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PRODUCTS OF COMMUTATORS AS PRODUCTS 
OF SQUARES 

CHARLES C. EDMUNDS 

1. I n t r o d u c t i o n . In any group G, the commuta tor subgroup G is contained 
in G2, the subgroup of G generated by the squares in G. Thus any product of 
commuta tors can be writ ten as a product of squares in G. For instance, the 
commuta tor [x, y] ( = xyx~ly~l) can be expressed as the product of three 
squares: [x, y] = x2(x~1y)2(y~1)2. Roger Lyndon and Morris Newman have 
made the interesting observation [4, Theorem 1] that , in this case, the number 
three is minimal in the sense tha t there are groups which contain commuta tors 
not expressible as the product of fewer than three squares. In particular, if G 
is the free group of rank two (xi, x2; 0) , no endomorphism of G sends xx

2x2
2 

to [xi, #2] (i.e. there are no words U and V in G for which U2V2 = [xi, x2]). 

Let F be the countably generated free group (xi, x2, . . . ; 0) and let S(n) 
and C(n) denote the words Xi2x2

2 . . . xn
2 and [xi, x2][x3, x4] . . . [x2„-i, x 2 J 

respectively, with 5 (0) = C(0) = 1 (the empty word) . We generalize the 
result of Lyndon and Newman to products of commuta tors as follows. 

T H E O R E M 1. There is an endomorphism of F sending S(2n + 1) to C(n), 
for n ^ 0. 

T H E O R E M 2. No endomorphism of F sends S(2n) to C(n), for n > 0. 

As an immediate consequence we obtain the following: 

COROLLARY. / / g is the product of n ( > 0 ) commutators in a group G, then g 
can be written as the product of 2n + 1 squares but, in general, g is not expressible 
as a product of fewer squares. 

A word W in F is said to be quadratic if each generator occurring in W 
appears, with exponent + 1 or — 1 , exactly twice. As an application of our 
results we will give a new solution to the endomorphism problem (see 2) for 
quadrat ic words. The proof of Theorem 1 is straightforward. The proof of 
Theorem 2 is based on certain previous results [2; 3] of the author ; these will 
be summarized briefly just prior to their use. A completely different proof of 
Theorem 2 due to R. C. Lyndon will appear in the forthcoming book by Lyndon 
and Schupp. 
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The au thor wishes to thank the referee whose comments have led to con­
siderable improvement in the exposition of this paper. 

2. Proof of T h e o r e m 1. If an automorphism of F sends U to V we say t ha t 
the words U and V are automorphic and write U ~ V. 

LEMMA 1. If x, y, and z are three distinct x / s , then there is a sequence of 
Nielsen automorphisms (induced by free substitutions [5, p . 120]) sending 
x2y2z2 to x2[y, z]. 

Proof. The following sequence of free subst i tut ions sends x2y2z2 to x2[y, z]: 
(1) y —> x~ly, x and z fixed; (2) y —> yx} x and z fixed; (3) z —> x~h, x and 
y fixed; (4) y —• yz~1, x and z fixed; (5) y —> yx, x and z frxed; (6) x —> xy~l, y 
and z fixed; (7) x —> x, ^ —» 3>_1, s —» s - 1 . 

Let C(w) denote the word [x2, x3][x4, x5] . . . [x2n, #2W+i]-

LEMMA 2. For any w > 0, there is an automorphism of F sending S(2n + 1) to 
X\2C (n) and fixing each Xifor i > 2n + 1. 

Proof. The result follows from Lemma 1 by induction on n. 

Proof of Theorem 1. By Lemma 2, there is an automorphism a of F sending 
S(2n + 1) to Xi2C'(n). Define an endomorphism /3 and an automorphism y 
as follows: /3 : X\ —> 1, x* —•> x , otherwise; 7 : x z + i —> x2- for 1 ^ i ^ 2n -{- 1, 
Xi —> #2^+1, X J ~"> ̂ ./ otherwise. T h e composition 0:^7 (writing mappings on the 
right) is an endomorphism of F sending S(2n + 1) to C(n). 

Remarks. (1) Lemmas 1 and 2 are implicit in the work of Dehn [1]. (2) Using 
the proof of Theorem 1, C(n) can be wri t ten as a product of squares explicitly. 
For instance C(2) = [xi, x2]lx3, x4] can be writ ten as 

X12 (Xi~ - 1X2Xi) 2 ( X i _ 1 X 2
_ 1 X : 0 2 ( x 3 ~ 1 ^ 2 X i X 3 _ 1 X i _ 1 X 2 ~ 1 X 3 X iXi~ 1 X2~ 1 X 3 ) 2 

X ( X ; r 1 X 2 X i X 4 _ 1 ) 2 . 

3. L e m m a s . We begin this section with an explicit discussion of the nota-
tional conventions to be used for the remainder of the paper; the reader is 
referred to Magnus , Karrass , and Solitar [5] for any unexplained notat ion. This 
is followed by a sequence of lemmas concerning the interplay between the 
application of automorphisms and trivializations (defined below) to quadra t ic 
words. T h e key lemma is Lemma 5 which will be used in the next section to 
prove Theorem 2. 

Given the free group F, we call X = {xi, x2, . . .) the set of generators of F 
and L = {xi, Xi - 1 , x2, X2-"1, . . .} the set of letters of F. A reduced word is a 
finite string of letters in which no letter occurs next to its inverse. We will 
view F as the set of reduced words where the product of two words U and V, 
denoted U • V, is formed by juxtaposi t ion followed by reduction (i.e. deletion 
of all subwords of the form xx _ 1 for x G L). Fur thermore , a dot will be used 
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to indicate a point a t which some cancellation (i.e. reduction) might occur in 
a product ; thus if there is no cancellation between U and V in forming their 
product , we write U • V = UV. If W £ F and p is an endomorphism of F} 

the word W<p is obtained by replacing each letter of W by its image under <p 
and reducing the result. The length of a word W will be denoted \W\. For 
5 Ç L, we define the endomorphism rAs, trivialization of 5 , by 

TS: x —» 1 if x G 5 or x"1 Ç 5, 3> —> y otherwise. 

Henceforth, lower case letters occurring as par ts of words will denote 
elements of L. 

LEMMA 3. If UTS = V where U = AixA2yAzx~lAA is quadratic, A2 3^ 1, 
y~l occurs in A\ or A\, and rs fixes x and y, then: 

(i) V = BixBzyBsX-Uh, where Atrs = Bt (1 è i S 4) , and 
(ii) there are quadratic words U' and V\ automorphic to U and V respectively, 

such that U'TS = V, U' = A&Ai'yAz'x^A^ V = BlxB2
fyBz

,x-lBu and 
\A2

f\ < \A2\. 

Proof. Denote rs by r. 
(i) Since r fixes x and y, 

V = UT = (AlT) • x • (A2T) • y • (A*T) • x - 1 • (AiT). 

U is quadrat ic , thus neither x nor x _ 1 occurs in A i(l S i S 4) . As a result, 
there is no x or x"1 in any A{T. In particular, Axr does not end with x ~ \ A2T 
does not begin with x_ 1 , AZT does not end with x, and A 4r does not begin with x. 
Therefore the dots surrounding x and x _ 1 can be omitted from the expression 
above. Since y~l occurs in A\ or T 4 , y~l is in either A\T or A AT; thus A2T does 
not end with y~l and A$T does not begin with y~l. As a result, the dots sur­
rounding y can be omitted. We now have 

V = ( ^ 1 r )x ( / l 2 r )3 ' ( ^3 r )x - 1 ( ^4 r ) 

as desired. 
(ii) Since A2 =^ 1, we can write 

A2 = aA2 and U = AixaAJyAsX^Ai. 

Note tha t \A2\ < \A2\. Let a be the automorphism defined by a: x—+xa~l, 
y —• y for y ^ x ± ] , and let U' = Va. There are two cases: (1) UT = 1 and 
(2) (IT 9* L 

Case I. Let V = V. Clearly, 

U' = Ua = AixA2'y(A* • a ) x - M 4 . 

By par t (i) A tT = 73* (1 ^ i ^ 4) , therefore letting Az' = Az • a, B2 = B2, 
and £ / = Bz it remains to show tha t A2T = B2 and (T 3 • a ) r = Bz. 
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Since (IT = 1, 

A2'T = (a-1 • aA2')T = ( a -V) • O M = 1 • £ 2 = 5 2 > and 
04 3 - a ) r = 04 3r) • {(IT) = B, • 1 = Bz. 

Case 2. Let V = Fa. I t is easy to see tha t 

U' = ^ ^ a ' y ^ a • a ) x - M 4 and V = Bxx{qrl • i ^ M ^ s • a)x~lBA. 

Again by par t (i), AtT = B t{\ S i ^ 4 ) ; therefore, lett ing A* = Az-a, 
B2 = a - 1 • Z$2, and i$3 ' = 23 3 • a, it remains to show t h a t A2T = a - 1 • ̂ 2 and 
04 3 • a)r = Bz • a. 

Since AT ^ 1, a r = a; therefore, 

A2'T = (a-1 • CIA2')T = ( a -V) • 04 2r) = a'1 • £ 2 , and 

04s • a ) r = 04 3r) • (CIT) = Bz • a. 

LEMMA 4. If V is a non-trivial quadratic word in Ff, then there are letters x and 
y such that V = BixB2yB^,x~lBAy~lBb {where any of the Bt

Js may be empty). 

Proof. Since F Ç F'', the exponent sum [5, p. 76] on each generator occurring 
in F is zero. Fur thermore V is quadra t ic ; hence for each let ter appearing in V, 
its inverse appears exactly once in F. Suppose t ha t x and x~l are letters in V 
with a minimal number of letters between them. (This number is positive 
since F is assumed to be reduced.) Let y be any letter between x and x~l. By 
the minimali ty assumption, y~l does not occur between x and x~l in F ; there­
fore, V = AixA2yAzX~lA\ with y~l occurring in either A\ or AA. Relabeling 
' V by " y and "y" by ux~v\ if necessary, we write V = BixB2yB?,x~lB±y~lBr,. 

LEMMA f>. If UTS = F ( ^ l ) where U is quadratic and V Ç F r , /feew //zere are 
quadratic words JJ\ and l\, automorphic to U and V respectively, such that 
UITS — Li, and for some letters x and y, U\ = [x, y]U2 and V\ = [x, y]V2. 

Proof. Denote TS by r. Clearly F is quadrat ic , thus by Lemma 4 there are 
letters x and y such tha t F = B1xB2yB'6x~lB^y~1B.). Since V = UT, it is clear 
t ha t T fixes x and y and tha t U = AixA2yA^x~lAAy~lA-, (i.e. t ha t x, y, x~l, and 
y~l occur in the same order in U as they do in F ) . By Lemma 3(i) , A tT = 
£ , ( 1 ^ i ^ 3) and (AAy-lA,)T = B,y~lBh. Again by Lemma 3(i) , 0 4 I X , 4 2 ) T = 
BixB2 and y4,r - £ 7 ( 3 ^j S ») . T h u s ,4 ,r = # , (1 S i S 5) . 

If yl2 T^ 1, then by Lemma 3(h) there exist quadra t ic words U' and V 
such t ha t U'T = F ' , 

U^U' = A&Ai'yAs'x-iÂAy-iAs, and F ^ F ' = B.xB^yB^x-'B.y-'B^ 
where |^42'| < \A2\. By successive applications of this reduction, we arrive a t 
words U" and F " such t h a t U"T = F " , 

U^U" = AxxyA^'x~lA,y-lA^ and V 2É V" = B1xyB,,,x-lB,y-lB5. 

We apply the same technique, using y and y~l in place of x and x _ 1 , to 
reduce ^43" to the empty word. T h u s there are quadra t ic words C/(3) and F ( 3 ) 
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such tha t U^r = F<8>, 

U^ U^ = Axxyxr^AJyriAi, and V^ V™ = B^yx-'B/y-'B,. 

Next we apply the inner automorphisms W —> y~lx~lA{~1 • W • Axxy and 
W—> y~lx~lBi~x • W - Bixy to U{z) and F ( 3 ) respectively. By repeating the 
procedure above, we reduce A\ to 1 and arrive a t quadrat ic words U{4) and 
F<4> such tha t U^T = V«\ 

U^ £/(4) = x-ly-l(Ah • AJ'xy, and F ^ F ( 4 ) = x~ly~l{Bb • i ^ ) ' ^ . 

Finally we apply the inner automorphism W —> xy • W • ;y_1x_1 to both £/(4) 

and F ( 4 ) , to obtain quadrat ic words U\ and Fi such tha t Uu = V1} 

U^Ur = [x, y] U2, and V ^ V1 = [x, y] F2 . 

4. Proof of T h e o r e m 2. We begin this section by quoting some results 
which will be used in the proof of Theorem 2. The necessary facts are listed 
as lemmas in order to facilitate their use later. 

LEMMA 6. Given any non-trivial quadratic word W, there is a unique word 
U € {S{n), C{n) : n ^ 1} such that W ~ U. Furthermore, for any given W, 
there is an effective procedure for finding U. 

Proof. In [1] Max Dehn observed tha t any non-trivial quadrat ic word is 
automorphic to either S{n) or C{n) for some n > 0. In order to prove unique­
ness, it suffices to show tha t no two words of the form S{n) or C{n) {m, n > 0) 
are automorphic. Since F' is a characteristic subgroup of F, no automorphism 
of F sends C{m) (£ F') to S{n) (g F'). By Lemma 1 of [3] (which is Theorem 2 
of [4]), S{n) ~ S{n') implies tha t n = n'. And by Lemma 2 of [3], if C{m) ^ 
C{mf), then m = m'. The effectiveness of the procedure for finding U is im­
mediate from the proof of Dehn 's observation [1]. 

LEMMA 7. If U is an endomorphic image of W, there exists a sequence of words 
W = Woj W\, . . . , Wm and a sequence of endomorphisms <pi, <P2, • • • , <pm

 such 
that: 

(i) Wi-Kpt =Wt(l£i£ m). 
(ii) Each <p* is either a trivialization or a special type of automorphism. {In 

the terminology of [2, p. o and p. 8], each <pi is either a trivialization, a level 
substitution, or a p{s, g, i) where s is a square or i = 1). 

(iii) There is an endomorphism y such that Wmy = U and no cancellation 
occurs in forming this endomorphic image {i.e. when the letters of Wm are re­
placed by their images under y, no reduction applies to the result). 

(iv) / / W is quadratic, each Wt is quadratic (1 ^ i ^ m). 

Proof. Pa r t s (i), (ii), and (iii) are the main import of Lemma B.2 of [2]. 
Pa r t (iv) follows from par ts (i) and (ii) by the fact t ha t trivializations, level 
substi tut ions, and p{s, g, i ) ' s preserve the property of being quadrat ic . 
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Proof of Theorem 2. Having quoted these results, we are ready to prove 
Theorem 2. Suppose tha t C(n) is an endomorphic image of S{2n) for some 
n > 0. By Lemma 7, there is a sequence of quadra t ic words WQ = S(2n), 
Wu • • • > Wm, a sequence of trivializations and automorphisms <pu ̂ 2, . . . , <pm, 
with Wi-ufi = W'u and an endomorphism y such tha t Wmy — C(n) and no 
cancellation occurs when y is applied to Wm. 

First we observe tha t Wm G F', as follows. Since Wm is quadra t ic and y 
allows no cancellation, if any letter of Wm is sent by 7 to a word of length 
greater than one, the word Wmy contains two separate occurrences of this 
word, or its inverse. By inspection, C(n) ( = Wmy) contains no such sub-
words; therefore 7 sends each letter of Wm to a letter of C(n). Since each letter 
of C(n) occurs with exponent sum zero, the same is true for Wm\ therefore 

wm e F'. 
Since IT0 (I F', Wm Ç F ' , and F' is a fully invariant subgroup of F, there is 

a number k (0 g k g m) such tha t Wt 0- Ff for i ^ k and Wj Ç F' for j > k. 
In particular, H7

A (J Ff and ^ + 1 ë F'; thus the endomorphism <^A+i is not an 
automorphism. By Lemma 7(h) , <pk+\ is a trivialization, call it r. 

By Lemma ;"> there are quadra t ic words t/i and Li, automorphic to Wk 

and I/FA+I respectively, such tha t U\T = W, U\ — [x, y] U2, and Vi = [x, y]V2. 
Clearly L\T = L2, and by repeated use of Lemma ô we arrive a t quadra t ic 
words [ / and L, automorphic to Wk and ^ -+1 respectively, such tha t TJr = L, 
[yr = C(q)U', and I r = C(q) (for some g > 0) . 

Now C(n) is an endomorphic image of C(q), since C{q) = V= Wk+\ and 
<pk+2<Pk.+z . . . < ŵ7 sends Wk+\ to C(n) . T h u s by Lemma 2 of [3], q ^ «. Since 
C(q)U' = [ / ^ ITA C/ F ' , [/T/ is a quadra t ic word not in F'. Therefore by 
Lemma (), V ~ S(p) for some p > 0. By repeated applications of Lemma 1, 
C(q) U' ^ S(p + 2c/). Thus Wk ^ 5(/? + 2q). However, Wk is an endomorphic 
image of Wu = S(2n); hence, by Lemma 1 of [3], p + 2q ^ 2w. Therefore 
we have 2n ^ 2q < p -\- 2q ^ 2w; a contradict ion. This completes the proof 
of Theorem 2. 

5. An a p p l i c a t i o n . In this section Theorems 1 and 2 are used to solve the 
endomorphism problem (see [2]) for any quadrat ic word W. The problem is: 
( liven a quadrat ic word W, to decide whether or not a given word U (not neces­
sarily quadrat ic) is an endomorphic image of W. 

If we suppose tha t U is an endomorphic image of IT, Lemma 7 implies the 
existence of a quadrat ic word W„n which is an endomorphic image of IT, and 
an endomorphism 7 such tha t no cancellation occurs in forming W,„y(= U). 
I t is clear tha t such a Wm and 7 exist if and only if U is an endomorphic image 
of W. S tar t ing with a given [/, it is easy to find all possible candidates for Wm: 
list all quadrat ic words of length no greater than U and determine which of 
these can be sent to U by a subst i tut ion admi t t ing no cancellation. The 
problem is therefore reduced to deciding whether or not a given non-trivial 
quadra t ic word V is an endomorphic image of W. 
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By Lemma 6, there are two cases: (1) W~ C(n) for some n > 0, or (2) 
W^S(n) for some n > 0. 

Case 1. If V = S(m) for some m > 0, there is no endomorphism sending W 
to V since this would yield an endomorphism sending C{n) to S(m). If F — 
C(w) for some m > 0, then, by Lemma 2 of [3], V is an endomorphic image of 
W if and only \i m ^ n. 

Case 2. If V = S{m) for some m > 0, Lemma 1 of [3] implies that F is an 
endomorphic image of W if and only il m ^ n. II V = C(m) for some m > 0, 
Theorems 1 and 2 say that V is an endomorphic image of W if and only if 
m S [(n — l ) /2] , where [x] denotes the greatest integer less than or equal to x. 
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