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Abstract

Determining (1) the direction of causation and (2) the size of causal effects between two constructs is a central challenge of the scientific study of
humans. In the early 1990s, researchers in behavioral genetics invented what was termed the direction of causation (DoC) model to address
exactly these two concerns. The model claims that for any two traits whose mode of inheritance is sufficiently different, the direction of cau-
sation can be ascertained using a sufficiently large genetically informative sample. Using a series of simulation studies, we demonstrate a major
challenge to theDoCmodel, namely that it is extremely sensitive to even tiny amounts of non-shared confounding. Even under ideal conditions
for the DoCmodel (a large sample, N= 10,000), a large causal relationship (e.g., a causal correlation of .50) with very different modes of inher-
itance between the two traits (e.g., a pure AEmodel for one trait and a pure CEmodel for another trait) and amodest degree (correlation of .10)
of non-shared confounding between the two traits results in the choice of the wrong causal models and estimating the wrong causal effects.
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The single greatest hurdle to the advancement of the scientific
understanding of our own species is the difficulty in drawing causal
inferences from the methods of study allowed by practical and eth-
ical constraints. Even when such considerations allow one to per-
form experiments, the informativeness of such studies is often
severely constrained by the gap between experimental and real-
world conditions. Analyzing real-world data hardly improves
the situation, as the use of natural experiments to justify causal
inferences typically only advances our understanding so far, not
least because of the comparative infrequency of natural experi-
ments occurring in ideal form and being accompanied by effective
measurement of the variables of interest.

However, one particular natural experiment was claimed to
allow a unique degree of power and flexibility to address causal
questions in the study of humans, at least when paired with a par-
ticular statistical procedure that couldmake the most use out of the
information provided. The natural experiment in question was the
production of twin births of two distinct types (mono and dizy-
gotic), and the method was the direction of causation model.
Before reviewing the model in greater detail below, it is worth
considering what it aimed to deliver: For any two phenotypic

characteristics, the method sought to explain the causal relation-
ship between them, conditional on the characteristics having
at least somewhat different modes of inheritance and there being
sufficient numbers of twins assessed for the characteristics in ques-
tion. The self-declared limitations of the method, then, are almost
exclusively those pertaining to enrolling participants with an easily
identifiable and not particularly rare characteristic (twin births
typically occurring in at least 1% of most populations) and assess-
ing them for whatever characteristics are of interest.

However, there has thus far been little critical discussion of the
DoC model, and its adoption has been curiously piecemeal. For
example, results from the model substantially affect the discussion
in one area of our own research interest (concerning personality
and politics), whereas researchers of many other topics have yet
to be introduced to the method or results deriving from it, despite
its apparent relevance and promised utility.

In the present work, we argue against further adoption of the
DoC model by highlighting the consequences of one particular
limiting assumption of the model that had not previously been
closely discussed. This assumption is that of the absence of
‘non-shared confounding.’ Confounding is, of course, always a
serious concern for observational research, but as we show, viola-
tions of this assumption are particularly devastating for the DoC
model. In particular, we show that in a situation where features
of the non-shared environment cause two traits to covary even
to a relatively small degree, the DoC model dramatically misesti-
mates both the size and direction of causal effects. An illustrative
example of such non-shared confounding is provided by Sandewall
et al. (2014), who found that among identical twins, within-pair
differences in intelligence confounded the effect of education on
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earnings. Here, even thoughMZ twins are genetically identical and
share their upbringing (and, as a result, share most confounders),
non-shared confounding can still impair the ability to use twins to
draw causal inferences. As we show below, such confounding
would have posed a serious problem had the DoC model been
applied to attempt to disentangle the causal relationship between
education and earnings.

In this way, we show that the set of assumptions underlying the
DoC model are even more restrictive than previously held (Heath
et al., 1993; Neale & Cardon, 1992). No previous studies have to
our knowledge demonstrated the significance of this restrictive
assumption in the context of the DoCmodel and,more importantly,
the implications of even small violations of the assumption.
Sandewall et al. (2014) estimate a zero-order correlation between
intelligence and schooling when they estimate the effect of schooling
on earnings. Obviously, this is an overestimate since this is a zero-
order correlation, and what we demonstrate below is a partial cor-
relation. Since this confounder is simply one potential confounder
amongmany, our demonstration that an error correlation above .1 is
in many cases critical for model selection is thus not particularly
high in a realistic setting. Furthermore, we show additional limits
to the model, highlighting how even in the absence of non-shared
confounding it can be difficult to distinguish between unidirectional
and reciprocal causation. Only in quite limited circumstances, can
the DoC model therefore be used to examine causal directions.

Because the majority of our argumentation concerning the lim-
itations of the DoC model is conceptual, we will first turn to an
extensive discussion of the model and the problematic nature of
its assumptions about non-shared confounding. We then turn to
simulation studies to more thoroughly demonstrate the impact
of non-shared confounding on the results obtained using
the model.

Understanding the DoC Model

The DoC model builds off of the basic logic of twin studies, which
compare monozygotic twins (MZ; twins born from a single fertil-
ized egg, who share 100% of their segregating genes) with dizygotic
twins (DZ; twins born from two eggs and different sperm, who on
average only share 50%). These pieces of information can be used
to separate the variance of a variable into that which is composed of
genetic effects (A), shared environmental effects (C) and non-
shared environmental effects (E). More formally,

σ2P ¼ σ2A þ σ2C þ σ2E
COVMZ ¼ σ2A þ σ2C
COVDZ ¼ 1=2σ2A þ σ2C

where σ2P is the observed phenotypic variance, COVMZ and COVDZ

are the observed covariances for MZ and DZ twins and σ2A; σ
2
C; σ

2
E

are the estimated variance components for A, C and E. The poly-
genic model from quantitative genetics applied to twin pair sam-
ples allows for decomposition of genetic variance into dominant
genetic effects (D). However, our results and statements do not
depend on this; in fact, they are equally valid in case of a D, and
we shall, without loss of generality, treat only the biometric models
containing A, C and E components.

The DoC model takes the basic logic of twin studies a step fur-
ther in that it relies on the so-called bivariate Cholesky decompo-
sition that investigates the variance and covariance of two
phenotypes (e.g., education and earnings). This technique can,

when using twins, be used to partition the A, C and E variance
components into those which are unique to each of the traits
and those which are shared.

Because the Cholesky decomposition is a saturatedmodel, it has
the best fit that can be achieved for any given model, but it is also
the least parsimonious model we can fit to a given covariance
matrix (Medland & Hatemi, 2009). The fundamental concept of
the DoC model is to (attempt to) make the bivariate Cholesky
model more parsimonious without significant reduction in fit.
Since the DoCmodel is a submodel of the general Cholesky model,
we can test the fit of the DoCmodel to the general Cholesky model
using, for example, chi-squared testing. Figure 1 presents one
version of the DoC model: the ‘reciprocal’ DoC model, in which
both phenotypic traits causally influence each other. The illustra-
tion is a slightly simplified version, that is, without measurement
error in the two phenotypes and only with ACE components; see
the fuller version presented in Neale and Cardon (Neale & Cardon,
1992, p. 267).

The bivariate Cholesky decomposition estimates three param-
eters (not outlined in the figure), namely parameters that capture
the amount of shared A, C and E variance between the traits; see
Figure A1 in Appendix B (see Supplementary Material). This is
done by estimating paths from the latent A, C and E components
for trait X to trait Y, instead of estimating the paths i1 and i2;— for
example, from AX1 to Y1 — and so forth. The DoC model, illus-
trated in Figure 1, relies on the fact that different directional
hypotheses imply different cross-twin, cross-trait correlations.

It can be shown that when the true model is one of unidirec-
tional causation (either of the first twomodels in Table 1), the addi-
tional model parameters of the bivariate Cholesky can be derived
using only the parameters from these simpler models (Heath et al.,
1993). For the third model from Table 1 (the reciprocal model), the
same is not strictly true, as it is not nested in the bivariate Cholesky
model (Verhulst & Estabrook, 2012). However, if the reciprocal
causation model has fewer parameters than the Cholesky model,
it is nevertheless common to apply likelihood ratio testing
(Verhulst & Estabrook, 2012). In situations where the degrees of
freedom in the Cholesky and the reciprocal model are the same,
slightly different approaches have been suggested. At times,
authors have suggested that only the two unidirectional models
could be tested against the Cholesky model (Verhulst et al.,
2012), and at other times, it has been suggested that an alternative
is to rely on choosing the model having the lowest Akaike
Information Criteria (AIC; Verhulst & Estabrook, 2012). We
believe both approaches represent sensible alternatives, and we
investigate both approaches in the simulation studies.

The potential for model fit indices to differentiate between
alternative causal models is driven by the differences in the
cross-twin, cross-trait covariances between different models
when the traits have different modes of inheritance. Generally,
the larger the differences in the mode of inheritance, the larger
the expected differences in the cross-twin, cross-trait covariances.
Consider a situation in which the mode of inheritance for trait X
is best described using a CE model, whereas the mode of inher-
itance for trait Y is best described using an AE model. If X causes
Y, the expected cross-twin, cross-trait correlations for both MZ
and DZ twins are cX2i1; if Y causes X, the expected cross-twin,
cross-trait correlations are ay2i2 for MZ twins and .5 ay2i2 for
DZ twins. These different expectations with regard to the
cross-twin, cross-trait covariances then enable us to test the direc-
tion of causation by attempting to reduce the Cholesky model to
the various causal models: for example, if the true model is X→ Y,
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then the Cholesky model can be reduced to this model without a
significant reduction in fit, whereas it would exhibit a significant
reduction in fit when reduced to the (wrong) Y → X model.

A more complicated case arises if the mode of inheritance for
both traits is best described by ACE models (rather than simpler
models omitting A or C). In such cases, the cross-twin, cross-trait
covariances would both be described by (a2 þ c2)ii for MZ twins
and (0.5 a2 þ c2)ii for DZ twins. However, so long as there remain
sufficient differences in the modes of inheritance between the two
traits (i.e., the traits do not have highly similar estimates for both
A and C), the DoC model might still be of use, as the relative sizes
of the A and C components for the cross-twin, cross-trait covarian-
ces should differ under the different causal models.

To sum up, the process of determining the better DoC model
is simply one of testing the fit of the simpler models in Table 1
against the saturated Cholesky model in order to see which
provides the most parsimonious explanation of the observed
variances and covariances. When the alternative causal models
are nested within the Cholesky model, this test is done using log-
likelihood ratio testing, whereas when the models are not nested
within the Cholesky, the use of AIC is advocated (Verhulst &

Estabrook, 2012). If all of the alternative models provide worse
fits than the Cholesky model, it is often asserted in the literature
on the DoC model that ‘the association between two variables is
in part ‘spurious’ : : : that is, determined by other unmeasured
variables’ (Neale & Cardon, 1992, p. 262). This is, in fact, a con-
clusion set forth in one of the most prominent recent uses of
the DoC model pertaining to the relationship between personality
traits and political attitudes: Since the three DoCmodels in Table 1
often do not provide a satisfactory fit to relationship between per-
sonality traits and political attitudes, it is possible that ‘ : : : a
common set of genes mutually influences personality traits and
political attitudes, implying the relationship between personality
and politics is a function of an innate common genetic factor rather
than a sequential personality to politics model’ (Verhulst et al.,
2012, p. 47). We will primarily focus on the problem of con-
founding in this article but briefly discuss two other strong
assumptions that the DoC model relies on and which have been
discussed in the literature so far, namely problems of (random)
measurement error and the often weak statistical power in studies
applying the DoC model in Appendix D (see Supplementary
Material).

Fig. 1. Reciprocal DoC model.
Note: The DoC model is shown for a twin pair, where X and Y denote
two traits of interest.

Table 1. Directional hypothesis corresponding to different cross-twin, cross-trait correlations

# Hypothesis Type of causation

Implied cross-twin cross trait correlations

MZ DZ

1 Y → X Unidirectional ða2Y þ c2Y Þi2 ð:5a2y þ c2Y Þi2
2 X → Y Unidirectional ða2X þ c2XÞi1 ð:5a2X þ c2XÞi1
3 Y ↔ X Reciprocal causation ða2y þ c2yÞi2 þ ða2x þ c2xÞi1

ði1i2 � 1Þ2
ð:5a2y þ c2yÞi2 þ ð:5a2x þ c2xÞi1

ði1i2 � 1Þ2
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How Non-Shared Confounding Should Affect the
DoC Model

Confounding

Confounding occurs when X and Y share a common cause that is
not included in the model, which therefore leads to omitted vari-
able bias (Elwert, 2013). Because many confounders are unknown
and/or not readily observed, the often-employed solution of simply
conditioning on the confounder is often unavailable. One classic
attempt to escape problems of confounding is to use instrumental
variables (IV)— and indeed, one of the classic presentations of the
DoCmodel motivates the model such that the DoC ‘may be viewed
as a special case of the instrumental variables method, where we are
using genetically informative designs to identify the effects of latent
instruments’ (Heath et al., 1993, p. 32).

The basic idea in an IV approach is that the instrument should
ideally randomly assign the population to one of the two conditions
(treatment or control), as this ensures that the only reason for the
association between the instrument and the outcome studied is
whether they were in the treatment or control condition, thus
removing potential confounders (Angrist & Pischke, 2009,
p. 117). Consider the famous, and much debated, application of
an IV technique concerning the effect of schooling on later-in-life
earnings (Angrist & Krueger, 1991). Simplifying somewhat, the
study sought to estimate the effect of educational attainment on
later-in-life earnings by using quarter of birth as an instrument
for age at school entry. The reasoning is that compulsory school
attendance laws, across American states, randomize age at school
entry. It was thought that quarter of birth would not be associated
with earnings other than through its effect on educational attain-
ment, although this is problematic, as discussed below.

To understand the link between IV techniques and the DOC
technique, look at Figure 2. In Figure 2(a), we see the classical
IV technique illustrated, where X and Ymight represent, for exam-
ple, educational attainment and earnings, respectively. If we simply
used ordinary least squares to estimate the effect of X on Y, we very
likely would obtain biased estimates since there are likely unob-
served confounders. In Figure 2(a), the effect of these confounders
is represented with a covariance path between X and Y.

What IV allow is the use of instrument Z to estimate the actual
causal effect ofX on Y. Here, Z is only related to Y via its effect onX,
and thus uncorrelated with the error term of Y; the causal effect of
X on Y, that is, i1, can thus be obtained by including the error
covariance in the model estimation in a structural equation mod-
eling framework (Antonakis et al., 2010).

Figure 2(b) represents the DoC model as a version of an IV
model only shown for one twin. Notice that in the figure the only
way that the instruments affecting X (Ax, Cx, Ex) connect to Y is
through the causal effect of X on Y (i.e., i1). In this sense, it thus
resembles the IV technique above. Or, as put by Neale and
Cardon (1992): ‘ : : : the association between trait [Y and the]
: : : factors which determine trait [X] : : : arises solely because
of the influence of trait [X] on trait [Y]’ (p. 268). The originators
of the DoC approach were thus very much aware that latent con-
founding is a potential challenge for the model. Until now, most
applied cases of the DoCmodel have however been unaware of just
how restrictive this assumption actually is.

Importantly, even small departures from complete exogeneity
of the instrument, that is, that the instrument is not randomly
assigning subjects into treatment and control, can bias estimates.
For instance, Bound et al. (1995) have demonstrated that family
income, which also affects a child’s later-in-life earnings, differs

between first and other quarter births by around 2%, which is
enough to account for the entire causal return to schooling estimate
that was estimated in the study discussed above (Bound et al.,
1995). Accordingly, the assumption that the only reason for the
instrument to be correlated with the outcome is via the construct
of interest — the so-called exclusion restriction (Angrist &
Pischke, 2009) — obviously needs to be substantively and/or
theoretically justified.

How, then, is this crucial requirement is handled in the
DoC model? As noted by early critiques of the DoC model, the
requirement is handled simply by assumption (Goldberg &
Ramakrishnan, 1994).1 Of course, all statistical models obviously
rely on a set of assumptions, but this assumption pertaining to cau-
sality is far stronger than most statistical assumptions. As the
example above illustrated, making this assumption in error can
have serious consequences because even small departures from
complete exogeneity of the instrument(s) can cause serious prob-
lems when trying to estimate causal effects. To further illustrate this
point, we will draw on the literature on average causal mediation
effects (ACME) to illustrate the impact an unobserved confounder
exerts on regression estimates.

The Effect of Confounding on Regression Coeficients

In the literature on ACME, it is now commonplace to consider the
effect unobserved confounders have on the mediator–outcome
relationship (Bullock et al., 2010; Imai et al., 2010; Imai &
Yamamoto, 2013; Muthén, 2011; VanderWeele & Vansteelandt,
2009). Here, we will use this insight to illustrate the simpler situa-
tion of only two variables and a confounder. Consider Figure 3
below, consisting of predictor variable X, an outcome Y and a con-
founder represented by the error covariance between X and Y.2

Whenever there is an unobserved error correlation between
X and Y, estimates of a regression consisting only of the variables
X and Y are biased, depending on the nature of the relationship
between X and Y. When the relationship between X and Y and
the correlation between the errors of X and Y are in the same direc-
tion (i.e., positive or negative), we tend to overestimate the effect of
X on Y; conversely, when the relationship between X and Y and the
correlation between the errors of X and Y are in opposite direc-
tions, we tend to underestimate the effect of X on Y (Imai et al.,
2010). Imai et al. (2010) have therefore suggested that researchers
conduct sensitivity analyses to investigate the robustness of their
results by varying the level of the unknown error correlation, typ-
ically from −1 to 1. This is usually presented as graphs where the
effect of interest is illustrated as a function of the error correlation.
The fact that it is not uncommon for the effect to become insignifi-
cant or even shift signs as the error correlation varies highlights the
pronounced potential consequences of unobserved confounding.
Importantly, this vulnerability to confounding is not circumvented
in the DoC model. In a unidirectional or reciprocal causation
model, they are simply based on the variance after the effect of trait
X on trait Y is partialled out, or vice versa. In this sense, we are in
exactly the same situation as above: If there is an unobserved error
correlation between the error terms of trait X and trait Y, we risk
estimating amisspecifiedmodel. The fact that the variance is trans-
formed into A, C and E components does not change this fact. To
make this even clearer, consider Figure 4.

This is an illustration of a simple unidirectional DoC model in
which X causes Y. However, there is also an error covariance,
labelled ρ, between the non-shared environments EX1, EY1 and
EX2, EY2. An error covariance is the same as an unobserved
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confounder (Pearl, 2009). The diagram illustrates that the cross-
twin, cross-trait covariances are potentially misleading since they
rely on the effect of i1, that is, the regression coefficient, but without
taking the error covariance into account. In this simple example,
the cross-twin, cross-trait covariance for MZ twins is still
(a2X þ c2X) i1 as in Table 1. The model-implied covariance between
X and Y for MZ twin 1 in the model without confounders is the
following, where σ2X is the variance of X.

covðX;YÞ ¼ ða2x þ c2x þ e2xÞ � i1 ¼ σ2X � i1 (1)

If we solve for i1, we obtain the following expression:

i1 ¼
covðX;YÞ

σ2X
(1.1)

This is simply the usual formula for a linear regression coefficient
of regressing Y on X. In the model including the confounder, the
covariance is now transformed into the expression below, where
the error covariance is represented by ρ:

cov ðX;YÞ ¼ ða2x þ c2x þ e2xÞ � i1 þ � � eX � eY
¼ σ2X � i1 þ � � eX � eY (2)

The only difference between these two equations for the model-
implied covariance of X and Y iscis, ρ · eX · eY. If we solve for i1,
we obtain the following expression:

i1 ¼
covðX;YÞ � � � eX � eY

σ2X
(2.1)

Fig. 2. The DoC model as an IV technique compared to a more
classical IV approach. (a) Classical IV technique. (b) The DoC model
as an IV technique.

Fig. 3. Effect of X on Y including an unobserved correlation between X and Y.
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This is obviously problematic since the regression coefficient i1 is
estimated as a function of the shared variance between trait
A and trait B without accounting for this shared error covariance,
since it is an unobserved confounder. The formula demonstrates
that we tend to overestimate the regression coefficient when the
error correlation is positive since the (causal) covariance
between X and Y is smaller than what the estimated model sug-
gests, and conversely, when the error correlation is negative, we
tend to underestimate the (causal) covariance between X and Y.
The importance of confounding for estimating regression coef-
ficients in the DoC framework is thus very similar to the impact
of confounding for regression coefficients for mediation effects
discussed in the ACME literature above.3 If the error covariance
is larger than the causal effect of interest, the estimated effect
size will even shift sign. In the scenarios outlined in Table 1,
there are two unidirectional models. In terms of the formula
for the regression coefficient, the problem to be solved is identi-
cal, except the denominator and the numerator shift, that is,
X becomes Y and Y becomes X.

To take a concrete example, let us illustrate what would happen
in the face of non-shared confounding for one of the most
cited recent studies to use the DoC model. This study concerns the
relationship between personality and ideology; one result of

interest concerns the relationship between the personality traits
psychoticism and social ideology among males (Verhulst et al.,
2012). Let us take our point of departure in the standardized coef-
ficients such that the variance of psychoticism is 1, and there is a
moderately high degree of non-shared environmental influence
of .7 for psychoticism and .6 for social ideology.4 If we assume that
the true correlation between the two traits is .4 and that the
non-shared error correlation is .3, the true causal effect would
be i1 ¼ 0:4�0:3�0:7�0:6

1 ¼ 0:27. If we do not take this error correlation
into account, we obtain an estimate of the causal effect of
i1 ¼ 0:4þ0:3�0:7�0:6

1 ¼ 0:53.5 Thus, a moderate non-shared error cor-
relation leads to an almost doubling in the estimated effect size in
this situation.

Things are slightly more complicated in the bidirectional
case, where the covariance with and without a non-shared
confounder can be expressed like this (‘res’ refers to the resi-
dual variance, after allowing for the effect of X on Y and vice versa):

covðX;YÞ ¼ ða2x þ c2x þ e2xÞ � i1 þ ða2y þ c2y þ e2yÞ � i2
ði2 � i1 � 1Þ2

¼ σ2Xres � i1 þ σ2yres � i2
ði2 � i1 � 1Þ2 (3)

covðX;YÞ ¼ ða2x þ c2x þ e2xÞ � i1 þ ða2y þ c2y þ e2yÞ � i2 þ � � eX � eY þ � � eX � eY � i2 � i1
ði2 � i1 � 1Þ2

¼ σ2Xres � i1 þ σ2yres � i2 þ � � eX � eY � ð1þ i2 � i1Þ
ði2 � i1 � 1Þ2

(4)

Fig. 4. DOC model including an error correlation between the
E components.
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The primary difference between this situation and the unidirec-
tional case is that in the unidirectional case, the variance of
Xwas in fact identified, whereas neither of the variances in thismore
complex situation is identified, since both (error) variances are now
functions of the non-identified parameters i1 and i2.6 However, the
situation is similar in that there may still be unmeasured con-
founding not captured by the independent latent traits A and C.

Obviously, estimating biased regression coefficients can be
problematic. How this bias affects the model selection procedure
will be further discussed below. This is not changed by transform-
ing the variance into A, C and E components and using these to
estimate cross-twin, cross-trait covariances as the exposition above
should have made clear. In fact, the entire testing of models (1)–(3)
in Table 1 relies on having no confounders in the estimation of the
regression coefficients. Depending on the strength of the con-
founding for each of the two constructs, we might end up with
quite different results in terms of the direction of causation.

In principle, we could of course conduct a sensitivity analysis,
such as in the ACME literature, but this does not change the fact
that the DoC model does not provide us with any causal informa-
tion in itself. Heath et al. (1993) also acknowledge this fact and
argue that it is generally not possible to include an error correlation
between the two traits in family data because there is not enough
information in the bivariate case using twin data.

But, is it then possible to solve the issue by including more var-
iables, for example, by conducting a trivariate Cholesky, or by
including more genetic information, for example, by including
additional family members, such as in the extended family design
(Keller et al., 2010)? The answer is sadly also no. The correlation
between the residuals is zero by definition if we use a linear regres-
sion framework, as the residuals are exogenous by construction if
we have normality of the residuals when we, for example, estimate
the reciprocal causation model. Only in very special circumstances
can we use the residual correlation to test for exogeneity (Entner
et al., 2012). One such special situation is the unidirectionalAE–CE
model studied below in the simulation studies; if we also include
the reciprocal model, there would not be enough degrees of free-
dom. In this very special situation, there would, in fact, be enough
degrees of freedom even in twin data to estimate the error corre-
lation between the non-shared environments.

One of themost elaborate discussions of the importance of non-
shared confounding in the context of twin studies is the study by
Frisell et al. (2012), who demonstrate analytically that non-shared
confounding can severely bias causal estimates from discordant
twin pair designs. As noted above, this was then empirically illus-
trated by Sandewall et al. (2014), who used identical twins to study
the effect of (within twin-pair) educational differences on earnings.
They demonstrated that (within twin-pair differences in) intelli-
gence (IQ) could account for a fair amount of the (purportedly
causal) effect on earnings ascribed to education (Sandewall
et al., 2014).7

In what follows, we explore how non-shared confounding
impacts the DoC study design, finding problems comparable in
magnitude to those indicated by Frisell et al. (2012) for the co-twin
control design. Specifically, we conduct simulation studies of the
effect of non-shared confounders on the DoC model with an eye
toward two issues: (1) Do we end up choosing the correct model
in the face of non-shared confounding? (2) If we do choose the cor-
rect model, do we obtain parameter estimates of the causal effect of
X on Y, which are close to the correct causal estimates? As we dem-
onstrate, non-shared confounding is particularly consequential for
the first of these questions.

Method

The core ideas can be demonstrated with simulation models of two
general situations. The first is one in which the DoC model ought
to perform well, namely when there are very different modes of
inheritance and the effect of X on Y is large (Heath et al., 1993).
Here, we model X as pure CE and Y as pure AE, with a substantial
effect of X on Y (corresponding to a correlation of .5).

The second situation is of a situation more typically encoun-
tered in the social sciences, especially in the domain in which
DoC results are most actively shaping the contemporary research
literature, namely those concerning personality and politics. Here,
we use an ACE model for both traits, and the relationship between
personality and politics is more modest (Dawes et al., 2014;
Oskarsson et al., 2014; Verhulst et al., 2012). For example, recent
meta-analyses have reported that the strongest Big Five predictor
of various sociopolitical attitude measures exhibit correlations of
.18 with ideological self-placement (Sibley et al., 2012). Results
of a very similar magnitude are reported in meta-analyses of the
relationship between intelligence and sociopolitical attitudes
(Onraet et al., 2015). To reflect this relationship, we set the corre-
lation between the two traits in the ACE–ACE model at .2, corre-
sponding to a regression coefficient of .3 in Figure 5(b). This effect
size is obviously slightly smaller than in the ideal situation
described above.

Studies usually find that the C component is either small or
insignificant for personality traits and intelligence, whereas
the C component is usually present in studies on attitudes
(Bouchard & McGue, 2003). A recent meta-analysis of political
attitudes found that the A component accounted for roughly
40% of the variance, the E component for slightly more than
40% of the variance, whereas C accounted for roughly 20% of
the variance (Hatemi et al., 2013).We take these values as our point
of departure for the X trait; the A, C and E components account for
roughly 35%, 46% and 18% of the variance, respectively, in this
study. The share of variance attributed to the ACE components
for the Y trait is roughly 64%, 7% and 29% to reflect the fact that
the C component is usually quite small or insignificant and the A
component is usually, although not always, larger than the E for
personality traits and intelligence (Bouchard & McGue, 2003),
which is also often reflected in the applications of these studies
to the study of the relationship between personality traits and cog-
nitive abilities on the one hand and political attitudes and behav-
iours on the other (Oskarsson et al., 2014; Verhulst et al., 2012).8

The two different situations we study with our simulations are
depicted in Figure 5.

We vary the extent of confounding by letting the error correla-
tion vary from −1 to 1. In addition, we vary the sample size from
1000 to 10,000, using an equal number ofMZ and DZ twin pairs, to
see whether the DoC model performs differently under different
sample size situations. In all situations, we use an equal number
of MZ and DZ twin pairs and simulate 1000 datasets for each error
correlation point. Full information on the simulation set-up and
the constraints used to test the models can be found online in
the Supplementary Appendices. All models were estimated under
the assumption of a multivariate normal distribution. All genetic
models that were set up using a traditional path coefficients model
were all latent traits are constrained to have a variance of 1 and a
mean of 0, whereas all paths are freely estimated (Neale &
Cardon, 1992).

The model depicted in Figure 5(a) is our reference model in
which the true population model is one with unidirectional
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causation running from X to Y. Given the literature highlighting
the importance of different modes of inheritance when using the
DoC model, based on the differences in the cross-twin, cross-trait
correlations (Heath et al., 1993), we would expect the AE–CE
model (5a) to outperform the ACEmodel (5b) in terms of estimat-
ing the true parameters and choosing the correct model since this
has a very different mode of inheritance and a very strong causal
relationship between the traits. The ACE model should provide a
more difficult case for the DoC model since the ACE components
are only slightly different across traits and the effect size of X on Y is
smaller. Accordingly, in the main text, we will only discuss the
results from the AE–CE, as it represents the strongest test of the
argument: If the DoC model fails in this situation, it has little hope
for less ideal contexts. Appendix A (see Supplementary Material)
contains the full set of results for the univariate ACE–ACE case. In
addition, we also discuss the results for a reciprocal model, where
we add a causal path from Y to X of 0.2 in both the ACE–ACE and
the AE–CE model. Mplus version 8 was used to set up and run all
the models using the MplusAutomation package in R (Hallquist &
Wiley, 2017) and plotted using ggplot2 (Wickham, 2009).9

Results

We first focus on whether we end up choosing the correct model
using themodel testing procedure outlined above— that is, we first
estimate the Cholesky model10 and then see whether any of the
alternative simpler models can be chosen without a significant
reduction in fit as measured by likelihood-ratio tests. When the
p value is above .05 for the correct model and the p value is below
.05 for the alternative models, we end up selecting the correct
model. For each of the values of the error correlation, we calculate
the proportion of times the correct model is retained; this is our
measure of power. This test can only be conducted in the case
of the two unidirectional models (the first two presented in
Table 1), as the reciprocal AE–CE model has the same degrees

of freedom as the Cholesky AE–CEmodel. We therefore also com-
pare all models — including the last model presented in Table 1,
the reciprocal model— using AIC below, as suggested in the liter-
ature (Verhulst & Estabrook, 2012).

In the results presented in Figure 6, the 95% confidence inter-
vals are quite large in both the ‘small’ (1000 twin pairs) and ‘large’
(10,000 twin pairs) samples. Nonetheless, when there is zero non-
shared confounding, we end up choosing the correct model on
average for both sample sizes, and as shown in the bottom panels
of Figure 6, this correct selection occurs frequently (i.e., power is
above .8). However, as the amount of non-shared confounding
increases, we very quickly lose the ability to choose the correct
model. Instead, even with modest degrees of confounding, we
are most likely to reject the true model and therefore to choose
the Cholesky model, despite there being a quite strong causal effect
of X on Y in this simulated data. This result is reflected in the two
lower graphs which illustrate for a given sample size the model’s
power, that is, the proportion of the time we select the correct
model (i.e., the X → Y model). To gain a more complete under-
standing of the results, we also show the proportion that the other
potential models are selected in these lower two panels of Figure 6.
Most notably, when the sample size increases, the range of error-
correlation values in which the true model is retained is even more
restricted.

The situation is similar to using model chi-square to test the
exact fit hypothesis in a classical structural equation modeling con-
text: The larger the sample, the better able are we to detect even
small differences between the population covariances (the DoC
model instead uses the Cholesky model as its baseline) and the
model-implied covariances, which in the DoC model testing
framework are the various causal models outlined in Table 1
(Kline, 2011). Put differently: When error correlations are non-
zero, we are estimating the wrong model and the chi-square test
therefore rejects it more quickly when the statistical power is more
available to do so.

Fig. 5. Two reference models for simulation study— shown for only
one twin. (a) Ideal model: AE–CE model. (b) Typical model: ACE–ACE
model.
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Numerical comparisons will help demonstrate the two main
results of interest in Figure 6, namely the low amount of error cor-
relation needed to affect the model choice and the stark degree to
which sample size moderates these effects. As indicated in the
lower panels of Figure 6, in a sample size of 1000, positive con-
founding of .1 or .2 leads to power of .79 and .31, respectively.
With a sample of 10,000, these same amounts of positive con-
founding instead result in power of .01 and .00, respectively.

In cases where we have several alternative models, such as two
unidirectional models or a reciprocal model with the same degrees
of freedom as the Cholesky model, researchers have suggested
using AIC for model selection; as always, the model with the lowest
AIC is the preferred model. This is our second measure of power:
the proportion of times for each of the values of the error correla-
tion, we choose the correct model, that is, where the correct model
has the lowest AIC.We only illustrate the interval [−.2, .2] in terms
of confounding since otherwise it is impossible to display the varia-
tion in the AIC values across models since the AIC values at
extreme amount of confounding decrease quite dramatically for
most models, making the visualization difficult, also in the next fig-
ures where we present AIC values.11 However, because the power
graphs (in the lower panels of Figure 7) are still readily visualizable
throughout the full range of error correlation values, we do not
similarly restrict the range for the lower panels.

Although it is difficult to see in Figure 7, the model with the
lowest AIC, both when the sample size is 1000 and 10,000, is
the correct causal model where X causes Y. However, the
differences between the univariate models and the reciprocal
model are in many cases quite small. This is also illustrated by
the power graphs. For instance, the power is about .76 when
N= 1000 and when N= 10,000 in the case of zero confounding;
that is, even under ideal conditions of zero error correlation, the
DoC method will select one of the incorrect models a quarter of
the time, irrespective of sample size. When the extent of con-
founding is even slightly different from zero, the Cholesky model
has the lowest AIC value in most cases, and we would therefore
have to choose this model, particularly when sample sizes are large.
These results quite clearly demonstrate that even though there is a
causal effect, the effect size is quite substantial, and there are very
different modes of inheritance; in most cases, we would probably
end up choosing an incorrect model — namely, the Cholesky.

The final piece of the puzzle is the causal parameter estimates
obtained from the different models, that is, i1 and i2 in Figure 1.
This is illustrated in Figure 8. Recall that the true values for the
simulation are X causing Y with an effect size of .5. Under condi-
tions of no error correlation, the effect size is accurately estimated
in both sample sizes, not only by the X causes Ymodel but also by
the reciprocal model (which estimates an effect of .5 of X on Y and

Fig. 6. Comparison of likelihood ratio tests in two sample size situations for AE–CE models and the corresponding power.
Note: The bold lines in the top two graphs represent the median, and the dashed lines represent 95% confidence intervals. The top panels represent the p values obtained from a
chi-squared test comparing each of the two models to the Cholesky model.
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Fig. 7. Comparison of AIC values in two sample size situations for AE–CE models.

Fig. 8. Comparison of causal parameter estimates in two sample size
situations for AE–CE models.
Note: The bold lines represent the median causal parameter esti-
mate, and the dashed lines represent 95% confidence intervals.
The figure illustrates the causal parameters estimated when estimat-
ing each of the models while allowing the error correlation to vary.
Since there are two estimated (causal) parameters for the Cholesky
model — both the X causes Y path and the Y causes X path — two
estimates are illustrated.
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an effect of .0 of Y on X). Increases in the size of the error corre-
lation do cause changes in the parameter estimates, but these might
be considered less severe than the effects of error correlation on
model selection: Considering the situation where non-shared con-
founding is−.2— a situation in which our simulations showed the
DoC often fails to select the appropriate model — the estimated
median causal effect size in the 1000 observation case is .38.
Thus, while the impact of modest to moderate degrees of non-
shared confounding is quite destructive to the DoC’s ability to
identify select the appropriate causal model, the impact on param-
eter estimates is closer to what researchers might generally expect
in terms of changes in regression coefficients created by omitting
relevant control variables.

Conclusion and Discussion

The direction of causation model sought to solve one of the most
intractable problems facing the scientific study of humans — the
determination of causality. The use of the model is uneven across
disciplines and research questions, but results on certain topics
(such as personality and politics) results from the model are highly
influential. The present study highlights how severe limitations in
themodel challenge its use in this and essentially all other domains.

This study first demonstrated analytically that unobserved non-
shared confounding can bias parameter estimates and cross-twin,
cross-trait covariances in the DoCmodel in twin research.We used
this insight to conduct a series of simulation studies to investigate
the effect non-shared confounding has on (1) choosing the correct
causal model and (2) our (causal) parameter estimates. The results
clearly demonstrate that in the face of even very small amounts of
non-shared confounding, in even the best of situations — having
two traits with widely different modes of heritability — the DoC
leads to the choice of the wrong causal model. The parameter esti-
mates are quite well recovered in both the models when we have
zero confounding and we choose the correct model. However, we
diverge from the population values when the extent of con-
founding increases and we choose the wrong model.

Appendix A (see Supplementary Material) outlines the results
for the univariate ACE–ACEmodels, which closely match the vari-
ance components most often seen in the literature onmany human
characteristics, as well as the results for the corresponding recip-
rocal models. The details differ slightly from the results presented
here, but the overall conclusion remains: In the face of often very
slight amounts of non-shared confounding, we end up choosing
the wrong model and estimate incorrect effect sizes. In addition,
it is very difficult to use chi-squared testing to distinguish between
unidirectional and reciprocal causation even in the face of zero
confounding and 10,000 observations.

It is noteworthy that our present focus on non-shared con-
founding is, in fact, not the only way that the DoC could produce
incorrect results through similar mechanisms. For example,
response styles might represent a mechanism through which stud-
ies of self-reported characteristics would introduce an error corre-
lation between the two characteristics under study, with similar
consequences as a non-shared confounder. In fact, previous
research on personality and politics has demonstrated just such
an importance of response styles, further highlighting the chal-
lenges of using the technique in this particular domain (Kandler
et al., 2010; Riemann & Kandler, 2010). Creating measurement
models to account for measurement error, as suggested by some
DoC advocates (e.g., Verhulst & Estabrook, 2012), is unfortunately
not a solution to this problem as this approach would only account

for random and not systematic measurement error such as that
resulting from response styles.

Where does this leave us in terms of the use of using twin and
family data for drawing causal inferences? A first thought is that the
DoC model should be used cautiously and in limited situations.
One appropriate situation for its usemight be pure AE–CEmodels,
where there is enough information to estimate the error correlation
even in the reciprocal causation case.

Second, although the discordant twin design also suffers from
problems of non-shared confounding (Frisell et al., 2012), here,
this is more a matter of biasing the parameter estimates rather than
choosing the wrong model altogether; the discordant twin design
compares MZ twins discordant on some exposure such as, for
example, education. Thus, if a theoretical and/or empirical claim
can be made with respect to the likelihood of non-shared con-
founding in a specific research setting, the discordant twin design
still represents a strong research design for drawing causal
inferences.

Finally, there are also other more advanced research designs
that use genetic information to draw causal inferences, such as
Mendelian randomization (Davey Smith & Ebrahim, 2003), which
is also a type of IV technique and which is arguably a stronger tech-
nique than the DoC model. There has been a recent attempt to
integrate the DoC model and Mendelian randomization by
Minică et al. (2018). The Mendelian randomization approach to
reducing unobserved confounding is an improvement to DOC
modeling. The problem of non-shared confounding is not
resolved, however, using this approach, as the authors also note
(Minică et al., 2018). Even if one has a valid instrument, effects
accumulating over time (since birth) due to selection are potential
sources of latent confounding. Just how sensitive this alternative
approach is to non-shared confounding needs to be investigated
further.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/thg.2018.67.
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Notes

1 Three quotes are fairly representative of the literature:

‘These latent genetic and environmental variables (i.e., the latent instru-
ments) are all assumed to be mutually uncorrelated’ (Heath et al.,
1993, p. 32, emphasis added).

‘We assume that the covariances of the genetic and environmental determi-
nants of PA [trait A] with those of PB [trait B] are all zero’ (Neale &
Cardon, 1992, p. 267, emphasis added)

‘the pattern of cross-twin cross-trait correlations can under certain condi-
tions falsify strong hypotheses about the direction of causation between
two variables measured on one occasion provided several assumptions
are satisfied [such as] : : : there are no unmeasured variables that influ-
ence both measures and thereby inflate the correlations arising through
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the causal influence of one variable on the other’ (Gillespie et al., 2003,
p. 384, emphasis added).

2 In the literature on ACME, it is customary to include the predictor, the
mediator and the outcome, and then focus on confounding in terms of the
mediator–outcome relationship, when discussing the problem of confounding
(e.g., Imai et al., 2010). The problem of confounding is obviously also present
in terms of the predictor–outcome relationship, which is the focus here.
3 Imai et al. (2010) provide a closed form solution for the estimated effect of the
regression coefficient as a function of the added error correlation in the context
of ACME, which is almost identical to this situation.
4 The E component for psychoticism is taken from Figure 2, and the E com-
ponent for social ideology is taken from Figure 3.
5 We may not be able to exactly reproduce these coefficients using the output
from a unidirectional model even if we knew the true error correlation since this
requires a positive definite covariance matrix. For example, if we wanted to
conduct a sensitivity analysis as in the ACME literature, we would therefore
need to take our point of departure in the saturated Cholesky model.
6 In the unidirectional case, the variance of X is given by σ2X ¼ ða2x þ c2x þ e2xÞ
both in the case with and without confounding. In the case for confounding
when we have reciprocal causation, the variance of X is represented by

σ2X ¼ a2x þ c2x þ e2x þða2y þ c2y þ e2yÞ � i22 þ 2 � � � eX � eY �i2
ði2 � i1�1Þ2

7 Although perhaps not immediately obvious, it can be shown that the shared
E in a bivariate twinmodel from identical twins corresponds to within twin pair
differences, that is, those differences which are not confounded by genetic
factors or shared upbringing (Turkheimer & Harden, 2014).
8 The exact size of the variance components is obviously not important since it is
the difference in the mode of inheritance across two constructs which is the pri-
mary determining factor for how well the DoC ought to work as discussed above.
9 Scripts for all models are available as supporting information.
10 In the ACE–ACE model, the reference model is the ACE–ACE model,
where the covariance is a function of the ACE components from X1, and in
the AE–CE model, the reference model is the AE–CE model where the
covariance is a function of the CE components from X1.
11 The full set of numerical results for AIC is available in Appendix C in the
Supplementary Material.
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