
JFP 13 (3): 545–571, May 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004598 Printed in the United Kingdom

545

Closed types for a safe imperative MetaML

C. CALCAGNO, E. MOGGI∗
DISI, Universita di Genova, Genova, Italy

(e-mail: {calcagno,moggi}@disi.unige.it)

T. SHEARD†
Oregon Graduate Institute, Portland, OR, USA

(e-mail: sheard@cse.ogi.edu)

Abstract

This paper addresses the issue of safely combining computational effects and multi-stage

programming. We propose a type system which exploits a notion of closed type, to check

statically that an imperative multi-stage program does not cause run-time errors. Our approach

is demonstrated formally for a core language called MiniMLmeta
ref . This core language safely

combines multi-stage constructs and ML-style references, and is a conservative extension of

MiniMLref , a simple imperative subset of SML. In previous work, we introduced a closed type

constructor , which was enough to ensure the safe execution of dynamically generated code in

the pure fragment of MiniMLmeta
ref .

1 Introduction

Techniques such as program generation, multi-level partial evaluation, and run-time

code generation respond to the need for general purpose programs which do not pay

unnecessary run-time overheads. Over the past decade, there have been substantial

advances in these techniques, as exemplified by work in partial evaluation, in high-

level program generation, and in run-time code generation. Aiming to provide a

uniform and principled view of these diverse techniques, multi-stage programming

(Taha & Sheard, 1997; Taha et al., 1998; Moggi et al., 1999; Benaissa et al.,

1999; Taha, 1999; Calcagno et al., 2000; Taha, 2000b) is a novel paradigm for the

development of maintainable, higher-performance programs.

The key idea in multi-stage programming is the use of simple annotations to allow

the programmer to break down a computation into distinct stages. Multi-stage

languages provide support for building, combining, and executing code at run-

time. The prototypical example of a multi-stage programming language is MetaML

(MHP, 2000), which provides a type constructor 〈 〉 for (potentially) open code. Three

staging annotations operate on this type: Brackets 〈 〉, Escape ˜ and Run run .

∗ Research supported by MIUR national project NAPOLI, ESPRIT WG APPSEM, and IST FET
GC-project DART.

† Research supported by NSF Grant CDA-9703218, the M. J. Murdock Charitable Trust and the
Department of Defense.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

546 C. Calcagno et al.

Brackets defer the computation of its argument (constructing code instead); Escape

splices its code argument into the body of surrounding Brackets (combining code

fragments into larger pieces of code); and Run executes its code argument.

A characteristic of multi-stage programming languages is the need to “evaluate

symbolically under lambda” and to manipulate, at run-time, values with free

“dynamic variables”. This need arises neither in the call-by-name nor the call-

by-value pure lambda calculi, and requires special care when defining both the

untyped semantics and the type systems for multi-stage programming language

(Taha & Sheard, 1997; Taha et al., 1998; Moggi et al., 1999; Taha, 1999).

The current release of MetaML (MHP, 2000) is a substantial language, supporting

most features of SML and a host of novel meta-programming constructs. In the

current public release, safety is guaranteed only for programs in the pure fragment.

However, we are continually working to ensure type safety for a larger and larger

subset of the language. A particularly hard problem is the safety of MetaML’s

staging constructs in the presence of computational effects.

This paper advocates a simple and effective approach for safely adding compu-

tational effects into languages that manipulate open values (in general, and open

code in particular). The approach capitalizes on previous work (Moggi et al., 1999;

Calcagno et al., 2000; Calcagno & Moggi, 2000), and exploits a notion of closed

type. The key property of a term e of closed type is that “all free occurrences in e of

dynamic variables are dead code”. Not surprisingly, our type system is only a static

approximation, thus not every well-typed term satisfying such a dynamic property

can be ascribed a closed type.

We demonstrate the approach for ML-style references (Milner et al., 1997), by

extending recent studies into the semantics and type systems for multi-level and

multi-stage languages. MetaML is designed to be an extension of SML (Milner et al.,

1997). There are two reasons for this design choice: first, to facilitate MetaML’s

acceptance among an existing user base, and second, to confine the conceptual

challenges for new users to the staging constructs only. To be consistent with this

design goal, a type system ensuring safety of well-typed MetaML programs should

also be consistent with the operational semantics and type system for SML.

One could get a feeling for meta-programming in MiniMLmeta
ref by skimming through

the imperative power function example of Section 4.1.

1.1 The scope extrusion problem

When adding ML-style references to a multi-stage language like MetaML, it is poss-

ible for dynamic variables to escape the scope of their binder (Taha & Sheard, 2000).

This form of scope extrusion is specific to multi-level and multi-stage languages

supporting “symbolic evaluation under lambda”, and does not arise in traditional

(call-by-name or call-by-value) programming languages, where evaluation is usually

restricted to closed terms. The problem lies in the run-time interaction between sym-

bolic evaluation under lambda and references. In a big-step operational semantics

for an imperative language the natural rule for symbolic evaluation under lambda

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 547

would be
µ, e

n+1
↪→ µ′, v

µ, λx.e
n+1
↪→ µ′, λx.v

, where µ and µ′ are the stores before and after

symbolic evaluation. During evaluation of e the bound variable x could be stored in

µ′, as exemplified by the following MetaML sessions. Example 1.1 exhibits a “nasty”

scope extrusion problem using a reference to (potentially open) code of type int,

while Example 1.2 exhibits a “benign” instance of the problem using a reference to

a function of ML type int -> int.

Example 1.1 (“Nasty”)

The following session is statically well-typed in naive extensions of previously

proposed type systems for MetaML (Taha et al., 1998; Taha & Sheard, 2000; Moggi

et al., 1999):

-| val l = ref <1>;

val l = ... : <int> ref

-| val f = <fn x => ~(l:=<x+1>; <2>)>;

val f = <fn x => 2> : <int -> int>

-| val c = !l;

val c = <x+1> : <int>

-| run c;

system crash

Evaluating the declaration of f, x goes outside the scope of the binding lambda.

This means the value bound to c is not typable in the current environment (thus,

we have lost Subject Reduction). An attempt to execute c results in a crash.

Example 1.2 (“Benign”)

The following session gives an example where a variables goes outside the scope of

its binder. However, in this case (we claim here and we will prove in what follows),

this anomaly cannot be observed in the language.

-| fun fst (x,y) = x;

val fst = fn ... : ’a * ’b -> ’a

-| val l = ref (fn y => y+0);

val l = ... : (int -> int) ref

-| val f = <fn x => ~(l:=fn y => fst(y,<x+1>)); <2>)>;

val f = <fn x => 2> : <int -> int>

-| val g = !l;

val g = fn ... : int -> int

As in the previous example, evaluating the declaration of f makes x escape the

scope of its binding lambda. Hence, the value bound to g is an open term, and

therefore untypable. However, this example does not result in a crash, no matter

what the rest of the program does with g. The reason is that x is dead code in the

value fn y => fst(y,<x+1>) bound to g.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

548 C. Calcagno et al.

1.2 Proposed solution

Our solution involves two ingredients: the type system exploits closed types to reject

Example 1.1 and accept Example 1.2; the untyped operational semantics exploits a

new binder for a hygienic handling of scope extrusion.

Closed types. The type system of MiniMLmeta
ref (figure 3) rejects Example 1.1 by

identifying a subset of types, called closed types, and by restricting the Reference

type constructor ref to be applied only to closed types. Intuitively, closed types can

be characterized by the following property: values of closed type have no free occur-

rences of dynamic variables. Since a code type 〈t〉 is not considered a closed type, the

type ref 〈t〉 is not well-formed. This seems to preclude references to code altogether.

Such a limitation is overcome by the Closed type constructor [], first introduced in

Moggi et al. (1999) for typing Run. The [] type constructor maps a type t to the

closed type [t], intuitively [t] is the biggest closed type included in t. In Example 1.1,

we cannot assign to l the type <int> ref, because such a type is ill-formed, but one

can assign to l the type [<int>] ref. On the other hand, in the second line one

can assign to <x> the open type <int>, but not the closed type [<int>]. Therefore,

l:=<x> fails to type-check. When the characterizing property of closed types is

interpreted syntactically, as done in (Calcagno et al., 2000), the resulting type system

is safe but too restrictive, in particular it fails to extend the ML type system. In fact, in

such a system functional types are not closed, thus the ML type (int -> int) ref

is considered ill-formed. This paper adopts a more semantic reading of the character-

izing property, namely: in a value of closed type all free occurrences of dynamic vari-

ables are “dead code”, i.e. if such occurrences are replaced with raise Unreachable

(and the rest of the program is well-typed), then the exception Unreachable will

not be raised (Xi, 1999). The resulting type system accepts Example 1.2.

Hygienic handling of scope extrusion. The operational semantics (section 3.2) must

handle scope extrusion compatibly with a proof of subject reduction, since evaluation

of well-typed programs may cause some benign scope extrusion. For this purpose

we introduce a binder (x)e called Bind, which declares that the free occurrences

of x are dead code in e. In this refined operational semantics, when a value v is

stored, all its free variables are declared dead code. For instance, what gets stored

in l is (x)<x+1> in Example 1.1 and (x)fn y => fst(y,<x+1>) in Example 1.2.

Operationally, (x)e is equivalent to e[x := fault], where fault is some faulty term, e.g.

0 0. The typing rules for Bind allow the user to declare that “in a term of closed type

all free occurrences of dynamic variables are dead code”. A posteriori, a type safety

theorem tells us that the declarations of dead code allowed by the type system are

semantically valid, i.e. no attempt is made to evaluate a variable replaced by fault,

because well-typed programs cannot raise run-time errors.

1.3 Contributions and summary

This paper proposes a safe approach for adding multi-stage programming constructs

to an imperative programming language using a notion of closed type. We expect

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 549

this notion to provide a general solution for safely adding multi-stage programming

constructs to programming languages with other computational effects, e.g. by

allowing only values of closed types to be packaged with exceptions, or exchanged

between communicating processes.

Section 2 introduces the imperative language MiniMLref namely MiniML (Clement

et al., 1986) extended with ML-style references. Section 3 defines the multi-stage

extension MiniMLmeta
ref of MiniMLref . The multi-stage programming constructs of

MiniMLmeta
ref can be described informally in a hypothetical two-level language with

levels obj and meta:

• A Code type constructor

Code
Γ �obj t object-level type

Γ �meta 〈t〉 meta-level type

and constructs

Brackets
Γ �obj e : t object-level program fragment of type t

Γ �meta 〈e〉 : 〈t〉 meta-level representation of e

Escape
Γ �meta e : 〈t〉
Γ �obj ˜e : t

such that ˜〈e〉 −→ e.

These constructs are borrowed from MetaML (Taha & Sheard, 1997; Taha

et al., 1998) and the multi-level language λ© (Davies, 1996).

• Cross-Stage Persistence

CSP
Γ �meta e : t

Γ �obj %e : t
t object- and meta-level type

allows the inclusion of meta-level computations in object-level programs, a

similar construct is available in λBN (Benaissa et al., 1999), and implicitly also

in MetaML (Taha & Sheard, 1997).

• A Closed type constructor.

Closed
Γ �meta t meta-level type

Γ �meta [t] meta-level type

Intuitively [t] is the subset of t consisting of the e without unresolved links,

and a construct

Run
Γ �meta e : [〈t〉]

Γ �meta run e : [t]
t object- and meta-level type

where e : [〈t〉] means that e represents a complete object-level program e′, and

run e corresponds to the execution of e′.

These constructs are similar to those proposed in (Moggi et al., 1999; Benaissa

et al., 1999; Taha & Sheard, 1997; Davies & Pfenning, 1996).

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

550 C. Calcagno et al.

In MiniMLmeta
ref the meta-level is reflected in the object-level, thus one gets an infinite

tower of levels (Smith, 1982): 0 is the meta-level, 1 is the reflection of the meta-level

(i.e. the object-level), 2 is the reflection of the reflection of the meta-level,

The main technical results are: type safety for MiniMLmeta
ref , i.e. evaluation of

well-typed programs does not cause a run-time error (section 3.3); MiniMLmeta
ref is a

conservative extension of MiniMLref with respect to typing and operational semantics

(section 3.4). The usability of MiniMLmeta
ref for imperative multi-stage programming

is exemplified in section 4. Related work is discussed in section 5.

Note 1.3 (Notations and conventions used throughout the paper)

• Term equivalence, written ≡, is α-conversion. FV(e) is the set of variables free

in e. If E is a set of terms, then E0 indicates the set of terms in E without free

variables. Substitution of e1 for x in e2 (modulo ≡) is written e2[x := e1].

• m, n range over the set N of natural numbers. Furthermore, m ∈ N is identified

with the set {i ∈ N|i < m} of its predecessors.

• f : A
fin
→ B means that f is a partial function from A to B with a finite domain,

written dom(f). We write {ai : bi|i ∈ m} for the partial function mapping ai
to bi (where the ai must be different, i.e. ai = aj implies i = j). We use the

following operations on partial functions:

∅ is the everywhere undefined partial function;

f1, f2 denotes the union of two partial functions with disjoint domains;

f, a : b denotes the extension of f to a �∈ dom(f);

f{a = b} denotes the update of f in a ∈ dom(f).

• Given a declaration of a grammar such as e := P1 | . . . | Pm, we write

e+ = Pm+1 | . . . | Pm+n as a shorthand for e := P1 | . . . | Pm+n.

• Given a relation R, we write �R for the complement, and R∗ for the reflexive

transitive closure.

2 A language with references: MiniMLref

We describe the syntax, type system, and operational semantics of MiniMLref , an

extension of MiniML (Clement et al., 1986) with ML-style references, and sketches

the main steps in the proof of weak soundness (Wright & Felleisen, 1994; Harper

& Stone, 1997), i.e. “well-typed programs cannot go wrong”. The definitions are

quite standard, but they are needed for formalizing and proving that MiniMLmeta
ref is

a conservative extension of MiniMLref (see section 3.4). This section is not essential

to understanding section 3, but comparing the two suggests how to define the multi-

stage extension of a different programming language, and clarifies the overheads

involved in proving type safety.

The set of MiniMLref terms is parametric in an infinite set of variables x ∈ X and

an infinite set of locations l ∈ L

e ∈ E ::= x | λx.e | e1e2 | fix x.e |
z | s e | case e of (z → e1 | s x → e2) |
ref e | !e | e1 := e2 | l

The first two lines list the MiniML terms: variables, abstraction, application, fix-point

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 551

Σ; Γ � x : t
Γ(x) = t

Σ; Γ � l : t
Σ(l) = t

Σ; Γ, x : t1 � e : t2

Σ; Γ � λx.e : t1 → t2

Σ; Γ � e1 : t1 → t2 Σ; Γ � e2 : t1

Σ; Γ � e1e2 : t2

Σ; Γ, x : t � e : t

Σ; Γ � fix x.e : t Σ; Γ � z : nat

Σ; Γ � e : nat

Σ; Γ � s e : nat

Σ; Γ � e : nat Σ; Γ � e1 : t Σ; Γ, x : nat � e2 : t

Σ; Γ � case e of (z → e1 | s x → e2) : t

Σ; Γ � e : t

Σ; Γ � ref e : ref t

Σ; Γ � e : ref t

Σ; Γ � !e : t

Σ; Γ � e1 : ref t Σ; Γ � e2 : t

Σ; Γ � e1 := e2 : ref t

Fig. 1. Type System for MiniMLref . Σ signature for locations, Γ type assignment.

for recursive definitions, zero, successor, and case-analysis on natural numbers. The

third line lists the three SML operations on references, and constants l for locations.

Locations are not allowed in user-written programs, but they are instrumental to

the operational semantics of MiniMLref .

2.1 Type system

Figure 1 gives the type system of MiniMLref . The typing judgment has the form

Σ; Γ � e : t, read “e has type t under the assignment Σ; Γ”, where

• t is a type, i.e. t ∈ T ::= nat | ref t | t1 → t2

• Σ : L
fin
→ T is a signature (for locations only), written {li : ref ti|i ∈ m}.

• Γ : X
fin
→ T is a type assignment, written {xi : ti|i ∈ m}.

The type system enjoys the following basic properties:

Lemma 2.1 (Weakening)

1. Σ; Γ � e : t2 and x fresh imply Σ; Γ, x : t1 � e : t2

2. Σ; Γ � e : t2 and l fresh imply Σ, l : ref t1; Γ � e : t2

Lemma 2.2 (Substitution)

Σ; Γ � e1 : t1 and Σ; Γ, x : t1 � e2 : t2 imply Σ; Γ � e2[x := e1] : t2

2.2 Operational semantics

We give a small-step operational semantics in the style advocated in Wright &

Felleisen (1994). The semantics is given by a relation �−→ ⊂ (S×E)×((S×E)+{err})
defined in terms of a reduction −→⊂ (S × Red) × ((S × E) + {err}) and evaluation

contexts E ∈ EC (see figure 2). The special term err is analogous to the Wrong

value in Milner-style untyped denotational semantics (Milner, 1978). The semantic

categories involved in the definition of �−→ are:

• values v ∈ V ⊂ E ::= λx.e | z | s v | l

• stores µ ∈ S
∆
= L

fin
→ V.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

552 C. Calcagno et al.

µ, (λx.e)v2 −→ µ, e[x := v2]

µ,fix x.e −→ µ, e[x := fix x.e]

µ, case z of (z → e1 | s x → e2) −→ µ, e1

µ, case s v of (z → e1 | s x → e2) −→ µ, e2[x := v]

µ, ref v −→ (µ, l : v), l with l �∈ dom(µ)

µ, !l −→ µ, v if v = µ(l)

µ, l := v −→ µ{l = v}, l if l ∈ dom(µ)

µ, r −→ err otherwise

µ, r −→ µ′, e′

µ, E[r] �−→ µ′, E[e′]
E ∈ EC

µ, r −→ err

µ, E[r] �−→ err
E ∈ EC

Fig. 2. Reduction for MiniMLref . E ∈ EC Evaluation Context.

• evaluation contexts E ∈ EC, i.e.

E ∈ EC ::= � | E e2 | v1E |
s E | case E of (z → e1 | s x → e2) |
ref E | !E | E := e2 | v1 := E

• redexes

r ∈ Red ⊂ E ::= x | v1v2 | fix x.e |
case v of (z → e1 | s x → e2) |
ref v | !v | v1 := v2

The relations −→ and �−→ enjoy the following progress properties:

• in a configuration (µ, r) with r ∈ Red, the relation −→ can

— either perform a computation step, yielding a configuration µ′, e′;

— or report a run-time error err.

• in a configuration (µ, e) with e �∈ V, the relation �−→ can

— either perform a computation step, yielding a configuration µ′, e′;

— or report a run-time error err.

Usually in MiniMLref , one is interested only in execution of complete programs, i.e.

e ∈ E0 (with no occurrences of l), starting from the empty store. We will establish that

from such configurations �−→ will only reach closed configurations, i.e. configurations

in S0 × E0. These properties are stated formally in the following Lemmas.

Lemma 2.3 (Progress for −→)

If (µ, r) ∈ S × Red, then there exists d such that µ, r −→ d.

If µ, r −→ µ′, e′, then dom(µ) ⊆ dom(µ′) and FV(µ′, e′) ⊆ FV(µ, r).

Lemma 2.4 (Unique Decomposition)

If e ∈ E, then

• either e ∈ V

• or exist (unique) E ∈ EC and r ∈ Red such that e ≡ E[r].

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 553

Proof

By induction on e ∈ E. �

Lemma 2.5 (Progress for �−→)

If (µ, e) ∈ S × E, then either e ∈ V or there exists d such that µ, e �−→ d.

If µ, e �−→ µ′, e′, then dom(µ) ⊆ dom(µ′) and FV(µ′, e′) ⊆ FV(µ, e).

Proof

By Unique Decomposition, Progress for −→, and the fact that in an evaluation

context the hole � cannot be within the scope of a binder. �

Comparison with Wright and Felleisen. The reduction semantics of the Wright &

Felleisen (1994) and Harper & Stone (1997) models a run-time error by a stuck

configuration, i.e. a (µ, e) such that e �∈ V and µ, e ��−→ , instead of a reduction

to err. For MiniMLref the two formulations are equivalent, but a more direct

definition of run-time errors is preferable in the following cases: when one wants

to distinguish among different run-time errors, as suggested in Cardelli (1997);

when a configuration can progress both in err and in another configuration (this

can happen in a parallel while language). Moreover, modeling a run-time error as a

transition to err allows one to prove progress properties of the operational semantics

independently from typing assumptions, such as those in Harper & Stone (1997).

2.3 Type safety

We define well-formedness of closed stores in the obvious way:

• Σ |= µ
∆⇐⇒

{
dom(Σ) = dom(µ) and,

µ(l) = v ∧ Σ(l) = ref t =⇒ Σ; ∅ � v : t

The following lemmas summarize the main steps for proving weak soundness.

These lemmas are about closed configurations.

Lemma 2.6 (Safety for −→)

If Σ |= µ and Σ; ∅ � r : t with r ∈ Red, then

• µ, r �−→ err

• µ, r −→ µ′, e′ =⇒ there exists Σ′ ⊇ Σ such that Σ′ |= µ′ and Σ′; ∅ � e′ : t

Proof

By case analysis on r ∈ Red, using Substitution. �

Lemma 2.7 (Replacement for Evaluation Contexts)

If Σ; ∅ � E[e] : t with E ∈ EC, then there exists t1 such that

• Σ; ∅ � e : t1
• Σ′; ∅ � e′ : t1 =⇒ Σ′; ∅ � E[e′] : t for any Σ′ ⊇ Σ and e′

Proof

By induction on the structure of E ∈ EC, using Weakening and the fact that in an

evaluation context the hole � cannot be within the scope of a binder. �

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

554 C. Calcagno et al.

Lemma 2.8 (Safety for �−→)

If Σ |= µ and Σ; ∅ � e : t, then

• µ, e ��−→ err

• µ, e �−→ µ′, e′ =⇒ there exists Σ′ ⊇ Σ such that Σ′ |= µ′ and Σ′; ∅ � e′ : t

Proof

By Unique Decomposition, Replacement, and Safety for −→. �

Theorem 2.9 (Weak Soundness)

If ∅; ∅ � e : t, then (∅, e) ��−→∗err.

Proof

(∅, e) �−→ md implies d �≡ err, by induction on m, using Safety for �−→ . �

3 A Multi-stage language with references: MiniMLmeta
ref

We describe the syntax, type system, and operational semantics of MiniMLmeta
ref ,

a multi-stage extension of MiniMLref , and establishes weak soundness (Wright &

Felleisen, 1994), i.e. “well-typed programs cannot go wrong”.

The set of MiniMLmeta
ref terms is an extension of the set of MiniMLref terms

e ∈ E += 〈e〉 | ˜e | run e | %e | letc x = e1 in e2 | (x)e

The new constructs are: the three multi-stage constructs of MetaML, Brackets 〈e〉,
Escape ˜e and Run run e; Cross-Stage Persistence %e; Letc-binding letc x = e1 in e2

for terms of closed type; and Bind (x)e for handling scope extrusion. In well-typed

user programs one could always eliminate Bind, by replacing (x)e with e[x := ⊥],

where ⊥ = fix x.x. However, Bind could be reintroduced during evaluation.

Note 3.1 (Derived notation)

• (X)e is Iterated Bind, i.e. (x1) . . . (xm)e with xi an enumeration of X ⊆fin X

• •e is the Bind-Closure of e, i.e. (X)e with X = FV(e).

Remark 3.2 (Bind as Dead Code annotation)

Operationally, Bind (x)e is equivalent to e[x := fault], where fault is a closed term

which causes a run-time error when evaluated at level 0 and is a value at levels

> 0. An example of such a term is z z, but not ˜z. In fact, Bind-bound variables

never get substituted during evaluation, because intuitively they have already been

substituted with fault; evaluation at any level can go under Bind (see the BNF

for evaluation contexts En
i), because intuitively (x)e is a substitution instance of e.

If evaluation of a complete program e0 does not cause a run-time error, then all

occurrences of variables that are (or get) bound by Bind must be dead code in e0, i.e.

there will be no attempt to evaluate such occurrences (and their residuals) at level 0.

The following points anticipate the discussion of Bind in relation to the operational

semantics and the type system of MiniMLmeta
ref .

• The operational semantics of figure 4 uses Bind to prevent scope extrusion

when a location is initialized or assigned. In fact, what gets stored is always

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 555

(var)
Σ; ∆; Γ �n x : t

(∆,Γ)(x) = tn (cst)
Σ; ∆; Γ �n l : c

Σ(l) = c

(lam)
Σ; ∆; Γ, x : tn1 �n e : t2

Σ; ∆; Γ �n λx.e : t1 → t2
(app)

Σ; ∆; Γ �n e1 : t1 → t2 Σ; ∆; Γ �n e2 : t1

Σ; ∆; Γ �n e1e2 : t2

(fix)
Σ; ∆; Γ, x : tn �n e : t

Σ; ∆; Γ �n fix x.e : t
(zero)

Σ; ∆; Γ �n z : nat
(succ)

Σ; ∆; Γ �n e : nat

Σ; ∆; Γ �n s e : nat

(case)
Σ; ∆; Γ �n e : nat Σ; ∆; Γ �n e1 : t Σ; ∆; Γ, x : natn �n e2 : t

Σ; ∆; Γ �n case e of (z → e1 | s x → e2) : t

(ref)
Σ; ∆; Γ �n e : c

Σ; ∆; Γ �n ref e : ref c
(deref)

Σ; ∆; Γ �n e : ref c

Σ; ∆; Γ �n !e : c

(setref)
Σ; ∆; Γ �n e1 : ref c Σ; ∆; Γ �n e2 : c

Σ; ∆; Γ �n e1 := e2 : ref c

(brck)
Σ; ∆; Γ �n+1 e : t

Σ; ∆; Γ �n 〈e〉 : 〈t〉
(esc)

Σ; ∆; Γ �n e : 〈t〉
Σ; ∆; Γ �n+1 ˜e : t

(run)
Σ; ∆; Γ �n e : [〈t〉]

Σ; ∆; Γ �n run e : [t]

(csp)
Σ; ∆; Γ �n e : t

Σ; ∆; Γ �n+1 %e : t
(letc)

Σ; ∆; Γ �n e1 : c1 Σ; ∆, x : cn1; Γ �n e2 : t2

Σ; ∆; Γ �n letc x = e1 in e2 : t2

(bind1)
Σ; ∆; Γ �n e : t

Σ; ∆; Γ �n (x)e : t
x fresh (bind2)

Σ; ∆; Γ, x : tm1 �n e : c

Σ; ∆; Γ �n (x)e : c
m > n

(bind3)
Σ; ∆, x : cm1 ; Γ �n e : c

Σ; ∆; Γ �n (x)e : c
m > n (closI1)

Σ; ∆; Γ �n e : c

Σ; ∆; Γ �n e : [c]

(closI2)
Σ; ∆�n; ∅ �n e : t

Σ; ∆; Γ �n e : [t]
(closE)

Σ; ∆; Γ �n e : [t]

Σ; ∆; Γ �n e : t

Fig. 3. Type system for MiniMLmeta
ref . Σ signature for locations, ∆ and Γ type-and-level

assignments with disjoint domains.

the Bind-closure •v0 of a value. Therefore, if a free variable in v0 was in

the scope of an enclosing binder, it gets bound by Bind instead of becoming

free. In other words, the operational semantics assumes that the free variables

in v0 are dead code, and uses Bind to make the assumption explicit. If the

assumption is wrong, then a run-time error will eventually occur. According to

the Weak Soundness Theorem 3.11, in the evaluation of a well-typed program

no run-time errors can occur, thus the Bind annotation is used correctly.

• The typing rules for Bind in figure 3 say that “in a term of closed type at

level n all free variables declared at level > n must be dead code”. While Type

Safety (see section 3.3) tells us that the dead code annotations allowed by the

type system are operationally sound. Notice that, type-theoretically, (x)e is not

equivalent to e[x := fault]. In fact, (x)e is typable whenever e[x := fault] is

(typability of e[x := fault] implies x �∈ FV(e)), but the converse fails.

3.1 Type system

Figure 3 gives the type system of MiniMLmeta
ref . A typing judgment has the form

Σ; ∆; Γ �n e : t, read “e has type t at level n under the assignment Σ; ∆; Γ”, where

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

556 C. Calcagno et al.

µ, ((X)λx.e)v0
2

0−→ µ, ((X)e)[x := v0
2]

µ,fix x.e
0−→ µ, e[x := fix x.e]

µ, case (X)z of (z → e1 | s x → e2)
0−→ µ, e1

µ, case (X)s v0 of (z → e1 | s x → e2)
0−→ µ, e2[x := •v0]

µ, ref v0 0−→ (µ, l : •v0), l with l �∈ dom(µ)

µ, !(X)l
0−→ µ, v0 if v0 = µ(l)

µ, (X)l := v0 0−→ µ{l = •v0}, l if l ∈ dom(µ)

µ, run (X)〈v1〉 0−→ µ, •(v1 ↓0)

µ, letc x = v0 in e2
0−→ µ, e2[x := •v0]

µ, r0 0−→ err otherwise

µ, ˜(X)〈v1〉 1−→ µ, (X)v1

µ, r1 1−→ err otherwise

µ, ri
i−→ µ′, e′

µ, En
i [r

i]
n�−→ µ′, En

i [e
′]

En
i ∈ ECn

i

µ, ri
i−→ err

µ, En
i [r

i]
n�−→ err

En
i ∈ ECn

i

Fig. 4. Reductions for MiniMLmeta
ref , where: •v0 Bind-closure of v0, ↓0: V1 → E Demotion, and

En
i ∈ ECn

i Evaluation Context. In a reduction rule bind-closure is applied to (potentially open)

terms that can be assigned a closed type, under the assumption that the redex is well-typed

(see Remark 3.2).

• t is a type and c is a closed type, i.e.

t ∈ T ::= nat | t1 → t2 | [t] | ref c | 〈t〉
c ∈ C ::= nat | t1 → c2 | [t] | ref c

• Σ : L
fin
→ C is a signature (for locations only), written {li : ref ci|i ∈ m}.

• ∆ : X
fin
→ (C × N) and Γ : X

fin
→ (T × N) are type-and-level assignments, written

{xi : cnii |i ∈ m} and {xi : tnii |i ∈ m} respectively. We use the following operations

on type-and-level assignments:

{xi : tnii |i ∈ m}op n ∆
= {xi : tni op ni |i ∈ m}, with op binary operation on N;

{xi : tnii |i ∈ m}R n ∆
= {xi : tnii |ni R n ∧ i ∈ m}, with R binary relation on N.

The type system enjoys the following basic properties:

Lemma 3.3 (Weakening)

1. Σ; ∆; Γ �n e : t2 and x fresh imply Σ; ∆; Γ, x : tm1 �n e : t2

2. Σ; ∆; Γ �n e : t2 and x fresh imply Σ; ∆, x : cm1 ; Γ �n e : t2

3. Σ; ∆; Γ �n e : t2 and l fresh imply Σ, l : ref c1; ∆; Γ �n e : t2

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 557

Lemma 3.4 (Substitution)

subst.Γ

Σ; ∆; Γ �m e1 : t1
Σ; ∆; Γ, x : tm1 �n e2 : t2

Σ; ∆; Γ �n e2[x := e1] : t2
subst.∆

Σ; ∆�m; ∅ �m e1 : c1

Σ; ∆, x : cm1 ; Γ �n e2 : t2

Σ; ∆; Γ �n e2[x := e1] : t2

Comparison with MiniMLref . The typing judgments of MiniMLmeta
ref have two addi-

tional features:

• the level information, typical of multi-level languages like λ© (Davies, 1996);

• the splitting of type-and-level assignments in two parts (∆ and Γ), borrowed

from λ� (Davies & Pfenning, 1996); The difference between a declaration in

∆ and the same declaration in Γ is expressed in the Substitution Lemma 3.4.

The level information is essential to express the typing rules for the Code type

constructor, while the splitting is essential to express the typing rules for the Closed

type constructor (and more generally for closed types). The MiniMLmeta
ref typing rules

for MiniMLref term constructs are closely related to those of MiniMLref , namely:

• the typing rules operate uniformly at every level;

• the binders always bind variables declared in Γ;

• but the typing for the operations on references are restricted to closed types.

Finally, the typing rules for the new term constructs of MiniMLmeta
ref are mainly

related to typing rules of λ© or λ�:

• (brck) and (esc) correspond directly to the following rules of λ©

©-I
Γ �n+1 e : t

Γ �n next e : ©t
©-E

Γ �n e : ©t

Γ �n+1 prev e : t

• (run) and (csp) are consistent with the rules in Section 1.3; in MetaML cross-

stage persistence is not embodied in a term construct like %e, but it is implicit

in the typing rule for variables
Γ �m x : t

Γ(x) = tn and m � n

• (letc) and (closI2) are related to the following rules of λ�

�-I
∆; ∅ � e : t

∆; Γ � box e : �t
�-E

∆; Γ � e1 : �t1 ∆, x : t; Γ � e2 : t2

∆; Γ � let box x = e1 in e2 : t2

Notice that letc x = e1 in e2 is not equivalent to let x = e1 in e2
∆
= (λx.e2) e1,

since in the former x is declared in ∆, while in the latter it is declared in Γ.

• (closE) says that [t] is a subset of t, and (closI1) says that [c] and c are equal,

i.e. they classify the same set of terms. These rules and (closI2) are not syntax

directed, therefore the typing rules do not directly induce a type inference

algorithm

• The typing of (x)e has been discussed in Remark 3.2.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

558 C. Calcagno et al.

3.2 Operational semantics

We give a small-step operational semantics in the style advocated in Harper &

Stone (1997) and Wright & Felleisen (1994). Since MiniMLmeta
ref is a multi-level

language, the semantics is given by a family
n�−→ ⊂ (S0 × E) × ((S0 × E) + {err})

of relations, one for each level n ∈ N, defined in terms of two reductions
i−→⊂

(S0 × Redi) × ((S0 × E) + {err}), with i ∈ {0, 1}, and evaluation contexts En
i ∈ ECn

i

(see figure 4). The semantic categories involved in the definition of
n�−→ are:

• vn ∈ Vn ⊂ E values at level n ∈ N, i.e.

v0 ∈ V0 ::= λx.e | z | s v0 | l | 〈v1〉 | (x)v0

vn+1 ∈ Vn+1 ::= x | λx.vn+1 | vn+1
1 vn+1

2 | fix x.vn+1 |
z | s vn+1 | case vn+1 of (z → vn+1

1 | s x → vn+1
2) |

ref vn+1 | !vn+1 | vn+1
1 := vn+1

2 | l |
〈vn+2〉 | run vn+1 | %vn | letc x = vn+1

1 in vn+1
2 | (x)vn+1

vn+2 ∈ Vn+2+ = ˜vn+1

• closed stores µ ∈ S0
∆
= L

fin
→ V0

0

• evaluation contexts En
i ∈ ECn

i at level n ∈ N with hole at level i ∈ {0, 1}, i.e.

Ei
i ∈ ECi

i ::= �
En
i ∈ ECn

i + = En
i e2 | vn1En

i | s En
i | case En

i of (z → e1 | s x → e2) |
ref En

i | !En
i | En

i := e2 | vn1 := En
i |

〈En+1
i 〉 | run En

i | letc x = En
i in e2 | (x)En

i

En+1
i ∈ ECn+1

i + = λx.En+1
i | fix x.En+1

i |
case vn+1 of (z → En+1

i | s x → e2) |
case vn+1 of (z → vn+1

1 | s x → En+1
i) |

%En
i | ˜En

i | letc x = vn+1
1 in En+1

i

• redexes ri ∈ Redi ⊂ E at level i ∈ {0, 1}, i.e.

r0 ∈ Red0 ::= x | v0
1v

0
2 | fix x.e | case v0 of (z → e1 | s x → e2) |

ref v0 | !v0 | v0
1 := v0

2 |
˜e | run v0 | %e | letc x = v0

1 in e2

r1 ∈ Red1 ::= ˜v0

The reduction of run v0 makes use of an auxiliary operation on values:

Definition 3.5 (Demotion)

↓n: Vn+1 → E is defined by induction on vn+1 ∈ Vn+1

x ↓n
∆
= x

(%v0) ↓0
∆
= v0[x := %x|x ∈ FV(v0)]

(%vn+1) ↓n+1
∆
= %(vn+1 ↓n)

〈vn+2〉 ↓n
∆
= 〈vn+2 ↓n+1〉

(˜vn+1) ↓n+1
∆
= ˜(vn+1 ↓n)

and ↓n commutes with the other term constructs.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 559

In relation to the type system, ↓n lowers levels but preserves types, i.e.

Proposition 3.6 (Demotion)

If Σ; ∆+1; Γ+1 �n+1 v : t and v ∈ Vn+1, then Σ; ∆; Γ �n v ↓n: t.

Proof

By induction on derivation of Σ; ∆+1; Γ+1 �n+1 v : t. �

The following property captures the reflective nature of MiniMLmeta
ref , i.e. “a term

at level n is a value at level n + 1”, on values where ↓n is the identity:

Proposition 3.7 (Promotion)

If Σ; ∆; Γ �n e : t, then Σ; ∆+1; Γ+1 �n+1 e : t and e ∈ Vn+1 and e ↓n≡ e.

Proof

By induction on derivation of Σ; ∆; Γ �n e : t. �

The relations
i−→ and

n�−→ enjoy the following progress properties:

• in a configuration (µ, ri) with ri ∈ Redi, the relation
i−→ can

— either perform a computation step, yielding a configuration µ′, e′;

— or report a run-time error err.

• in a configuration (µ, e) with e �∈ Vn, the relation
n�−→ can

— either perform a computation step, yielding a configuration µ′, e′;

— or report a run-time error err.

These and other properties are stated formally in the following Lemmas.

Lemma 3.8 (Progress for
i−→)

If (µ, ri) ∈ S0 × Redi, then there exists d such that µ, ri
i−→ d.

If µ, ri
i−→ µ′, e′, then dom(µ) ⊆ dom(µ′) and FV(e′) ⊆ FV(ri).

Proof

By case analysis on ri ∈ Redi, and the fact that what gets in or out a closed store µ

is always a closed value. �

Lemma 3.9 (Unique Decomposition)

If n ∈ N and e ∈ E, then

• either e ∈ Vn

• or exist (unique) i ∈ {0, 1} and En
i ∈ ECn

i and ri ∈ Redi such that e ≡ En
i [r

i].

Proof

By induction on e ∈ E. �

Lemma 3.10 (Progress for
n�−→)

If (µ, e) ∈ S0 × E, then either e ∈ Vn or there exists d such that µ, e
n�−→ d.

If µ, e
n�−→ µ′, e′, then dom(µ) ⊆ dom(µ′) and FV(e′) ⊆ FV(e).

Proof

By Unique Decomposition and Progress for
i−→. �

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

560 C. Calcagno et al.

Comparison with MiniMLref . Usually in MiniMLmeta
ref , one is interested only in execu-

tion (at level 0) of complete programs, i.e. e ∈ E0 (with no occurrences of l), starting

from the empty store. Like in MiniMLref , the Progress Lemma for
0�−→ tells us that

from such configurations we will only reach closed configurations. However, there is

an important difference: in an evaluation context for MiniMLmeta
ref the hole can be

within the scope of a binder, e.g. consider 〈λx.˜�〉 ∈ EC0
0, and so FV(En

i [r
i]) = ∅

does not imply FV(ri) = ∅. Therefore, for proving type safety in MiniMLmeta
ref it does

not suffice to consider only closed redexes.

3.3 Type safety

This section establishes weak soundness for MiniMLmeta
ref , namely

Theorem 3.11 (Weak Soundness)

If ∅; ∅; ∅ �0 e : t, then (∅, e) � 0�−→∗ err.

We write [t]n to denote the n-fold application of [], i.e. [t]0
∆≡ t and [t]n+1 ∆≡ [[t]n].

The following lemmas are used in the proof of Safety for
i−→.

Lemma 3.12 (Structure)

Given v ∈ V0 and t ∈ T, if Σ; ∆; Γ �0 v : t is derivable, then for some X ⊆fin X

and type-and-level assignments ∆1 and Γ1 s.t. dom(∆1,Γ1) ⊆ X one of the following

(mutually exclusive) possibilities holds:

1. v ≡ (X)λx.e and t ≡ [t1 → t2]
n and Σ; ∆,∆+1

1 ; Γ,Γ+1
1 , x : t01 �0 e : t2

2. v ≡ (X)z and t ≡ [nat]n

3. v ≡ (X)s v′ and t ≡ [nat]n and Σ; ∆,∆+1
1 ; Γ,Γ+1

1 �0 v
′ : nat

4. v ≡ (X)l and t ≡ [ref c]n and Σ(l) = ref c

5. v ≡ (X)〈v′〉 and t ≡ [〈t′〉]n and Σ; ∆,∆+1
1 ; Γ,Γ+1

1 �1 v
′ : t′

Proof

By induction on the derivation of Σ; ∆; Γ �0 v : t. Because of the structure of a

v ∈ V0 we have the following cases for the last typing rule in the derivation.

• Base cases: the following cases do not need the induction hypothesis.

(cst) (lam) (zero) (succ) (brck)

• Inductive steps: the following cases use the induction hypothesis.

(bind1) (bind2) (bind3)

(closI1) (closI2) (closE)

We consider only one base case and two inductive steps. The other cases are similar.

Case (lam).

If the last typing rule is (lam), then it must be of the form

Σ; ∆; Γ, x : t01 �0 e : t2

Σ; ∆; Γ �0 λx.e : t1 → t2

where t ≡ t1 → t2 and v ≡ λx.e. Then possibility 1 applies with X = ∅, n = 0,

∆1 = ∅, Γ1 = ∅.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 561

Case (bind2).

If the last typing rule is (bind2), then it must be of the form

Σ; ∆; Γ, x : tm+1
1 �0 v

′ : t

Σ; ∆; Γ �0 (x)v′ : t

where t ∈ C and v ≡ (x)v′. By induction hypothesis on the premise there

are 5 possibilities; we consider only possibility 1. Then v′ ≡ (X)λx′.e and

t ≡ [t2 → t3]
n and Σ; ∆,∆+1

1 ; Γ, x : tm+1
1 ,Γ+1

1 , x′ : t02 �0 e : t3 with dom(∆1,Γ1) ⊆
X. We can write v as (x,X)λx′.e, to prove possibility 1 for the conclusion

we must show that there exist ∆2,Γ2 such that dom(∆2,Γ2) ⊆ (x,X) and

Σ; ∆,∆+1
2 ; Γ,Γ+1

2 , x′ : t02 �0 e : t3. We take ∆2 ≡ ∆1 and Γ2 ≡ Γ1, x : tm1 .

Case (closI2).

If the last typing rule is (closI2), then it must be of the form

Σ; ∆�0; ∅ �0 v : t

Σ; ∆; Γ �0 v : [t]

By induction hypothesis on the premise there are 5 possibilities; we consider

only possibility 5. Then v ≡ (X)〈v′〉 and t ≡ [〈t′〉]n and Σ; ∆�0,∆+1
1 ; Γ+1

1 �1

v′ : t′ with dom(∆1,Γ1) ⊆ X. To prove possibility 5 for the conclusion we show

that there exist n2,∆2,Γ2 such that dom(∆2,Γ2) ⊆ X and [t] ≡ [〈t′〉]n2 and

Σ; ∆,∆+1
2 ; Γ,Γ+1

2 �1 v′ : t′. By Lemma 3.3 we have Σ; ∆,∆+1
1 ; Γ,Γ+1

1 �1 v′ : t′,

hence we take n2 ≡ n + 1 and ∆2 ≡ ∆1 and Γ2 ≡ Γ1.

�

Lemma 3.13 (Closedness)

If t is not closed and v is of the form λx.e or 〈v1〉, then

1. Σ; ∆+1; Γ+1 �0 (X)v : [t]n+1 implies FV(v) = ∅
2. Σ; ∆+1; Γ+1 �0 (X)v : t implies X ∩ FV(v) = ∅

Proof

By induction on the derivation of the typing judgments. For part 1 we have the

following cases for the last typing rule in the derivation:

• If the last rule is (bind1) or (bind2) or (bind3) or (closE), then the result

follows by part 1 for the premise of the rule.

• If n > 0 and the last rule is (closI1) or (closI2), then the result follows again

by part 1 for the premise of the rule.

• The only other case is n = 0 and the last rule is (closI2), in fact (closI1) is not

applicable because t is not closed. The premise of the rule is Σ; ∅; ∅ �0 (X)v : t,

therefore FV((X)v) = ∅, and by part 2 we have X ∩FV(v) = ∅. So we conclude

that FV(v) = ∅.

For part 2, if X = ∅ the conclusion is immediate. Otherwise, let X be the sequence

x,X ′. The last typing rule applied must be (bind1) or (closE), because t is not closed.

In the first case, part 2 on the premise implies X ′ ∩ FV(v) = ∅ and x /∈ FV ((X ′)v),

hence X ∩ FV(v) = ∅. In the second case, part 1 on the premise gives the result. �

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

562 C. Calcagno et al.

The rest of the proof of weak soundness follows the same pattern sketched for

MiniMLref . In the case of MiniMLmeta
ref , it does not suffice to consider only closed

redexes. However, by our use of Bind in the reduction rules for the operations on

references, we need to consider only closed stores. We define well-formedness of

closed stores in the obvious way:

• Σ |= µ
∆⇐⇒

{
dom(Σ) = dom(µ) and,

µ(l) = v ∧ Σ(l) = ref c =⇒ Σ; ∅; ∅ �0 v : c

Lemma 3.14 (Safety for
i−→)

If Σ |= µ and Σ; ∆+1; Γ+1 �i r
i : t with ri ∈ Redi, then

• µ, ri � i−→ err

• µ, ri
i−→ µ′, e′ =⇒ there exists Σ′ ⊇ Σ such that Σ′ |= µ′ and Σ′; ∆+1; Γ+1 �i

e′ : t

Proof

By case analysis on ri ∈ Redi and induction on the derivation of Σ; ∆+1; Γ+1 �i r
i : t.

If the last rule in the derivation of Σ; ∆+1; Γ+1 �i r
i : t is not syntax directed (i.e.

closI1, closI2 or closE), then we can simply exploit the induction hypothesis for the

derivation of the premise (which must be of the form Σ; ∆+1
1 ; Γ+1

1 �i r
i : t1, with

∆1 ⊆ ∆ and Γ1 ⊆ Γ).

In all other cases, we cannot exploit the induction hypothesis, instead we use basic

properties of the type systems and the following Lemmas: Structure (in the cases

v0
1v

0
2 , case v0 of (z → e1 | s x → e2) !v0, v0

1 := v0
2 , run v0 and ˜v0), Closedness (in the

cases v0
1v

0
2 , run v0 and ˜v0), and Demotion (in the case run v0). We consider only

few interesting cases of redexes ri, and assume that the last rule in the derivation of

Σ; ∆+1; Γ+1 �i r
i : t is syntax directed.

Case r0 ≡ v0
1v

0
2 with v0

1 , v
0
2 ∈ V0.

If v0
1v

0
2 is well-typed, then the typing rule (app) must have been applied with

conclusion Σ; ∆+1; Γ+1 �0 v0
1v

0
2 : t2 and premises Σ; ∆+1; Γ+1 �0 v0

1 : t1 → t2
and Σ; ∆+1; Γ+1 �0 v0

2 : t1. Then Lemma 3.12 implies that v0
1 must be of the

form (X)λx.e (assume x /∈ X by alpha conversion) and there exist ∆1,Γ1 such

that dom(∆1,Γ1) ⊆ X and Σ; ∆+1,∆+1
1 ; Γ+1,Γ+1

1 , x : t01 �0 e : t2. There are two

cases. If t2 ∈ C then repeated application of rules (bind2) and (bind3) gives

Σ; ∆+1; Γ+1, x : t01 �0 (X)e : t2. If t2 /∈ C, then (t1 → t2) /∈ C, hence Lemma 3.13

gives X ∩ FV (λx.e) = ∅, thus Σ; ∆+1; Γ+1, x : t01 �0 e : t2 holds and repeated

application of rule (bind1) gives Σ; ∆+1; Γ+1, x : t01 �0 (X)e : t2 like for case

t2 ∈ C. The reduction rule is µ, ((X)λx.e)v0
2

0−→ µ, ((X)e)[x := v0
2]. To conclude

the case, Lemma 3.4 implies Σ; ∆+1; Γ+1 �0 ((X)e)[x := v0
2] : t2.

Case r0 ≡ ref v0 with v0 ∈ V0.

If ref v0 is well-typed, then the typing rule (ref) must have been applied with

conclusion Σ; ∆+1; Γ+1 �0 ref v0 : ref c and premise Σ; ∆+1; Γ+1 �0 v0 : c. The

reduction rule is µ, ref v0 0−→ (µ, l : •v0), l with l �∈ dom(µ). By repeated use

of rules (bind2) and (bind3) we get Σ; ∅; ∅ �0 •v0 : c. Let Σ′ be (Σ, l : ref c);

then Σ′ |= (µ, l : •v0) and Σ′; ∆+1; Γ+1 �0 l : ref c.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 563

Case r0 ≡ run v0 with v0 ∈ V0.

If run v0 is well-typed, then the typing rule (run) must have been applied

with conclusion Σ; ∆+1; Γ+1 �0 run v0 : [t], and the premise is Σ; ∆+1; Γ+1 �0

v0 : [〈t〉]; so Lemma 3.12 implies that v0 must be of the form (X)〈v1〉 for

v1 ∈ V1. Then Lemma 3.13 gives FV (〈v1〉) = ∅, hence Σ; ∅; ∅ �0 〈v1〉 : [〈t〉].
Using rules (closI2) and (brck) we get Σ; ∅; ∅ �1 v1 : t. Now, Proposition 3.6

implies Σ; ∅; ∅ �0 (v1 ↓0) : t. The reduction rule is µ, run (X)〈v1〉 0−→ µ, •(v1 ↓0).

Since FV (v1 ↓0) = FV (v1) = ∅, •(v1 ↓0) ≡ v1 ↓0, so using rule (closI2) and

Lemma 3.3 we conclude with Σ; ∆+1; Γ+1 �0 •(v1 ↓0) : [t].

�

Lemma 3.15 (Replacement for Evaluation Contexts)

If Σ; ∆+1; Γ+1 �n E
n
i [e] : t with En

i ∈ ECn
i , then exist ∆1 and Γ1 and t1 such that

• Σ; ∆+1
1 ; Γ+1

1 �i e : t1
• Σ′; ∆+1

1 ; Γ+1
1 �i e

′ : t1 =⇒ Σ′; ∆+1; Γ+1 �n E
n
i [e

′] : t for any Σ′ ⊇ Σ and e′

Proof

By induction on the structure of En
i ∈ ECn

i (and the derivation of Σ; ∆+1; Γ+1 �n

En
i [e] : t), using Weakening and the fact that in an evaluation context the hole can

only be within the scope of binders which bind variables at level > 0. �

Comparison with Replacement for MiniMLref . In MiniMLmeta
ref (and multi-level lan-

guages like λ©) one can reduce within the scope of a binder, thus ∆,Γ = ∅ does

not imply ∆1,Γ1 = ∅. Nevertheless, Replacement for evaluation contexts is more

informative than Replacement for contexts with one hole, since it says that the hole

can only be within the scope of binders which bind variables at level > 0.

Lemma 3.16 (Safety for
n�−→)

If Σ |= µ and Σ; ∆+1; Γ+1 �n e : t, then

• µ, e � n�−→ err

• µ, e
n�−→ µ′, e′ =⇒ there exists Σ′ ⊇ Σ such that Σ′ |= µ′ and Σ′; ∆+1; Γ+1 �n

e′ : t

Proof

By Unique Decomposition, Replacement, and Safety for
i−→. �

Proof of Weak Soundness

(∅, e) n�−→ md implies d �≡ err, by induction on m, using Safety for
n�−→ . �

3.4 Conservative extension result

This section shows that typing and operational semantics for MiniMLmeta
ref are a

conservative extension of those for MiniMLref . To distinguish the syntactic categories

of MiniMLmeta
ref from those of MiniMLref we use the prefix meta for the former.

For example, Emeta denotes the set of MiniMLmeta
ref terms, while E denotes the set

of MiniMLref terms. The conservative extension result is stated for e ∈ E0, i.e. for

complete programs in MiniMLref :

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

564 C. Calcagno et al.

Theorem 3.17 (Conservative Extension)

If e ∈ E0, t ∈ T and d ∈ (Smeta
0 × Emeta

0) + {err}, then

1. ∅; ∅ � e : t ⇐⇒ ∅; ∅; ∅ �0 e : t;

2. ∅, e �−→∗d ⇐⇒ ∅, e 0�−→∗d.

The rest of the section establishes several facts, which combined together imply the

desired result. We have the following inclusions between syntactic categories:

Lemma 3.18

T ⊆ Cmeta, E ⊆ Emeta, V ⊆ V0meta
, S0 ⊆ S0

meta, Red ⊆ Red0meta
and EC ⊆ EC0

0
meta

.

Proof

All by easy inductions. �

A typing judgment Σ; Γ � e : t for MiniMLref it is not appropriate for MiniMLmeta
ref ,

because Γ : X
fin
→ T and e lack the level information. We introduce the operation

{xi : ti|i ∈ m}n ∆
= {xi : tni |i ∈ m}

which turns a type assignment into a type-and-level assignment, i.e. Γn assigns level

n to all variables declared in Γ.

Proposition 3.19

Σ; Γ � e : t implies Σ; ∅; Γ0 �0 e : t.

Proof

Easy induction on the derivation of Σ; Γ � e : t. �

An immediate consequence of Proposition 3.19 is one direction of Part 1 of The-

orem 3.17. For the other direction, we need a translation from Tmeta to T.

Definition 3.20

The function || || from Tmeta to T is defined as

||[t]|| ∆
= ||t||

||〈t〉|| ∆
= ||t||

and it commutes with all other type-constructors of MiniMLmeta
ref . The extension to

signatures Σ is point-wise; ||Γ||(x) = ||t|| when Γ(x) = tn and similarly for ∆.

Proposition 3.21

If e ∈ E, t ∈ T, ∆ : X
fin
→ (Cmeta × N), Γ : X

fin
→ (Tmeta × N) and n ∈ N, then

• Σ; ∆; Γ �n e : t implies ||Σ||; ||∆||, ||Γ|| � e : ||t||

Proof

By induction on the derivation of Σ; ∆; Γ �n e : t. �

Finally, we show that, starting from a closed MiniMLref configuration, the trans-

itions allowed in MiniMLref and in MiniMLmeta
ref are the same.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 565

Lemma 3.22

1. V = V0meta ∩ E;

2. Red = Red0meta ∩ E;

3. E0
i [e] ∈ E implies i = 0, e ∈ E and E0

i ∈ EC.

Proof

By induction on the definition of V0meta
, Red0meta

and E0
i , respectively. �

Lemma 3.23

If r ∈ Red0, µ ∈ S0 and d ∈ (Smeta
0 × Emeta

0) + {err}, then

• µ, r −→ d ⇐⇒ µ, r
0−→ d

Proof

Case analysis on the definition of −→ and
0−→. �

Proposition 3.24

If e ∈ E0, µ ∈ S0 and d ∈ (Smeta
0 × Emeta

0) + {err}, then

• µ, e �−→ d ⇐⇒ µ, e
0�−→ d

Proof

By definition of �−→ and
0�−→ , using Lemmas 3.18, 3.22 and 3.23. �

This implies Part 2 of Theorem 3.17.

4 Examples of imperative multi-stage programming

We present several examples of imperative multi-stage programming. The examples

are described in MiniMLmeta
ref extended with whatever features of SML and its stand-

ard library are most appropriate, e.g. polymorphism, data-types, pattern matching,

arrays. All the examples make essential use of closed types, and could not be

reproduced in full in other meta-programming formalisms. In particular, a sequence

of top-level declarations corresponds to nested letc-bindings (evaluated at level 0),

thus identifiers declared at the top-level are in the ∆ part of a typing context Σ; ∆; Γ,

and have a closed type. More formally, val x = e; p stands for letc x = e in p and

has the following derived rules for typing and reduction

Σ; ∆�0; ∅ �0 e : c

Σ; ∆�0, x : c0; ∅ �0 p : t

Σ; ∆�0; ∅ �0 (val x = e; p) : t
µ, (val x = v0; p)

0−→ µ, p[x := •v0]

Warnings. The extensions of MiniMLmeta
ref with polymorphism and data-types have

not been formally investigated, yet. Although we do not foresee major technical

difficulties in the study of such extensions, the examples relying on them should

be taken with a grain of salt. The current release of MetaML displays values of

code types, so that a programmer can check the quality of the generated code.

However, in MiniMLmeta
ref code is not observable, where observability means that for

any pair of syntactically different values of a code type one can find a context that

distinguish them. For instance, the values <1> and <(fn x => x) 1> of type <int>

are indistinguishable.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

566 C. Calcagno et al.

- datatype nat = z | s of nat; (* natural numbers*)

datatype nat

- fun p z x y = (y := 1.0) (* conventional program *)

| p (s n) x y = (p n x y; y := x * !y);

val p = fn : nat -> real -> real ref -> unit

- fun p_a z x y = <~y := %1.0> (* staged program with annotations *)

| p_a (s n) x y = <~(p_a n x y); ~y:=~x %* !~y>;

val p_a = fn : [nat -> <real> -> <real ref> -> <unit>]

- fun p_cg n = <fn x y => ~(p_a n <x> <y>)>; (* code generator *)

val p_cg = fn : [nat -> <real -> real ref -> unit>]

- val p_sc = p_cg 2; (* specialized code *)

val p_sc = <fn x y => (y := %1.0; y := x %* !y; y := x %* !y)>

: [<real -> real ref -> unit>]

- val p_sp = run p_sc; (* specialized program *)

val p_sp = fn : real -> real ref -> unit

- fun p_o n = letc n=n in run(p_cg n) (* optimized program*)

val p_o = fn : nat -> real -> real ref -> unit

Fig. 5. The multi-stage programming method: the imperative power function.

4.1 An imperative power function

Figure 5 illustrates the multi-stage programming method (Taha & Sheard, 1997;

Benaissa et al., 1999) in an imperative setting, by adapting the classic example of

the power function:

• nat is the datatype for natural numbers.

• p is a conventional “single-stage” program, which takes a natural number n,

a real x, a reference y, and stores xn in y. It uses the predefined identifiers

(constants) 1.0:real and *:real->real->real.

• p_a is a “two-stage” annotated version of p, which requires the natural number

n (as before), but uses only symbolic representations for the real x and the

reference y. p_a builds a representation of the desired computation. In this

representation the predefined identifiers declared at level 0, i.e. 1.0 and *, are

lifted to level 1 using cross-stage persistence.

• p_cg is the code generator . Given a natural number, the code generator

proceeds by building a piece of code that contains a lambda abstraction, and

then, using Escape, performs an unfolding of the annotated program p_a over

the “dummy variables” <x> and <y>. This unfolding is possible because of

“symbolic evaluation under lambda”.

• p_sc is the specialized code generated by applying p_cg to a particular natural

number (in this case 2). The generated (high-level) code corresponds closely

to machine code, and should compile into a light-weight subroutine.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 567

• p_sp is the specialized program, the ultimate goal of run-time code generation.

The function p_sp is a specialized version of p applied to 2, which does not

have unnecessary run-time overheads.

Finally, one can define an optimized program p_o (i.e. p_o 2 is p_sp) with the same

type of the conventional program p. The definition of p_o relies on a general trick.

Remark 4.1 (The Letc-trick)

According to the typing rule for λx.e, the λ-bound x must be declared in Γ.

However, when x has a closed type, one can replace λx.e with λx.letc x = x in e.

This transformation does not change the operational behaviour, but it allows us to

infer more types. In fact, to assign type c → t (at level n) to λx.letc x = x in e it

suffices to assign type t to e under the assignment Σ; ∆, x : cn; Γ, rather than the

less accurate assignment Σ; ∆; Γ, x : cn. For instance, in relation to the typing of

p_o, if t
∆≡ real → ref real → unit and ∆

∆≡ pcg : [nat → 〈t〉]0, then the judgement

∅; ∆, n : nat0; ∅ �0 pcgn : [〈t〉] is derivable, but ∅; ∆; n : nat0 �0 pcgn : [〈t〉] is not.

4.2 Lightweight and generative components

Kamin et al. (2000) propose to describe components as higher-order macros written

in a functional meta-language JR (with Bracket and Escape constructs similar to

those of MetaML) to generate code in an imperative object-language (for instance

Java). It is easy to recast in (an extension of) MiniMLmeta
ref several examples of

components given in JR. For brevity, we consider only the example of a generative

sort component. The main function is written in SML extended with arrays. It is a

generic sort function with type

- fun sortfun size lessfun arg = ... ;

val sortfun: int -> (’a -> ’a -> bool) -> ’a array -> unit.

In our extended language we can express a generative sort component (Kamin
et al., 2000), and assign to it the following MiniMLmeta

ref closed type (which is more
informative than that assigned in JR, where all object-code has type Code):

- fun sortcomp size lesscomp arg =

if size=2 (* in-line *)

then <if ~(lesscomp <~arg[1]> <~arg[0]>)

then "swap ~arg[1] ~arg[0]">

else <%sortfun (fn x y => ~(lesscomp <x> <y>)) ~arg>;

val sortcomp:[int -> (<’a> -> <’a> -> <bool>) -> <’a array> -> <unit>]

Note that the type variable ’a should range over closed types, since array, like

the ref type constructor, can be applied only to closed types. The main advantages

of sortcomp over sortfun are:

• the component can generate optimized code according to the value of size,

e.g. we in-line the sorting code when size is small, and we call the generic

sort function sortfun otherwise;

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

568 C. Calcagno et al.

• the client of sortcom can give optimized comparison code, instead of calling a

comparison function lessfun, i.e. fun lesscomp x y = <%lessfun ~x ~y>;

• the client can in-line the generated code instead of wrapping it in a procedure,

i.e. <fn A => ~(sortcomp size lesscomp <A>)>.

Given a component sortcomp one can exploit the trick described in Remark 4.1,

and define a generic sort function sortfun_o optimized with respect to size (but

the other advantages offered by the generative component are lost):

- fun sortfun_o size lessfun arg =

letc size=size in

letc lessfun=lessfun in

letc arg=arg in

run(sortcomp size (fn x y => <%lessfun ~x ~y>) <%arg>);

val sortfun_o: int -> (’a -> ’a -> bool) -> ’a array -> unit

4.3 References to generative components

The examples above do not need references to code (or functions returning code). The

use of generative components, advocated by (Kamin et al., 2000), suggests obvious

reasons why such type of references are useful. First, a generative component has

always a type of the form . . . → 〈t〉. If a component is declared at the top-level (or is

part of a library), then it can be assigned the more accurate closed type [. . . → 〈t〉].
Now suppose that there are several generative components GCi : [GCTi] located at

some remote sites, and one wants to download them only if needed. What one can

do is to provide stubs GCSi : unit → [GCTi], that download the components and

cache them locally for repeated use

- datatype ’a maybe = fail | ok of ’a;

- local val cache : [GCT_i] maybe ref = ref fail

in fun GCS_i () = case !cache of

fail => letc gc_i = "downloaded GC_i"

in cache := ok gc_i; gc_i

| ok gc_i => gc_i;

val GCS_i: unit -> [GCT_i]

This is well-typed in MiniMLmeta
ref , because we have assumed that the component has

a closed type [GCT_i], and the type t maybe is closed when t is.

5 Related work

Multi-level languages (Gomard & Jones, 1991; Glück & Jørgensen, 1996; Davies,

1996; Moggi, 1998) provide mechanisms for constructing and combining open code.

Multi-stage languages extend multi-level languages with a construct for executing

code at run-time (Taha, 1999). The scope extrusion problem identified in section 1.1

also applies to a naive imperative extension of λ© (Davies, 1996), which allows open

code and symbolic evaluation under lambda (but has no construct for executing

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 569

code). Binding-Time Analyses (BTAs) for imperative languages must also address

such problems. Intuitively, a BTA takes a single-stage program and produces a

two-stage one (Jones et al., 1993; Taha, 2000b).

Thiemann & Dussart (1999) describe an off-line partial evaluator for a higher-

order language with first-class references, where a two-level language with regions

is used to specify a BTA. This two-level language allows storing dynamic values

in static cells, but the type and effect system prohibits operating on static cells

within the scope of a dynamic lambda (unless these cells belong to a region local

to the body of the dynamic lambda). The two-level language of Thiemann &

Dussart (1999) and MiniMLmeta
ref provide incomparable approaches to Type Safety

of imperative multi-level languages (for partial evaluation): the first uses re-

gions and effects, the second uses closed types (and introduces a new type con-

structor []).

Calcagno & Moggi (2000) give a big-step operational semantics for MiniMLmeta
ref ,

which uses as primitive term construct Bind-Closure •e instead of Bind (x)e, but Type

Safety for such a semantics fails! The problem (recast in a small-step operational

semantics) is in the rule µ, (•λx.e)v0
2

0−→ µ, •(e[x := v0
2]), whose contractum is always

a closed term (in particular the free variables in v0
2 get bound by •). This is in contrast

to rule µ, ((X)λx.e)v0
2

0−→ µ, ((X)e)[x := v0
2] of figure 4. For instance, consider the

well-typed redex ∅; ∅; x : t1 �0 (•λx.x)〈x〉 : 〈t〉. The reduction rule in Calcagno &

Moggi (2000) yields the contractum •〈x〉, which is not typable. While the reduction

rule of figure 4 yields 〈x〉, because •λx.x ≡ λx.x.

Hatcliff & Danvy (1997) propose a partial evaluator for a computational meta-

language, and they formalize existing techniques in a uniform framework by

abstracting from dynamic computational effects. However, this partial evaluator

does not seem to allow interesting computational effects at specialization time.

There is a simpler approach to imperative multi-stage programming based on λ�

(Davies & Pfenning, 1996; Wickline et al., 1998). In fact, this language allows closed

code and run-time code generation, but does not allow evaluation under lambda.

Therefore, adding references to λ� is as easy as to MiniML. The price for this

simplicity is the lack of symbolic evaluation (typical of partial evaluation) necessary

for optimization at specialization time.

Xi (1999) uses (dependent) types for eliminating dead code. Our Bind construct

is a mere dead code annotation, used for handling scope extrusion, and we made

no attempt to exploit it for dead code elimination. The typing rules for Bind (apart

from the trivial one), make sense only in a multi-level language. However, the Bind

annotation and its operational meaning (see Remark 3.2) is not specific to multi-level

languages.

Acknowledgements

We would like to thank the anonymous referees for their valuable comments (any

failure to fully exploit them is our fault). We would like to thank in particular Walid

Taha for the many discussions and useful comments on this paper.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

570 C. Calcagno et al.

References

Benaissa, Z. El-A., Moggi, E., Taha, W. and Sheard, T. (1999) Logical modalities and multi-

stage programming. Federated Logic Conference (FLoC) Satellite Workshop on Intuitionistic

Modal Logics and Applications (IMLA).

Calcagno, C. and Moggi, E. (2000) Multi-stage imperative languages: A conservative

extension result. In: Taha, W., editor, Semantics, Applications, and Implementation of

Program Generation: Lecture Notes in Computer Science 1924, pp. 92–107. Springer-Verlag.

Calcagno, C., Moggi, E. and Taha, W. (2000) Closed types as a simple approach to safe

imperative multi-stage programming. International Colloquium on Automata, Languages, and

Programming (ICALP ’00): Lecture Notes in Computer Science 1853, pp. 25–36. Springer-

Verlag.

Cardelli, L. (1997) Type systems. In: Tucker, A. B. Jr., editor, The Computer Science and

Engineering Handbook. CRC Press.

Clement, D., Despeyroux, J., Despeyroux, T. and Kahn, G. (1986) A simple applicative

language: Mini-ML. Proceedings ACM Conference on Lisp and Functional Programming,

pp. 13–27. ACM press.

Davies, R. (1996) A temporal-logic approach to binding-time analysis. Symposium on Logic

in Computer Science (LICS ’96), pp. 184–195. IEEE Press.

Davies, R. and Pfenning, F. (1996) A modal analysis of staged computation. Symposium on

Principles of Programming Languages (POPL ’96), pp. 258–270.

Glück, R. and Jørgensen, J. (1996) Fast binding-time analysis for multi-level specialization. In:

Bjørner, D., Broy, M. and Pottosin, I., editors, Perspectives of System Informatics: Lecture

Notes in Computer Science 1181, pp. 261–272. Springer-Verlag.

Gomard, C. K. and Jones, N. D. (1991) A partial evaluator for untyped lambda calculus.

J. Functional Program. 1(1), 21–69.

Harper, R. and Stone, C. (1997) A type-theoretic account of Standard ML 1996 (version 2).

Technical report CMU–CS–97–147, Carnegie Mellon University, Pittsburgh, PA.

Hatcliff, J. and Danvy, O. (1997) A computational formalization for partial evaluation. Math.

Struct. Comput. Sci. 7(5), 507–541.

Jones, N. D., Gomard, C. K. and Sestoft, P. (1993) Partial Evaluation and Automatic Program

Generation. Prentice-Hall.

Kamin, S., Callahan, M. and Clausen, L. (2000) Lightweight and generative components II:

Binary-level components. In: Taha, W., editor, Semantics, Applications, and Implementation

of Program Generation: Lecture Notes in Computer Science 1924, pp. 28–50. Springer-Verlag.

MHP (2000) The MetaML Home Page. Provides source code and documentation online at

http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html.

Milner, R. (1978) A theory of type polymorphism in programming. J. Comput. & Syst. Sci.

17, 348–375.

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1997) The Definition of Standard ML

(revised). MIT Press.

Moggi, E. (1998) Functor categories and two-level languages. Foundations of Software Science

and Computation Structures (FoSSaCS): Lecture Notes in Computer Science 1378. Springer-

Verlag.

Moggi, E., Taha, W., Benaissa, Z. El-A. and Sheard, T. (1999) An idealized MetaML: Simpler,

and more expressive. European Symposium on Programming (ESOP): Lecture Notes in

Computer Science 1576, pp. 193–207. Springer-Verlag.

Smith, B. C. (1982) Reflection and semantics in a procedural language. PhD thesis,

Massachusetts Institute of Technology.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

Closed types 571

Taha, W. (1999) Multi-stage programming: Its theory and applications. PhD thesis,

Oregon Graduate Institute of Science and Technology. (Available from ftp://cse.

ogi.edu/pub/tech-reports/README.html.)

Taha, W. (ed) (2000a) Semantics, Applications, and Implementation of Program Generation:

Lecture Notes in Computer Science 1924. Springer-Verlag.

Taha, Wa. (2000b) A sound reduction semantics for untyped CBN multi-stage computation.

Or, the theory of MetaML is non-trivial. Proceedings Workshop on Partial Evaluation and

Semantics-based Program Manipulation (PEPM). ACM Press.

Taha, W. and Sheard, T. (1997) Multi-stage programming with explicit annotations.

Proceedings Symposium on Partial Evaluation and Semantic-based Program Manipulation

(PEPM), pp. 203–217. ACM Press.

Taha, W. and Sheard, T. (2000) MetaML: Multi-stage programming with explicit annotations.

Theor. Comput. Sci. 248(1-2).

Taha, W., Benaissa, Z.-El-A. and Sheard, T. (1998) Multi-stage programming: Axiomatization

and type-safety. 25th International Colloquium on Automata, Languages, and Programming

(ICALP): Lecture Notes in Computer Science 1443, pp. 918–929. Springer-Verlag.

Thiemann, P. and Dussart, D. (1999) Partial evaluation for higher-order languages with state.

(Available from http://www.informatik.uni-freiburg.de/̃thiemann/papers/index.html.)

Wickline, P., Lee, P. and Pfenning, F. (1998) Run-time code generation and Modal-

ML. Proceedings Conference on Programming Language Design and Implementation (PLDI),

pp. 224–235.

Wright, A. K. and Felleisen, M. (1994) A syntactic approach to type soundness. Infor. &

Computation, 115(1), 38–94.

Xi, H. (1999) Dead code elimination through dependent types. First International Workshop

on Practical Aspects of Declarative Languages: Lecture Notes in Computer Science 1551.

https://doi.org/10.1017/S0956796802004598 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004598

