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Abstract
This article designs a robotic Chinese character writing system that can resist random human interference. Firstly,
an innovative stroke extraction method of Chinese characters was devised. A basic Chinese character stroke extrac-
tion method based on cumulative direction vectors is used to extract the components that make up the strokes of
Chinese characters. The components are then stitched together into strokes based on the sequential base stroke join-
ing method. To enable the robot to imitate handwriting Chinese character skills, we utilised stroke information as the
demonstration and modelled the skills using dynamic movement primitives (DMPs). To suppress random human
interference, this article combines improved DMPs and conductance control to adjust robot trajectories based on
real-time visual measurements. The experimental results show that the proposed method can accurately extract
the strokes of most Chinese characters. The designed trajectory adjustment method offers better smoothness and
robustness than direct rotating and translating curves. The robot is able to adjust its posture and trajectory in real
time to eliminate the negative impacts of human interference.

1. Introduction
Today, robots are used in a wide range of applications. Robots show great advantages in industrial areas
where repetitive work is performed because of their low cost, high efficiency and low scrap rate [1].
But in areas where motion trajectories do not repeat, robots have difficulty completing tasks. One of the
classic tasks is handwriting. Handwriting actions are unavoidable in human life and play an important
role in scenarios such as teaching and businesses both requiring signatures [2, 3]. English words are
made up of 26 letters arranged in a row, but Chinese characters are two-dimensional pictures made up
of Chinese strokes written in specific positions superimposed on each other [4]. How to encode Chinese
characters is a challenge. As a result, the robotic writing of Chinese characters has also been studied by
numerous researchers. At the same time, the structure of the strokes of Chinese characters has evolved
over millennia to conform to the human mind and is the scientifically best way to segment Chinese
characters. In other words, the segmentation of Chinese character strokes can also be applied to tasks
that require the segmentation of superimposed trajectory images into executable trajectories, such as
the grinding and cleaning of complex recesses in workpieces. At the same time, writing is a delicate
manipulation task that would be difficult to accomplish if interference were encountered. Therefore,
there is an urgent need to design an interference-resistant robotic Chinese character writing system for
diverse applications.

The first step in imitating human writing is to disassemble Chinese characters into Chinese strokes.
Currently, three methods are widely applied for Chinese character extraction, i.e., (a) computer font
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reproduction, (b) imitation of human writing trajectories and (c) Chinese character image decomposi-
tion. Computer font reproduction involves using the stroke information that comes with a standard font
library [5–8] and handling of word posters [9–13], but these methods are database dependent and cannot
imitate the individual writing of a particular person. Imitation of human writing trajectories includes
recording the trajectory of the pen tip when a person is writing [14, 15]. The motion sensing input devices
are utilised to capture the gestures and trajectory of the human hand [4], and the physical contact demon-
strations [16]. However, these methods rely on human teaching and cannot break down Chinese strokes
through pictures. Chinese character image decomposition means that it is possible to analyse the strokes
of Chinese characters directly through pictures without relying on word library and human teaching.
Chinese character image decomposition, the most difficult but widely used method, has been studied
by many researchers. Consequently, many methods were developed, such as corner detection algorithm
[17, 18], point to boundary orientation distance of one triangular mesh [19], character library template
matching segmentation [20, 21], B-spline curve matching [22], extraction of strokes using ambiguous
zone information [18], extraction of strokes using optimum paths [11], stroke speed feature and stroke
vector feature segmentation [23], etc. However, these methods require a lot of computation. There is
still a need for a simple picture-based method to extract strokes from Chinese characters.

The robot can write the corresponding Chinese characters according to the extracted strokes.
However, in order to eliminate interference during the writing process, an algorithm that can adaptive the
writing trajectory according to the position of the writing board is required. Dynamic movement primi-
tive (DMP) is an effective method for modelling robot movement behaviour and biological phenomena
[24]. It has the advantage of being stable, simple and easy to generalise. It is possible to generalise a
trajectory simply by modifying the position of the start and target points, and the shape of the gener-
alised trajectory is same to the original demonstration. Because of its significant advantages, DMPs
have been widely used and many studies have improved the learning and generalisation capabilities
of DMPs [25]. In [26], Gaussian mixture model and Gaussian mixture regression were integrated to
enhance DMPs’ learning skills from multiple demonstrations. In [27], the learning skills are split into a
series of sub-skills, thus the generalisation ability of the learned skills is improved. In [28], the frame-
work of the DMPs is extended to accommodate real-time changes during task execution. In [29], a
Riemannian-based DMP framework is proposed to learn and generalise multi-space data. In [30], a
biomimetic controller is integrated with DMPs to facilitate the learning and adaptation of compliant
skills. The authors of [31] proposed a new DMPs to solve the problems arising from the spatial scaling
of DMPs in Cartesian space. The authors of [32] used Riemannian metrics to reformulate DMPs such
that the resulting DMPs can be directly employed with quantities expressed as SymmSymmetric Positive
Definite (SPD) matrices. The study in [33] introduced a deep neural network in DMPs to address the
invalidation of DMPs forcing terms. The authors of [34] developed a framework for the robot to learn
both movement and muscle stiffness features. However, all these methods are difficult to adapt to the
case where the start and target points are rotated simultaneously. The writing trajectory of the robot may
be distorted when the writing board is rotated and flipped.

At the same time, the contact force between the pen tip and the writing board is an important piece
of information during writing, especially when disturbed. Therefore, it is extremely necessary to design
a writing system that combines stroke segmentation, trajectory generalisation, visual information and
force information.

To address the above issues, the following work has been done. Firstly, inspired by the human mind-
set of splitting strokes, a direction-based algorithm for extending and stitching stroke components was
designed to extract the strokes of a Chinese character picture in a simple and fast way. Subsequently,
some improvements were made to the DMPs. The rotation and translation matrices were fused into the
framework of the DMPs so that the DMPs could accommodate the simultaneous rotation of the start
and target points, i.e., it could accommodate the rotation and flipping of the writing board. Finally, an
interference-resistant robotic Chinese character writing system was developed. The system uses seg-
mented strokes as demonstrations and then combines the rotation and translation matrices calculated
from visual information with improved DMPs to generalise the trajectories in real time. At the same
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Figure 1. The connection and intersection of Chinese character “zhong”.

Figure 2. (a) The correct stroke division for the Chinese character “zhong”. (b) The incorrect stroke
division after the improper handling of the connections.

time, the position is regulated online using admittance control based on force sensor information. Thus,
the robot can write complete characters on the writing board despite a human’s random movement,
rotation and flipping.

The rest of this article is presented below. Section 2 describes the proposed method in this article,
including stroke division, force-position hybrid control and the designed system. The stroke division
algorithm is divided into stroke component extraction and stroke component connection. Modified
DMPs and admittance control are introduced in force-position hybrid control. Finally, a jam-resistant
robotic writing system was designed based on the above algorithm. Section 3 provides sufficient exper-
imental examples to demonstrate the effectiveness of the stroke division algorithm, modified DMPs,
admittance control, and the designed system. Section 4 is the conclusion.

2. Proposed method
2.1. Stroke division
Stroke division is one of the difficulties in the study of Chinese characters because it is tough to learn
the connections and intersections in Chinese characters. When the endpoints of two strokes are at the
same point, as shown in Fig. 1, the point is defined as a connection. Improper recognising this point
will tend to misidentify multiple strokes as the same stroke, as shown in Fig. 2. The intersection is the
point formed when two strokes intersect, and improper handling of this point will result in incorrect
recognition of the strokes, as shown in Fig. 3.

The Chinese character strokes are shown in Fig. 4. Analysing the strokes of Chinese characters, we
can see that each stroke can be divided into one or more approximately straight curves. These curves
can be summarised as dot, horizontal, vertical, left-falling and right-falling as shown in Fig. 5. These
curves are named stroke components. Thus, each Chinese character stroke can be formed by combining
one or more Chinese character stroke components. For example, as shown in Fig. 6, a Chinese character
stroke “dot” can be seen as a combination of a Chinese character stroke component “dot”. A Chinese
character stroke “vertical-turning” can be decomposed as a combination of a Chinese character stroke
component “vertical” and a Chinese character stroke component “horizontal”. For another example, a
Chinese character “horizontal-break-hook” can be seen as a combination of a “horizontal”, a “vertical”
and a “dot”.
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Figure 3. (a) The correct stroke division for the Chinese character “shi”. (b) and (c) The incorrect
stroke division after the improper handling of the intersection.

Figure 4. Chinese character strokes.

Figure 5. Chinese character stroke components.

As the Chinese character stroke components all extend in the same direction with no turning points,
the Chinese character stroke components can be extracted when the direction of extension is known. At
the same time, the determination of the direction of extension also deals with the issue of connections
and intersections. A turning place connects two stroke components, and thus the turning identification
is important in the basic component extraction. The intersection occurs when the strokes have been
extended to different directions. When the different stroke components’ writing directions are deter-
mined, the stroke component extensions can cross the intersection in the specified direction to prevent
misidentification at the intersection. Therefore, the stroke extraction algorithm has two parts: stroke
components extraction and stroke components connection.
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Figure 6. Chinese character stroke can be formed by combining one or more Chinese character stroke
components.

Figure 7. A set of eight neighbourhoods with P0 as the centroid.

2.1.1. Stroke components extraction
Firstly, the handwritten Chinese character images were binarised and refined. The algorithm for stroke
components extraction is built on the basis of a refined image of a white Chinese character on a black
background. The image is then traversed to find the white pixel, which is recorded as the starting point
Psta and treated as P0. As shown in Fig. 7, for a set of eight neighbourhoods with P0 as the centroid, we set
P0 as the origin and the length of the pixel as the unit length. The pixel points in this eight-neighbourhood
are therefore named by the coordinates in which they are located. Starting from the pixel point above P0,
the pixels in a clockwise circle are each named Pn = (xn, yn)(n = 1, 2, 3, . . . , 8). The process of extracting
the strokes component is shown in Fig. 8. Define a direction vector D = (α, β) with an initial value of
(0, 0). D describes the direction from the start pixel to the end pixel of the searched stroke component.
The values of D are normalised to obtain the coordinate points PD in the eight-neighborhood coordinate
system.

PD = (xD, yD) (1)

xD = α√
α2 + β2

(2)

yD = β√
α2 + β2

(3)

The distance between PD and the coordinates of each pixel in the eight neighbourhoods is

dn = |Pn − PD| (4)
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Figure 8. The process of extracting the strokes component.

Arrange d1, d2 . . . , dn according to their values (from small to large values). To ensure that the stroke
component extends in the direction indicated by D, perform a sequential search for the Pn corresponding
to the first 4 dn. If all the Pn picked out are black, the search stops. If Pn is a white pixel, extend the base
stroke to Pn and update direction vector

Dnew = (αnew, βnew) (5)

αnew = α+ xn (6)

βnew = β + yn (7)

Subsequently, Pn is used as the next P0 and Dnew as the next D in order to continue extending the stroke
component until the search stops.

However, the starting point Psta is not always the endpoint of the stroke component. So after the
extension along direction D is complete, the direction vector D needs to be reversed

DR = −D (8)

It is then extended to the opposite direction from the starting point Psta, and finally, the two curves are
joined to form a complete stroke component.

In order to prevent the same stroke component from being searched repeatedly, each pixel point is
blacked out after it has been recorded as a point in the stroke component. However, this creates the
interruption problem. As shown in Fig. 9, an intersection point is shared by multiple stroke components
and when the intersection is blacked out, another stroke component passing through this intersection
will be interrupted at the intersection. Therefore, we use two identical refined images I1 and I2 of white
characters on a black background. Image I1 is blacked out at the recorded pixels and is used to find the
starting point Psta. This prevents repeated searching of the same basic stroke. Image I2 is not blacked out
at the recorded pixels and is used to extend the stroke component so that the stroke components are not
interrupted at the intersection point.
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Algorithm 1: Sorting of points

input: stroke component ; ’s starting point ( ); ’s endpoint ( );

output: stroke component

= − ;

= − ;

if (| | > < < <| | and ) or (| | | | and ) then
The points of are sorted in reverse order;

end

Figure 9. (a) The darkening at the intersection divides the vertical into two parts. (b) Using two
identical images I1 and I2 can split the stroke components correctly.

Figure 10. The “hook” in Chinese character “horizontal-break-hook”.

2.1.2. Stroke components connection
When the end point of stroke component SC1 and the start point of stroke component SC2 are connected,
SC1 and SC2 will make a stroke. Therefore, the starting and ending points of the stroke components
need to be identified, i.e. the points between the connected stroke components. According to the con-
ventional writing rules, the strokes are written from left to right or from top to bottom. The specific
sorting algorithm is shown in Algorithm 1.

However, there is a special Chinese stroke called “hook” as shown in Fig. 10, which is written from
bottom to top and from right to left. Similar to the stroke component “dot”, it is much shorter than the
other basic strokes. It is also connected to the other stroke components. Thus, a stroke component is
considered to be a ”hook” if it satisfies the following conditions:

1. the end point is connected to the end points of the other stroke components;
2. the start point is not connected to the end points of any of the other stroke components;
3. the length is less than one-half the length of the average stroke component.
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When combining strokes, the points of the “hook” need to be reverse ordered and then connected to
other stroke components.

2.2. Force-position hybrid control
For a robotic writing system, the position control mode provides a limited performance, e.g. nonsmooth
and nonsimilar to human’s writing characters. To write smoothly on the writing board, the contact force
between the pen tip and the writing board needs to be controlled. Therefore, we use the force-position
hybrid control. A modified DMP is used to control the position and posture of the robot’s end-effector. At
the same time, the contact force between the pen tip and the writing board is controlled using admittance
control. As a result, the robot can perform writing tasks.

2.2.1. Modified DMPs
Based on a spring damping model, the DMPs use a non-linear adjusting term to achieve the desired
point attractor behaviour. It has the properties of a second-order dynamical system such as convergence
at the target point, robustness to disturbances and generalisation in time and space. At the same time,
the non-linear terms can be made to produce a continuous smooth trajectory. DMPs are classified as
discrete DMPs and periodic DMPs. We use the discrete DMPs to model writing skills. The discrete
DMPs model can be expressed as:

τ v̇ = α
(
yg − y

) − βv + f (x) (9)

τ ẏ = v (10)

where τ is the temporal scaling constant, and changing it allows the trajectory to generalise in the time
dimension. α and β represent the damping factor and the spring constant, respectively, and α can gener-
ally be set to α = β2/4. yg is the target position. y is the position of the demonstration. v is the velocity
of the demonstration. The forcing term f (x) can be expressed as:

f
(
x, yg

) =
∑N

i=1 ψi ·ωi
∑N

i=1 ψi

· x · (yg − y0) (11)

ψi = exp (−hi(x − ci)
2) (12)

τ ẋ = −αx · x (13)
where ωi is the weight of the Gaussian kernel function, y0 is the starting point of the trajectory, ci and hi

are the centre and width of the Gaussian kernel function, respectively, N denotes the number of Gaussian
kernel functions, and αx is a positive gain coefficient.

However, as shown in Fig. 11, when the start and target points are rotated, the original DMP cannot
rotate the generalised trajectory in its original shape and the trajectory is distorted. In order to apply the
DMPs to this case where both the start and target points are rotated, we have improved the original DMPs
inspired by [31]. The generalised space is obtained by rotating the original space. Once the rotation
matrix between the two spaces is known, the corresponding rotation can be applied to the non-linear
term. Thus, equation (9) becomes

τ ÿ = αy(βy

(
yg,1 − y

) − ẏ) + s · R · f (14)

yg,1 = R · yg,0 + t (15)

y0,1 = R · y0,0 + t (16)
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Figure 11. Comparison of original DMPs and modified DMPs. For linear and curvilinear demonstra-
tions, generalisations are carried out using the original DMPs and modified DMPs, respectively. The
trajectories generalised from the original DMPs have distortions. The trajectories generalised by the
improved DMPs conform to the expected trajectories.

s =
∥∥yg,1 − y0,1

∥∥
∥∥yg,0 − y0,0

∥∥ (17)

where yg,1 and yg,0 are the target points in the generalised space and the original space, respectively.
y0,1 and y0,0 are the starting points in the generalised space and the original space, respectively. s is the
scaling constant. R is the rotation matrix and t is the translation matrix. Throughout this article, R and
t are calculated from visual information.

2.2.2. Admittance control
The admittance model is defined as follows:

MAẍA + DAẋA + KA(xA − x0) = fh (18)

where MA is the quality matrix, DA is the damping matrix and KA is the spring factor matrix. fh is the
traction of the demonstrator. xA is the pose of the robot end-effector, ẋA is the speed and ẍA is the accel-
eration. x0 is the original point of the pose. The robot end-effector needs to move on the writing board
during the writing process, so xA = x0. The admittance model can be simplified as:

MAẍA + DAẋA = fh. (19)

Therefore, the acceleration can be calculated using the traction force fh and then the velocity and position
can be calculated by integration to obtain the trajectory. In this article, fh is the contact force between
the pen tip and the writing board, with an expected value of 2N.

2.3. Designed system
Based on the above approach, we have designed a multi-sensor-based robotic writing system. As
shown in Fig. 12, at the demonstration stage, the strokes are extracted from the demonstrations.
During the trajectory generalisation phase, the camera detects changes in the pose of the writing
board and calculates the rotation matrix R and the translation matrix t. The DMPs model calcu-
lates the generalised trajectory points based on the R and t and feeds the trajectory points into the
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Figure 12. Robotic writing system.

admittance control model. The admittance control algorithm calculates the execution position based
on the given trajectory points and real-time force information and outputs the execution position to
the robot. At the same time, the execution position will be different from the desired position and
in the next step this differential will be used to correct the trajectory points in advance to improve
accuracy.

3. Experiment
3.1. Stroke extraction
In order to verify the accuracy of Chinese character stroke extraction, we randomly selected 100 hand-
writing Chinese characters with different structures and complexities for experiments. As shown in
Fig. 13, the experiments show that the algorithm works well. Statistically, 93% of the strokes of hand-
written Chinese characters can be extracted accurately, with an average speed of 0.4 s per image. The
characters boxed in Fig. 13 are characters with inaccurate stroke recognition. After studying them,
we have divided them into three categories. Category 1 is for those boxed in red, whose strokes
are broken. This means that a single stroke has been split into multiple strokes or is incompletely
recognised. Those boxed in green are in category 2: misconnected strokes. This means that a stroke
has been incorrectly connected to another stroke. Boxed in blue is category 3, there are redundant
strokes. Excess strokes take the form of burrs consisting of just one or two pixels. Analysis of these
three categories shows that almost all recognition errors happen in the refinement process. When
inaccurate refinement leads to a change in the direction of the strokes, deformations are observed
at the intersection and junction points of the Chinese character’s skeleton, errors in category 1 are
likely to occur. During the writing process, variations in pen pressure or ink leakage can result in
changes in the thickness of strokes, leading to the occurrence of jaggies in the refinement process,
errors in category 3 are likely to occur. Errors in category 2 are caused by inaccurate refinement and
the poor writing where multiple interconnected or intersecting stroke components share a consistent
direction.

3.2. Modified DMPs
There are two methods to generalise a trajectory based on disturbances in real time. Method 1 firstly gen-
eralises the new trajectory using the original DMPs and then adjusts the new trajectory using rotation
and translation matrices, R and t. Method 2 uses the modified DMPs to generalise the trajectory directly
based on R and t. We set up a writing track and use visual information to obtain the pose of the writing
board to calculate R and t. These two methods are then used to make the trajectory follow the desired
pose on the writing board. The effects of the two methods are shown in Fig. 14. It can be seen that the
trajectory output of method 1 is more oscillating, not smooth enough and has large errors. Method 2
outputs a smoother trajectory with less oscillation, which is more effective. In comparison to Method 1,
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Figure 13. Stroke extraction results. Different colours indicate different strokes.

the trajectories produced by Method 2 exhibit a difference of up to 7.1977 mm in the z-direction, which
poses a potential safety hazard in practical applications, as it could result in the inadvertent puncturing
of the writing surface. We analysed the reasons for the large differences in the results between the two
methods. When using method 1, outputs of the original DMP have errors in practice, such as distortion
of the trajectory and robot movement errors. Also, R and t are calculated from visual information and
have errors. Because R and t do not fall within the framework of DMPs, the multiplication with the tra-
jectory points is not constrained by DMPs, leaving the trajectory with a large offset. Whereas method 2
incorporates R and t into the framework of DMPs, the generalisation of DMPs will change with R and
t. At the same time, the trajectory does not produce large offsets due to the constraints of the DMPs
framework.

3.3. Admittance control
We have measured the contact force between the pen tip and the writing board when a person writes.
We find that the best writing performance is achieved when the force sensor has 2N contact force on the
z-axis. If the contact force is not 2N when the robot arm moves to the specified position, the admittance
control algorithm can adjust the end position of the robot arm in time to guarantee the contact force
always be 2N. As shown in Fig. 15, when the initial contact force is 0, i.e. when the end-effector is not
touching the writing board, the admittance control moves the end-effector closer to the writing board
until the contact force converges to 2N. When the initial contact force is 6N, the admittance control
policy steers the end-effector moving away from the writing board until the contact force is stabilised at
2N. The admittance control also adjusts the contact force in time when there is any interference during
the adjustment process.
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Figure 14. The effect of the two methods.

Figure 15. The effect of the admittance control.
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Figure 16. Experimental platform.

Figure 17. The results of the experiment.

3.4. Application
In this experiment, we verify the effectiveness of the designed interference-resistant robotic Chinese
character writing system. A human randomly writes a Chinese character. Then the robot imitates the
human handwriting on the writing board. While the robot writes, the human randomly moves, turns
and flips the board, and the robot can still follow the posture of the board to adjust its trajectory. As
shown in Fig. 16, the experimental platform is composed of an Elite Collaborative Robot EC66, an
Intel RealSense Depth Camera D435 and a LCD Writing Board. The Elite Collaborative Robot EC66
is a lightweight and flexible collaborative robot. Its weight is 17.5 kg and the largest payload is 6 kg.
It runs efficiently and can reach a maximum speed of 2.8 m/s, with a soft and consistent trajectory.
As a collaborative robot, it enables safe human–robot interaction with a high degree of reliability and
safety. It can therefore complete different tasks while ensuring the safety of humans. With a range of
10 m and a wide field of view, the Intel RealSense Depth Camera D435 has a wide range of applications
in robotics development. By affixing four calibration papers to the four corners of the writing board,
it is able to estimate the posture of the writing board very well in this experiment, i.e. to recognise
human interference. During the robot’s writing process, the human randomly and continuously moves,
rotates and flips the writing board. The robot can write complete Chinese characters on the writing
board.

The results of the experiment are shown in Fig. 17. The robot is able to adjust its end trajectory in
time to write complete and accurate Chinese characters on the writing pad under human interferences.
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4. Conclusion
In this article, we designed a robotic writing system that allows a robot to imitate human handwriting
even with unexpected interruptions. We first designed a new stroke extraction algorithm that extracts
stroke components based on the direction of extension, and then connected the stroke components
according to the writing direction of the stroke. To cope with random interference, the original DMPs
model was improved such that the generalisation function could be adapted to the situations when the
writing board was rotated and flipped. The writing system was then designed by combining visual
information, admittance control and an improved DMP to enable the robot to accurately imitate human
handwriting in the face of interference.

In this article, we have presented an interference-resistant robotic writing system that can also be
used in applications such as grinding and cleaning of complex recesses in workpieces. In the future,
we will improve the current visual measurement module to make this system more accurate and better
applicable.
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