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Abstract

Let u(x, t) be a smooth function in the domain Q = Cl x (0, L], Ci in R", let Du be the
spatial gradient of u(x, t) and let VM = (Du, u,). If u(x, t) satisfies the parabolic equation
F(w, Du, D2u) = u,, we define w(x, t) by g(w) = |VM|~'G(VM) (g is positive and decreasing,
G is concave and homogeneous of degree one) and we prove that w(x, t) attains its maximum
value on the parabolic boundary of Q. If u(x, t) satisfies the equation AM 4- 2h(q2)UiUjUjj =
u,(q2 = \Du\2, 1 + 2q2h(q2) > 0) we prove that qf(u) takes its maximum value on the
parabolic boundary of Q provided / satisfies a suitable condition. If u(x, t) satisfies the parabolic
equation a''(Du)Ujj — b(x, t, u, Du) = u, (b is concave with respect to (x, t, u)) we define
C(x, y, t, x) = u(z, 0) - au(x, t) - $u(y, r) (0 < a, 0 < 0, a + 0 = I, z = ax + 0y,
6 = at + fix) and we prove that if C(x, y,t,z) < 0 when x, y, z e Q and one of / , x = 0 , and

when t,x € (0, L], and one of x, v, z, e dQ, then it is C(x, y, t, x) < 0 everywhere.

1991 Mathematics subject classification (Amer. Math. Soc): 35 B 50.

1. Introduction

For elliptic and parabolic equations various maximum principles have been
known for a long time [11]. In recent years some maximum principles have
been obtained for expressions involving the gradient of solutions. In [12] it is
proved that if u is a smooth solution of the elliptic equation F(u, Du, D2u) — 0
in a bounded domain Q. of W and v is a fixed direction, then the angle between v
and the gradient Du (assumed to be non-vanishing) takes its maximum value on
the boundary of £1. The previous result has been extended to parabolic equations
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(defined in Q x [0, L ] c l " x 1R) in [13] in case Du — {ux,..., un) (the spatial
gradient), and in [1] in case V" = (ui, • • • ,un, u,). Here «,(/ = 1 , . . . , n) is
the derivative of u with respect to x, and u, is the derivative with respect to t,
t e (0, L\.

In [10] the elliptic equation AM + 2h(q2)UjUjUjj — 0 is investigated. Here
A is the Laplace operator, the summation convention (from 1 to n) is in effect,
q2 = M,M, and h(q2) is a smooth function satisfying 1 + 2q2h(q2) > 0. In
[10] it is proved that if u is a smooth solution of this equation in a bounded
domain Q then the function qf(u) takes its maximum value on the boundary
of Q provided / satisfies a suitable condition. Similar results were previously
obtained in [7, 9, 8] especially for harmonic and p-harmonic functions. (If
h(q2) — (p — 2)/q2 then the previous equation reads as (qp~2Uj)j = 0 and its
solutions are the usual p-harmonic functions.)

In Section 3 of this paper we consider a solution u of the equation u, =
F(u, Du, D2u) and w e define a funct ion w(x, t) by pg(w) = G{u\, . . . , « „ , ut),
where p = | v u\, g is a smooth positive decreasing function and G is a smooth
concave function, positively homogeneous of degree one. We prove that w(x, t)
assumes its maximum value on dQ. If v is a fixed direction in IR"+1, G = v • v«
and g(w) — cos(uO then we obtain the result of [1]. This maximum principle
may be used to investigate the shape of the level sets of u(x, t).

Furthermore we extend the result of [10] to a parabolic equation. Namely, let
u satisfy AM + 2h(q2)UiUjUjj = ut, where the left hand side acts on the spatial
variables X\,... ,xn only and q = \Du\. We prove that if u(x, t) is a solution
of this equation in Q = £2 x (0, L] and / satisfies a suitable condition, then
qf{u) takes its maximum value on the parabolic boundary of Q. We also prove
a maximum principle for qf(v) where q and / are the same as before, whereas
v is a solution of an associated parabolic equation. As an application we find a
new estimate for the gradient of a solution to the classical heat equation.

In order to investigate the convexity of the solutions of certain parabolic
equations, the following concavity function is introduced in [5]:

(1.1) C(x,y,t) = u(z,t)-au(x,t)-pu(y,t), z = ax + Py,

where x, y, z e Q, t e (0, L], a and fi are positive real numbers satisfying
a + /S = 1. If Q is convex and C(x, y, t) < 0 for all x,y £ Q and t e (0, L]
then the function u(x, t) is convex with respect to x. In [6] it is proved that if
u(x, t) is a smooth solution of the parabolic equation

(1.2) aij(Du)uu - b(x, t, u, Du) = ut,
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where db/du > 0 and b is jointly concave with respect to (x, u) then, if
C(x, y, t) is anywhere positive, its maximum value is attained at some point
(x, y,t) satisfying: t = 0 or one of x, y, z e d£l (the boundary of £2). Con-
sequently, if C(x, y, t) < 0 when x, y,z G Q, and t = 0 and when t e (0, L],
and one of x, y, z e 3£2 then necessarily C(x, y, t) < 0 everywhere.

In Section 4 of the present paper we consider the equation (1.2) where b
is jointly concave with respect to (x, t, u), and, for a solution u(x, t) of this
equation we define the (more general) concavity function

C(x, y, t, r) = u(z, 6) - au(x, t) - pU(y, x),
(1.3) z=ax + Py,

9 =at + fir.

We prove that if C(x, y, t, r) < 0 when x, y, z G Q, and one of t, x = 0, and
when t,r e (0, L], and one of x, y, z, G dQ, then necessarily C(x, y, t, x) < 0
everywhere. We remark that no use of the condition db/du > 0 is made.

We close this introduction with some examples of problems described by
the equations involved in the present paper. Equation u, = F(u, Du, D2u) is
a general autonomous evolution equation, and u, = AM + ^(^2)M,M;M,7 is a
special case of it. When F(u, Du, D2u) = K AM (K a positive constant) we
obtain the classical heat equation for a homogeneous medium in the absence
of heat sources [3, p. 41]. If F(u, Du, D2u) — A(«m), m > 1, the corres-
ponding equation describes the flow through a porous media [4, p. 121]. If
F(u, Du, D2u) = AM + ug(u2), where g is a suitable smooth function, we find
a parabolic dissipative equation [2, p. 26]. Equation (1.2) includes also some
non-autonomous equations. This is the case of the heat equation in presence of
heat sources [3, p. 41]. The population genetic equation is a special case of (1.2)
[3, p. 43]. More examples may be found in [3] and [2].

2. Notation and preliminary results

Throughout this paper we denote by Q a bounded domain of W, by 3 £2
its boundary, by Q the domain Q — £2 x (0, L] and by (x, t) a point in Q.
Subscripts denote partial derivatives; for example, M, is the derivative of u with
respect to JC,. We use the convention that the sum from 1 to n is understood over
the repeated indices /, j and k. For the indices r and s we use a slightly different
convention: ur means the derivative of u with respect to xr if r — ! , . . . , « ,

https://doi.org/10.1017/S1446788700034728 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034728


44 Giovanni Porru and Salvatore Serra [4]

and u, if r = n + 1. The same convention is used for the index s. The sum
over repeated indices r and 5 is extended from 1 to n + 1. As usual we denote
Du = (MI, . . . , Mn), v« = («i «»> ut).

Now we state three lemmas for later use.

LEMMA 2.1. If [a'j] is an n x n symmetric positive definite matrix and [brs]
is an (n + 1) x (n + 1) negative semidefinite matrix then, for any (n + 1) x n
matrix [§"] we have

$riaiJ$''br < 0.

PROOF. The result is well-known. It can be proved easily be diagonalizing
the matrix [a'j].

LEMMA 2.2. Let [a'j] beann x n symmetric positive definite matrix, and let
u be a C2(Q) function. If q2 = M,M,, then

(2.1) a'Jukiukj >a'Jqiqj.

Furthermore, if p2 — urur then

(2.2) aijuriurj>aij
Pipj.

PROOF. Let us recall that the sum with respect to i, j and k is from 1 to
n, whereas, the sum with respect to r is from 1 to n + 1 (consequently, p2 =
q2 + u,u,). This lemma is also well-known. For completeness let us prove (2.2)
(the proof of (2.1) being similar). Let A denote the matrix [a'J], let H be the
(n + 1) x n Hessian matrix [uri] and let HT be the transposed matrix of H.
Since A is symmetric and positive definite, the matrix HAHT is symmetric and
positive semidefinite, and its trace is the left hand side of (2.2). The right hand
side of (2.2) can be written as a''uriusj{ur/p){us/p)\ but this is the quadratic
form associated to HAHT and computed at the unit vector v«/P- Hence (2.2)
is true.

LEMMA 2.3. Let [a'j] be an n x n positive semidefinite matrix. Then the
2n x 2n matrix

[a'J] [a'J]

is positive semidefinite.

(2.3) B =
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PROOF. For a given vector £ e K2" let £ be the vector of W defined by the
first n coordinates of t,, and let r\ be the vector defined by the last n coordinates
of £. Then, the quadratic form (fi£, £) can be written as

The lemma follows.

3. Maximum principles involving the gradient

THEOREM 3.1. Let u(x,t) be a smooth solution of the parabolic equation

(3.1) F{u, Du, D2u) = ut

in Q, where F is a smooth function, Du is the vector of the spatial derivatives
[Uj] and D2u — [M,7]. Ifa'j denote the partial derivatives of F with respect to
U:J we assume that a1' — a'1 and that for every £ e W and some v > 0 the
condition.
(3.2) al'HiHj > V&&.

holds. Ifg(r) is a smooth positive decreasing function and p2 = urur we define
w(x, t) by
(3.3) g(w)p = G(uu...,un,ut),

where G{r)\,... ,r)n+\) is a smooth concave function satisfying

(3.4) nrBG/Btir = G.

IfG{u\,... ,un, u,) and p are positive corresponding to the solution u(x, t) then
the function w(x, t) defined by (3.3), takes its maximum value on the parabolic
boundary of Q, that is on £2 x [0] U 3f2 x [0, L\.

PROOF. Recall that we sum from 1 to n with respect to the repeated indices
/, j , k and from 1 to n + 1 with respect to r, s. By (3.3) we derive

(3.5) gpwj + gpi - 8G/dr]ruri,

(3.6) gpw, + gp, - 8G/dr)rurl,

where g is the derivative of g. By (3.5) we obtain

(3.7) gpwtj + (gp)jWi + gPiWj + gpu = brsuriusj + dG/dr)rurij,
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where [brs] is the (n +1) x (n +1) Hessian matrix of G. Since G is concave, the
matrix [brs] is negative semidefinite. By (3.2) the n x n matrix [au] is positive
definite; hence by Lemma 2.1 we have a''brsuriuSj < 0 and (3.7) implies

(3.8) gpaiJWij + blwt + gaij
Pij < dG/dr,ra

iJurij,

where V = aij ((gp)j + gp}).
Since p2 = urur we have

(3.9) ppi - ururi, pp, - urun,

(3.10) PPij = UriUrj - PiPj + UrUrij.

By (2.2) aijuriurj - aijptpj > 0. Hence (3.10) implies

(3.11) pa'JPu > ura'Jurij.

This inequality and (3.8) imply

(3.12) gpaiJwu + Vwt < {dG/dr)r - urg/p)aiJurij.

B y e q u a t i o n ( 3 . 1 ) w e d e r i v e , for r = 1 , . . . , « + 1,

aliUiJr = ulr — Fuur — uirdF/dUi.

By inserting the last equation into (3.12) we obtain

. .. . dF dG ^^ dF dG
-gpa'JWjj - b'wj > gp, - gpFu - gpt- u,r- 1- GFU + uir — -—

3M, dr)r 3M, or]r

where (3.9) and (3.4) have been used. Finally, (3.3), (3.5), (3.6) and the last
inequality lead to

(3.13) aiJWij +d'wi > w,,

where d' = b'/(gp) + dF/du,. Now the theorem follows by the well-known
maximum principle for parabolic inequalities [11, p. 173].

REMARK 3.1. If Fu = 0 in equation (3.1), then condition (3.4) can be omitted
in Theorem 3.1.
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THEOREM 3.2. Let u(x, t) be a smooth solution of the equation

(3.14) AM + 2h(q2)UiUjUij = ut

in Q — Q x (0, L], where A is the Laplace operator, q2 = UjUj and h(z) is a
smooth function satisfying 1 + 2q2h(q2) > 0. We define T(q2) = 1 + 2q2h(q2)
and assume there is a finite y such that

(3.15) l+q2t/T<y,

where T is the derivative ofT with respect to q2. If f{x) is a smooth positive
function satisfying
(3.16) ( / /-2O • > 0,

then the function
(3.17) *(*,*) = qf(u)

takes its maximum value on SI x [0] U 3£2 x [0, L\.

PROOF. By (3.17) we derive:

(3.18) <D, = <?,/ + qfut, <t, = q,f + qfut,

(3.19) <1>,7 = quf + qjuj + qjfuj + qfutUj + qfuu.

We set a!' = 8'' + 2h{q2)utUj, where 8'j is the Kronecker delta. The matrix
[a'j] is symmetric and its eigenvalues are 1 and 1 + 2q2h(q2). Hence it is
positive definite by virtue of the assumption 1 + 2q2h(q2) > 0. With this
notation, equation (3.14) reads a'jUjj = u,, and (3.19) implies

(3.20) a'JQij = faij
qu + 2faiiqiuj + qfaij

UiUj + qfut.

By the definition of q we derive

(3.21) qqt - ukuki, qq, - ukukt

and

tj = ukiukj, qtqj + ukukij.

The last equation and inequality (2.1) of Lemma 2.2 imply

(3.22) qaijqu >uka
ijukij.
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By the equation a'jutj — u, we derive

uka'Juijk = ukutk - uka'k
JUij = uku,k - 2uk(2h'qqkUjUj + huikUj + hUiUjk)Ujj.

The latter and equations (3.21) give

(3.23) uka
ijuiJk = qq, - 2q2(2h(qkuk)

2 + 2hqjqj).

By using (3.23), (3.22) and the last of equations (3.18), (3.20) gives

(3.24) ay<ty > <J>, - 2fq (2h(qiUi)
2+ 2hqiqi) + 2faiJqiUj + qfaiJuiUj.

By (3.18) it follows that

(3.25) <?,«, = / - ' * , « , - < ? 3 / ~ 7 ,

q,qi = rl<S>iqi - qf~l fqiUi

(3.26) = /-1<D,<?, - qf-2f<t>iUi + q4f-2/2,

aijqiUj = aij (/"'cD, - /- ' /<?«,) Uj

(3.27) = f-Wfyuj - f j

Insertion of (3.25), (3.26) and (3.27) into (3.24) leads to

a'Jfyj+b'Q, > <!>,-2f-lf2q5 (2hq2+ 2h)-2f-'f2qaiiuiuj+qifaiiuiuh

(3.28)
where b' are expressions depending on / , h, a'J, «,, qt and <t>, (but not on <t>r).

Since 2hq2 + 2h - t and aijUiUj =q2T, (3.28) can be rewritten as

(3.29) ay<Dy + y<bi > * , + q3T (f - 2 / " 1 / 2 (1 + q2t/T)) .

Since, by assumption, 1 + q2t/T < y, inequality (3.29) implies

JXbij + tffy - *, > q3T ( / - 2X/-1/2) = q3Tfy (f f~2Y) ' > 0,

where assumption (3.16) has been used in the last step. The theorem follows by
the maximum principle for parabolic equations.

THEOREM 3.3. Under the same notation and assumptions of Theorem 3.2, if
h < 0 and y = 1, then the function

(3.30) <D(JC, 0 = ?/(t>)

attains its maximum value on fi x [0] U 3fi x [0, L]. //ere g and f are the same
as in Theorem 3.2, whereas v is any solution of the equation.

(3.31) Av + 2h{q2)uiujvij = v,.
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PROOF. Arguing as in the proof of Theorem 3.2 we obtain

(3.32) au4>u ><!>,- 2fq [2h(qiUi)
2 + 2hqiqi] + 2faiiqivj + qfaijViVj.

Our assumption y = 1 implies 2hq2 + 2h = t < 0. This inequality, together
with the Schwarz inequality (<7,M,)2 < qtqiUkuk and the assumption h < 0,
makes the quantity between square brackets in (3.32) non-positive, hence it can
be deleted.

On the other side, by (3.30) we derive

hence (3.32) implies

aij<S>u + fe'<t>, - O, > qaiJViVj ( / - 2 / " 1 / 2 ) = qaij
ViVjf2 (f f~2) ' > 0,

where b' = —2f~lfa'jVj and condition (3.15) (with y = 1) has been used in
the last step. The theorem follows.

COROLLARY 3.1. Let u satisfy u, = Au in Q = SI x [0, L] with q(x, t) — 0
on dSl x [0, L], and let v be a positive solution ofv, = Av in Q with v(x, t) = 1
on Q x [0]. Then we have

q(x,t) <q(x,0)v(x,t)

for all (x,t) € Q and some x 6 £2.

PROOF. The function f{v) = v~x satisfies (3.16) with y = 1, hence, by
Theorem 3.3, the expression qv~l attains its maximum value on Q x [0] U dQ x
[0, L\. But q = 0 on d£l x [0, L] and v = 1 on £2 x [0] by assumption. The
corollary follows.

4. A maximum principle for the concavity function

If a and ft are positive real numbers satisfying a + /? = 1, if A is a real
number, and if u(x, t) is a function defined in Q, let us define

«I>(JC, y, r, T) = ek9[u(z, d) - au(x, t) - fiu(y, x)],

(4.1) z = ax + 0y,

for all x , y such that x,y,z & £1 and for all t, x e (0, L ] .
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THEOREM 4.1. Let u(x,t) be a smooth function defined in Q and satisfying
equation (1.2). Suppose that the n x n matrix [a'J(Du)] of (1.2) is positive
semidefinite for any vector Du, that the function b(x, t, u, Du) is jointly concave
with respect to (x, t, u), and that the derivative db/du is bounded from below.
Then the function <\> defined in (4.1) with A satisfying

(4.2) db/du - X > 0

has no positive maximum for x, y, z e Q and t, x 6 (0, L].

PROOF. Assume to the contrary that (x, y, t, x) is a positive maximum for $
with x, y,z e Q and t,x e (0, L]. At this point we have

(4.3) 4>x, = aexe [uZi(z, 9) - uXi{x, t)] = 0,

(4.4) <Dy, = fie™ [«z,(z, 9) - uyi(y, r ) ] = 0.

Equations (4.3) - (4.4) imply that the spatial gradient Du is the same at the three
points (z, 9), (x, t), (y, x). We also have

+ exe [au0(z, 9) - au,(x, t)] > 0,

<Dr = A/Jd> + ew VPue{z, 9) - f}uT(y, x)] > 0,

from which it follows that

(4.5) k<t> + eke [ue(z, 9) - au,(x, t) - /3ur(y, *)] > 0.

At the maximum point (x,y,t,x),the Hessian matrix

H =
[*»»]

is negative semidefinite. By Lemma 2.3, the matrix B denned in (2.3) by using
the matrix [a1' {Du)] of the equation (1.2) (computed at any of the points (z, 9),
(x, t), (y, T)) is positive semidefinite. Consequently, the matrix BH is negative
semidefinite and its trace is non positive. Hence

(4.6) 0 j j j

By (4.1) we derive

<bXlXl = eke [a2u2i2j(z, 9) - auXiXj(x, t)],
<$>Xiyj = <S>yiXj=exea(}U:,Zj(z,9),

*,,-» = e" [02u^(z, 9) - 0uyiyi(y, x)].
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Insertion of the last equations into (4.6) leads to

0 > exe [{a + p?aijuZiZj(z, 9) - aaiJuXlX](x, t) - paijuyiyi(y, x)].

The latter inequality and the equation (1.2) give

(4.7) 0 > exe[b(z, 9, u) + ue(z, 9) - ab(x, t, u) - au,(x, t)

-pb(y,T,u)-PuT(y,T)],

where Du(z, 9) = Du(x, t) — Du(y, r) are suppressed in the expression of b.
Using the concavity of b and inequality (4.5), (4.7) implies

(4.8) 0 > ew[b(z, 9, u(z, 9)) - b(z, 9, au(x, t) + Pu(y, T))] - A<D

= (db/du -

Since, by assumption, db/du—X > 0 and the value of $ at the point of maximum
(x, y, t, r) is positive, (4.8) is a contradiction. The theorem is proved.

COROLLARY 4.1. With the notation and assumptions of Theorem 4.1, if the
concavity function C(x, y, t, x) defined in (1.3) is non-positive when x, y, z, e
£1, and one oft, x = 0, and when t, x e (0, L], and one of x, y, z e dQ, then
C(x, y, t, x) < Ofor all x, y in Q and t, x in (0, L].

PROOF. Since the inequality C(x, y, t, x) < 0 implies 3>(x, y, t, x) < 0 and
vice versa, the corollary follows by Theorem 4.1.
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