
6.6 N U C L E A R F O R C E S I N H I G H D E N S I T Y M A T T E R 

Figure 1 shows the composition of neutron star matter at nuclear densities and zero 
temperature. This is computed assuming the particles obey the exclusion principle, 
are in chemical equilibrium, and form a medium that has over-all charge neutrality. 
Otherwise the interparticle forces have been neglected. The most significant feature 
of the diagram is the behaviour of the proton kinetic energy. This is very low compared 
to the neutron kinetic energy until I~ particles are formed, then it rises to a similar 
value. 

When strong interactions between the particles are introduced, the physical effects 
can be roughly divided according to whether the interaction between particles of the 
same type is attractive or repulsive. If the forces are sufficiently attractive then the 
corresponding particles will form a superfluid; on the other hand, repulsive forces 
may cause ferromagnetism. The equations regulating these two effects are found to be 

5i is the superfluid energy gap experienced by a particle in momentum state k which 
has an energy N(0) is the density of states per unit energy range close to the Fermi 
surface. The first equation is the well known first order B.C.S. equation. The matrix 
element it contains is derived from the scattering of particles with momentum (k, — k") 
into states with momentum (£, — k). The second equation is the criterion for saturated 
ferromagnetism. The matrix elements represent the forces acting between typical 
particles in the singlet or triplet configurations. The criterion is that the forces be less 
repulsive if all the particles have the same spin direction, this state will then be 
energetically favoured and a net magnetic dipole will be associated with the preferred 
spin direction. 

The difficulty in utilizing Equations (1) and (2) results almost entirely from correctly 
evaluating the matrix elements. Present estimates are usually based on neglecting the 
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Abst rac t . T h e condi t ions for superfluidity o r fer romagnet ism in n e u t r o n stars a r e presented and 
discussed (but n o t derived) . I t is suggested tha t present est imates re la t ing to these a re in e r ror and 
t h a t the predic t ions m a d e con t rad ic t a t least o n e of three sets of nuc lear physics d a t a cited in the text. 
Th i s is d u e to neglect ing t he ac t ion of t he exclusion pr inciple . 

A compara t ive ly simple m e t h o d for calculat ing the s t rength of nuc lear forces in the presence of 
m a n y - b o d y effects is out l ined . S o m e pre l iminary results are presented together wi th projected future 
deve lopments . 
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exclusion principle (superfluidity; Hoffberg et al, 1970), or treating the particles as 
repulsive spheres (ferromagnetism; Brownell and Collaway, 1969), or taking an over­
simplified model interaction (superfluidity; McNaughton, 1969). It is suggested below 
that all of these approximations are in error. 
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Fig . 1. T h e Fermi energy of the part icles present in n e u t r o n s ta r mate r ia l as a function of the total 
densi ty. T h e density is p lo t ted in mult iples of the equi l ibr ium dens i ty of o rd ina ry nuclear mat te r , Qn, 

(Qn = 3Jx 1 0 1 4 g c m - 3 ) . 

Since a theory of nuclear forces cannot be tested directly in the astrophysical 
context it is advisable to look for laboratory situations to which it can be applied. 
There are three types of experimental data for which such a theory might reasonably be 
expected to account. These are: 

(i) phase shifts determined from nuclear scattering experiments. 
(ii) the nuclear matter binding energy 

(iii) even-even nuclei pairing strengths 
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Item (i) is a measure of the strength of two body forces without the interference 
of other particles or the exclusion principle. It may be used to adjust free parameters 
in an expression for the bare two-nucleon interaction. Item (ii), the nuclear matter 
binding energy, measures the strength of the attraction seen by typical particles in a 
fully degenerate nucleon gas at one particular density - the density of ordinary nuclei 
near their center. Numerically it is about —16 MeV per particle at the density 
gn = 3.7 x 1 0 1 4 g c m - 3 . The third item is determined from nuclear structure experi­
ments and is basically a measure of the superfluid energy gap found at densities 
corresponding to the surface layers of nuclei. That the pairing (energy gap) occurs 
only at the nuclear surface (Q<Q„) can be seen by noting that the observed pairing 
energy falls off rapidly with increasing nuclear size (Figure 2). Heavier nuclei have a 
smaller surface to volume ratio so that low density phenomena are less apparent. 
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Fig . 2. Pair ing s trengths measu red in nuclei as a function of a t o m i c n u m b e r , A. After averaging 
over effects caused by par t ia l ly closed shells, the results fit S= 16.2 x ^ - o - 5 5 i # 

2. Perturbation Diagrams, the V matrix to T matrix transformation 

The simplest nuclear interaction is drawn in Figure 3a. It represents particles of 
momentum (£, —k) scattering into states (£', - £ ' ) . If the nuclear potential, K( r ) , 
contains an infinitely repulsive core, K(r)->oo for r<rc, then the corresponding 
matrix element, <£', — £' | V\k, — £>, will be infinite. To obtain a finite result, an 
infinite set of diagrams (Figure 3b, part (2), (3), (4) etc.) must be added together. 
Qualitatively, this corresponds to allowing for the correlation of the plane wave 
function about the repulsive core of the other particle. Alternatively, it means summing 
a perturbation series to infinite order. 
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If the sum of this series of diagrams is designated <£', —k'\ T(co) \k, —k} then it 
obeys the integral equation 

<£', - k'\ T(co) |£, - k> = <£', - k'\ V \k, - k} 

uW_v> <£' - k'\ V \k" - k"y <£" - k"\ T (w) \k - k} -I 
-w = En + E_z (3) 

uj-» and Ej? measure the availability and total energy of the momentum state k". 
In a laboratory scattering situation they are replaced by 1 and (hk)2/2m respectively. 
It is convenient to represent the sum of these interactions by a single wavy line diagram 
(Figure 3b, part (1)). 

( b ) 

k' k k' k k" k'"k 

Fig . 3. (a) shows a s imple scat ter ing d iagram, the cor responding ma t r ix element is 
< — k\k' | V\ — £ , £> . (b) i l lustrates how the T ma t r ix is defined, (c) a n d (d) a re 

the d iagrams t h a t define the mat r ix elements in equa t ions (1) a n d (2) respectively. 

The matrix elements occurring in Equations (1) and (2) obey very similar equations. 
The corresponding diagrams are drawn in Figures 3c and 3d. The backward pointing 
lines refer to holes in the Fermi sea and give a negative contribution to the energy 
denominators in the equations corresponding to Equation (3). The present work is 
directed to solving equations of this type having proper regard to the exclusion prin­
ciple, (u2» = 0 for k"<kF), and to the influence of the other particles on the self 
consistent energies, (Ek»^(hk)2/2m). 
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The starting point in the calculation is a separable potential for the bare two body 
interaction: 

vk,k s <*', - k'\ v \k, - ky = £ x.w. (k') wx (k). (4) 
a 

The functions Wa(k) are chosen to be easy to use and the constants Xa are then 
adjusted so that the phase shifts predicted agree with the experimental values. The 
solution to Equation (3) can then be written in the form 

Tk,k(co) = <£', - k'\ T(co) \k, = £ AM.Wa(k') W%. (k). (5) 
act' 

The matrix A is found to obey 

A~l = (D + M) (6.1) 
with 

Daa, = KlSaa, (6.2) 

M - ' = V i r - z f e ^ V - w* W). (6.3) 

To evaluate the integrals in (6.3) we borrow an idea from the reference spectrum 
method of nuclear theory (Day, 1967) and put 

En = (hk)2/2m* + M, , k < kF 

EJi = (M) 2 / 2m* + u29 k>kF 

where u and m* are constants. 
Only one form of Vk.k has been investigated to date, this is a Puff type potential 

for the singlet S state: 
sin(/c'r c ) sin(/cr c) X 

Vk^ = 2(2n)3 Lt L-
A c -»oo fc' fc' ( i t ' 2 "+^)" ( fc 2 ' + J8 2 )J 

^ = 2m = 1 
,1 = 0.886 F ~ 3 

£ = 1 . 6 2 F " 1 

rc = 0.257 F 

The details of matching this to the experimental phase shifts are not reproduced 
here but it is important to obtain a good fit, not only at energies corresponding to k 
and k' ( ^ 1 0 MeV), but also at much higher energies ( ^ 4 0 0 MeV) if the integral in 
equation (6.3) is to be correct. Using potentials of this form the reaction matrix, 
TWk, can be found analytically. The constants u and m* may be determined self 
consistently by computing the value of the diagrams that give rise to the particle 
binding energies. Because of the integrals involved in (6.3), the expressions are lengthy 
and are best displayed in numerical form as graphs. In practice the excited particle 
states may be treated as free particles (u2=09 m*=l). The corresponding quantities 
for states below the Fermi surface are typically uy ~ —100 MeV and w * ^ 0 . 6 . 
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3. Numerical Results 

Figure 4 shows the behaviour of Tk

(

k

) against k for a neutron-proton gas ('nuclear-
matter ') at a density Q = Q„. The result obtained by ignoring the exclusion principle 
and many-body forces, 

Tk*k = - ( — J 3 (k) 8 (k) = phase shift. (8) 
\mkj 

is also shown. The agreement is very poor. 

Fig . 4 . Tkk as a funct ion of m o m e n t u m , k. T h e units are derived with 2m = h = 1; Tick is in F a n d 
k is in F _ 1 (1 F = 1 0 - 1 3 c m ) . Tkk* gives a p o o r approx ima t ion to the observed m e a n b inding energy, 

it also predicts a large negat ive value of the mat r ix e lement at the F e r m i surface. 
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The scattering approximation gives much more negative values for Tk

(p and, as a 
result, a very large net binding energy ( ~130 MeV). This may be understood by 
inspecting the phase shift against momentum diagram, Figure 5. The lowest momentum 
states see the most attractive potential, but these are just the states that are excluded 
from the summation over intermediate states by the exclusion principle. 

6 ^ 

Fig . 5. Phase shift, S, observed in the J 5 o configurat ion plot ted against the incident part icle energy. 
T h e poin t m a r k e d 4EF co r r e sponds to the Fe rmi energy used in F igu re 4. 

The size of the superfluid energy gap calculated from Equation (1) depends on the 
value of Tk

(P near the Fermi surface. For a finite gap, we require, 

J V ( 0 ) 7 t s > F < - l - (9) 

The energy gap predicted by including the exclusion principle is vanishingly small. 
Equation (8), on the other hand would predict a large effect at nuclear density and 
consequently an even-even nuclei pairing energy of several MeV independent of the 
nuclear size. 

5. Conclusions, Future Development 

We believe that the techniques of Section 2 give results demonstrably in agreement 
with the three experimental tests referred to in Section 1. The step 'backwards' from 
the well known phase shifts before re-calculating the T matrix is an unfortunate 
necessity if useful results are to be obtained. 

Further work is expected to show that the critical Fermi energy above which 
equation (9) fails is in the region 3 0 < i s F < 4 0 MeV. If this is the case, the shape of 
the proton Fermi energy curve in Figure 1 is indeed fortunate, since it will single out 
the protons at Q<2 X 1 0 1 5 g c m - 3 for an energy gap of several MeV. The exact 
details of the k = k(E¥) relation will have no observationally significant results. That 
the neutrons may satisfy the Inequality (9) at sufficiently low densities is not important 
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since a neutron star with an average density less than gn is unlikely to be stable (Wang 
et al, 1970). 

Hoffberg et al. have suggested that superfluidity may result from the coupling of 
particles with their spins parallel. In this case the interaction proceeds via the P state 
potential which remains attractive at higher values of EF after the S state interaction 
has turned repulsive. While the S state interaction cannot enter into the first order 
matrix element in Equation (1), it may enter through higher order diagrams (Figure 6). 

(a) (b) 

Fig . 6. (a) shows the first o rde r m a t r i x element of the B .C .S . equa t ion , (b) shows the second order 
mat r ix e lements tha t en te r in to higher o rder app rox ima t ions . 

Present indications are that the large repulsive contribution of the higher order diagram 
may overwhelm the intrinsically smaller attractive contribution of the first order 
diagram. However, more work is needed on this point. 

The parameters of the two-body triplet interaction Vffi have been found but the 
inequality for ferromagnetism has not yet been tested. 
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Discussion 

V. Canuto: A r e phase shif ts a good m e t h o d for de te rmin ing the potent ia l t o be used? , 
M. McNaughton: They d o n o t yield a un ique solut ion for the potent ia l bu t any po t en t i a l used 

must satisfy these results . T h e po in t of ci t ing nuclear ma t t e r b ind ing energy e tc . , is to further dis­
t inguish between the potent ia ls a n d select the correct one . 

V. Canuto: Is the result de te rmined for S waves only? 
M. McNaughton: Yes . T o cons ider t he P a n d higher states suggested by Hoffberg et al., one mus t 

go beyond the simple B . C . S . equa t ion . I t is possible for 3rd o rde r d i ag rams to give a large (and re­
pulsive) con t r ibu t ion since the 3rd part ic le is no t confined t o any special conf igura t ion with the two 
m a i n particles, i.e. the repulsive S s ta te interact ion can enter a n d overcome the P s ta te in terac t ion . 
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