(g) = Pm

(w~2)/2(£ii). 
ra=0 

Here, P m
s is the ultraspherical polynomial of degree k and index s > 0, and 

is normalized by i V ( l ) = 1. A generating function for these is given by 

<i - «+^>- - ^ i m ^ i ^ , . - w . 

For later use we state the identity (see [8, p. 141]) (with k = 0, 1, 2 . . . , 
and n > 3): 

[fc/2] 

(2-1) tk= £ akJP£$'\t), 
i=o 

where 
_ (2fe - 4j + w - 3)(w + k - 2j - 4)!fe! 

a*' " 2fc((rc - l)/2)*_,(n - 3)!(* - 2j)\j\ 

Here, [u] is the largest integer ^ «, and («)* = u(u + 1) . . . (« + 5 — 1), 
for 5 = 1, 2, . . . . 

We will use the following representations of H: for k = 0, 1, . . . , rk is 
right translation of H acting onJ^V1-1; for convenience, we write the elements 
of JfTO

n-1 as functions of points like x = (x2, . . . , xn) G Rn~\ since 
H = {g G SO{n):gw = 1}. The space J^V*-1 is furnished with the inner 
product 

\P,q] = I p(x)q(x)dœ(x), 
« / | z | = l 
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where œ is the normalized iJ-invariant measure on the unit sphere Sn~2. An 
element of Cf(rk) has the form/(g, x) with 

f(hg, x) = f{g, xh) (htH}ge s o w , x e R^-1), 
and for fixed g, x •—»/(g, x) is in J ^ / _ 1 . 

Our next aim is to find the function <f)mkl the zonal function in Cf(rk) with 
only an m-term in its Fourier series. By the Branching Theorem [4], the pair 
(SO(w), H) has the property described in Proposition 2, so we will construct 
a differential SO (n)-operator: C/(TO) —» Cf(rk) (note that r0 = 1) and use 
Propositions 1 and 2 to compute <j>mk. The Branching Theorem shows that 
4>mk = 0, unless m ^ k. 

Definition. Let 1 ^ p < q ^ », -TT < 0 < TT, and let rPQ(6) G SO(») be 
defined by 

[rpq(e)]ij = M l + (*<* + 5*)(cos0 - 1)) 
+ (sin 0)(ôipôjq — ôiqôjp) (1 S i,j ^ n). 

For a trig polynomial/ on SO(»), define 

J?pJ(g) = (d/dfl)/(gr'«(fl))ko (g € SO(»)). 

Observe that 

RP<i(R(g)f) = L i ^ K i ^ f e ^ i - gQigpj)R(g)Rijf-

Let TJ/ be the representation of if on ^ / _ 1 , the homogeneous polynomials 
of degree k, in x2, . . . , xw. 

PROPOSITION 4. Letf £ Cf{rk) (k = 0, 1, . . .) and de/me cl/ôy 

n 

*=2 

77&ew d is a» SO (n)-operator: Cf{rk) —» C/(T'*+I). 

Proof. By Lemma 3, it suffices to show that d/(&, x) = df(e, xh) 
(x € R^"1, h e H). Now, 

a/(A,«) = £ xtRu(R(h)f)(e,x) 
i=2 

= X XihtjR(h)Rtjf(e, x) 

= Z) WjRijffcx) 

3=2 

n 

= 13 (xh)jRijf(e,xh) 

= d/(e, x&). 
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Thus, the map dk is an SO in) -opera tor: Cf(T0) to Cf(rk
f). There is a canonical 

iJ-projection irk of rk onto rk (which can be described as a convolution operator 
over Sn~2). 

Definition. Let Vk be the map irk o dk of C/(ro) to Cf(rk); then V* is an 
SO (n)-operator, and is a differential operator of order k. 

LEMMA 5. Let y = (y2, . . . , yn) € Rw_1 fre fixed, k = 1 , 2 , . . . , awd let 
p(x) = ÇLni=2Xiyiy. Then p 6 ^ V " 1 and 

***>(*) = l^rbl^o^(ra~3)/2(i: Wl*l |y |) , 

where ak0 is described in (2-1). Denote irkp{x) by ^ ( x , y). 

For g £ SO (w), let g n denote the vector (g2i, g3i, . . • , gni) 6 Rn_1; then 
\g.i\ = (1 - £2n)1/2. 

THEOREM 6. For & = 1, 2, . . . , m = 1, 2, . . . , 

V*4>m(g,x) = AkmMx,g*i)Pkm-r2)/\gn), 

and 

where 

ki ( m\{n + k + m - 3)! \ 1 / 2
 k 

km " 2*((» - l ) /2)* \(m - *)!(» + m - 3)!/ ~ m 

as m —> co (aw ~ bm as ni —> co means am/bm —> some constant as m —> oo ) awd 

. _ m!(?£ + & + ra — 3)! 1 
km ~ (w - k)\(n + m - 3)! 2*((» ~ l) /2)* ' 

determined by 

(l)^ (""2 , / 2 ( / ) = ^ ^ - ( r 2 , / 2 « . 
Proof. First, we compute dw(g, x) where wis a function of gn only, obtaining 

du(g,x) = (Eni=2gaXi)u'(gii). 
Let v(g, x) = 2w*=2#fga> and note that dv(g, x) = — gn|x|2; then we claim 

that dku(g,x) = [v(g, x)]ku{]c) (gu) + |x|2 {terms composed of lower powers 
of v, gn, lower order derivatives of u, and powers of |x|2}. The expression in 
{ } is a polynomial in x homogeneous of degree k — 2. To prove the claim, 
observe that dTu is a sum of terms of the form vm\x\r~mf (gu) (r — m even), 
since 

d(vm\x\r-mf(gll)) = -mvm-i\x\r-m+*guf(gii) +vm+i\x\'-mf'(g11). 
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The only term in dku which does not contain a nonzero power of |x|2 is vku^k); 
thus, 

irkd0
ku = Tk(v*u™) = fa(x,g*i)u™(gii) 

(see Lemma 5). The result for Vk<j>m follows by setting u = Pm
{n~2)/2. 

The L2-norm on Cf(rk) is 

U l \f(g,x)\2dv(x)dg\ , 
SO(«) J\x\ = l J rSO(«) v\x\ = 

and ||VA;0W||22 = \Ckm\2Dk
n~l/Dm

n. We choose Ckm > 0, and obtain the stated 
value. The computation involves 

for various r, s. 

f\pr
s(t))\i-t2y-1/2dt, 

3. Particular operators. 

Definition. For / G Cf(rk), 1 S p < oo, define the Z^-norm by 

f r / r V/2 )1/v 

II/II, = i ( i/(g,x)i^co(x)) dg\ . 
v «/so(«) V «/isi=i / / 

Then Lv(rk) is the completion of Cf{rk) under the norm || • \\v. 
Definition. For X > 0, 1 ^ >̂ < oo, let Lx

v(— 1, 1) be the space of measurable 
functions « o n ( - 1 , 1 ) such that 

j \u(t)\p(l -t2)x-1/2dt<oo. 

\u\\p = [xx J 1 K 0 T ( 1 - ;2)X-1 /2^J1 /P (1 ^ ^ < oo), 

xx = [ J1 (1 - O"/^]"1. 

Let 

where 

PROPOSITION 7. Le^ X = n/2 — 1, k = 0, 1, 2, . . . , 1 ^ p < oo, awd Ze/ w 

6e measurable on (—1, 1) S^C/Ê £to u{i){\ — t2)k/2 G L\p(— 1, 1); /&ew //^re 
exw/s an element Uku G Lv(rk), such that 

\\uku\\p = | | « ( 0 ( i - / 2 ) * / 2 | | , . 

TTze wa^ C/fc w linear, one-to-one, and onto the zonal functions in Lp(rk), and is 
given by 

(D n~1)1}2 

Uku(g,x) = — u(gn)xl/k(x, g*i). 
&k0 
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Proof. 

•^SO(n) V J\x\=\ 0*0 7 

f |«(2n)|'(l-gn,)*/i<fe 
•/ SO(n) 

Zx J 1 \u{t){\ - ey^ii - ef-iiidt 

= i |M(0(i-^ / 2n/. 
Thus, f/fĉ  6 LP(TJC). AS W runs through finite linear combinations of 
{Pm_fc

(n+2fc_2)/2(0- w è fe}, C/fcW runs through finite linear combinations of 
{0WÀ;: w è &}• These two sets are dense in L\p( — 1, 1) and {/ Ç Lp(rk):f is 
zonal}, respectively; thus, £/fc is onto. 

PROPOSITION 8. Let u Ç { / € Ll(Tk)\ f is zonal}; thus, u has a Fourier series 
Tf°m=kL>m

nûm(t>mk ifim scalar), and if f G Lp(r0), 1 g £ < oo , jfte» w * / G Lp(rk), 

\\u */| |p ^ IMIiH/IU 

oo 

u*f~ X L>m
num<l>mk*f. 

m=k 

Proof. The inequality is a standard convolution inequality. 

For the subsequent theorems we need information about some special series 
given in the work of Askey and Wainger [3]. 

LEMMA 9. Let N = 3, 4, . . . , 1 ^ r ^ N — 1, {<2m} &e a sequence of complex 
numbers such that 

N-l 

dm = X) ayw"J + aw', 

&m' = 0(m~N) as m —> oo , ar, . . . , aN^ifixed. Then there exists 

u G L\N_2)/2(— 1, 1) 

œ 

L>m ClmPm 
171=0 

(this is the ultraspherical expansion of u), 

am = ûm = K&-M j\(t)PjN-2)/\t)(l - e)w-Z)"dt), 
and 

Ht) = NJ: 2 ^eMr+i-m + T log 0 + E ( e ) , 

where cos d = t, 0 ^ 0 ^ 7r, pJt y are constants, E(6) is continuous on [0, ?r]. 
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Askey and Wainger's result deals directly with series of the form 
£ Dm

Nm-jPJN-^/2, and the series £ Dm
Nam'P^N-^12 converges absolutely. 

The Laplacian A is defined by Y,i<jR2ij] then for/ G C/fVo), 
oo 

A/ = -Y,Dm
nm(m + n - 2)(<j>m * / ) . 

Definition. Let A be the SO (n)-operator on C/(ro) defined by 

A/ = Ë Dn
n(m(m + n - 2))-1/2</>w */. 

ra=l 

Note that AA2/ = /o - / , where 

/o= f /• 
•^SO(n) 

For & = 1, 2, . . . , / G C/(ro) we obtain 

V*A/ = Ë Dm
nCkm{m{m + n - 2)Tk,2<t>mk*f 

(by Theorem 6). We will now show that VkA
k is ZAbounded, 1 < p < oo , and 

is a singular integral SO (w)-opera tor. 

THEOREM 10. For each k = 1, 2, . . . , £/z£re exists a measurable function Fk on 
(—1, 1) such that 

V*A*/= ( ^ f e i ) ^ f e ^ i ) ) * / , 

where the convolution integral is a principal value {to be defined in the proof), and 
is defined for f G LP(T0), I < p < co, with \\VkA

kf \\p ^ Bkp\\f \\v, Bkv a con
stant depending only on k and p ( / G Cyf/ro)). 

Proof. Formally, we write 

Let 

•LJm 

then {am} satisfies the hypotheses of Lemma 9 with N = n + 2k,r = k; thus, 
there exists Fk G L1

(Ar==2)/2(— 1, 1) such that 

oo 

and 

as t -> 1_ (since 0 ~ [2(1 - /)]1 / 2 as 9 -> 0, 2 = cos 5). For 0 < « < 1, let 

^ W " \ 0 1 - e < * £ 1; 
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then 

Ke(gii)Fk(gn)\Pk(x, g n ) G Ll(rk) 

and K€Fk\l/jc * / is defined for all e > 0, / £ Cf(r0) and 

KtFk\frk*f(g,x) = J Mx, y)Fjc(yi)f(s)dwn(s), 

where 

:y* = X gi^i (i = l , . . . , «) 
3=1 

(let s = pg'\ then 

where œn is the normalized SO (w)-invariant measure on 5W_1; see [7, Chapter 9] 
for expressing SO(n)-convolutions as integrals over 5W_1). The integrand has 
a singularity at 5 = pg(yi = 1) of order (1 — y^-^-v/2, and since the great 
circle distance between pg and 5 is arccos ji ~ 2(1 — yi)1/2, this is 
(distance)_(w-1). Further, the integral of the kernel with respect to s around 
any (n — 2)-sphere centred at pg is easily seen to be zero; take any s ^ pg 
and the required sphere through 5 is {sg~~lhg\ h £ H], since {pg)- (sg~lhg) = 
P' (sg-%) = (pg)-s, and if u £ Ll(rk), then 

u(gg'~ » xh)dmH(h) -i 'H 

= o, 

for £g' = 5, fe = 1, 2, 3, . . . (note that p-q = YJ1 i=±P tit) -
Now, by a local transfer argument similar to that used by Seeley in [11], 

it follows that the Calderôn-Zygmund inequality holds locally. But 5W_1 is 
compact, so we can conclude 

\\KeFktk*f\\p ^Bkp\\f\\p (1 <p < o o ) , 

where Bkp is independent of e, and lim^o^e^*^*: * / exists in Lp. Thus, 
VkA

k extends to a bounded SO in)-operator: LP(T0) —>Lp(rk). 

THEOREM 11. Let {am: m ^ k} be a sequence of complex numbers such that 

n+Jc-l 

dm = 2 aAm — k)~3 + am', 
3=0 

aJ = 0(m~k~n) as m —» oo, and let f £ LP(TO), 1 < p < oo; /fegw ^ e map 

CO 
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is bounded in Lp, and 

Jfig.x) = ao2k{{n~kl
1)/2)kVkA

kf(g,x) + (F(-,x) */)(g), 

where F £ L1^) and F is zonal. 

Proof. By Lemma 9, there exists u £ LVK«-2) /2( — 1, 1) (N = n + 2fe, r = 1), 
such that 

^ o — * ~ 1 ) / 2 ) * ^ ( g l l ) +M(gi i )J^(ac f g»i)~ Ë Ai."a»tf»*, 

and 
w(0 ~ (1 - *)-c»+*-2)/2# 

Then 

H^ll i = c J ' |«(/)|(1 - *2)tt4*-8)/2<ft < oo 

(c some constant; see Proposition 7), and 

\\ufa *f\\p g l l ^ l l i l l / l ln (1 < ^ < oo). 

THEOREM 12. Let {am} be as above and f £ L2,
(w_2)/2(—1, 1) (1 < £ < °o ); 

£/&ew there is a linear map 

fe+(w-2)/2 ( - 1 , 1 ) 

S^C/Ê that 

Afan p]c+(n-2) /2 

k\ 
Jof~ X) Dm

namfm----Pn 
m=k ^k?n 

and 

jof(t)d - i r a v w ( - i , D 
| | /o / (0( l - '*)*/sll, ^ S ' » l l / | | , ( 1 < £ < oo). 

Proof. Let J be defined as above ; then 

/ ( £ / . / ) € i p ( r t ) , | | / ( t /o / ) | | P ^ 5 J I / I L 

and 
oo 

J(Uof) ~ X ) Dmnamfm(l>mk 
m=k 

œ A 

^ Z ^ ^ ^ a ^ ^ Jm-Lm-k Yk-
m—k ^km 

Then 

Jof ~ (r\ n - l \ l / 2 Ujc JUof 
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is the required map. Holder's inequality shows that J0f £ LVK W _ 2 ) / 2 (— 1, 1), 
which justifies the series 

Jof(t) ~ Z^t D™, dm J m ~7< P m-k ( 0 -
m=k l^km 

Remark. For 

the conjugate series theorem of Stein and Muckenhoupt [10] is obtained. This 
theorem is a "transplantation" theorem. For results dealing with transplanta
tion between Fourier and ultraspherical series, see Askey and Wainger [2]. 

4. Remarks. 

The case n = 3. The propositions and theorems of § 3 are still valid when 
n = 3. Note that the polynomials Pk are the Tchebyshev polynomials given 
by PA;0(cos 6) = cos kd (k = 0, 1, . . .). The main change in § 2 is that rk is 
no longer irreducible for k è 1, but breaks up into 2 one-dimensional com
ponents. So Do2 = 1, and Dk

2 = 2, for k = 1, 2, . . . . I n the expression (2-2) 
given for akj, the limit as n —-> 3+, is found to be 

where bp = 2 for p > 0 and b0 = 1. 

Vector bundles. Some of the results obtained could be phrased in the language 
of vector bundles. For example, one may construct singular integrals on 
C/(TO) of any desired symbol (a symbol here is essentially a ' 'smooth" function 
u on SO(w) X Sn~2 such that 

u{hg, x) = u(g, xh) (g G SO(w), h G H,x G Sn~2). 

Now let 

C °° 
J/(g) = H ckVkA

kf(g,x)u(g,x)da>(x), 
«/ 1x1 = 1 A:=0 

for suitable constants cfc, independent of/ and w (see [6]), where V0A° is the 
identity map. Then J has the symbol u. By replacing V̂ A* in the above 
formula by VkA

j, various j , one may construct differential operators with any 
specified symbol (note that WkA

j is a differential SO (n)-operator of order 
k + 2j of C/(TO) into Cf(rk)). 

Calderôn and Zygmund [5] first constructed singular integrals on R \ 
Seeley [11; 12] extended the theory to vector bundles over manifolds. Levine 
[9] has also investigated singular integrals on spheres. 
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