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Abstract

The finite generation and presentation of Schutzenberger products of semigroups are investigated. A
general necessary and sufficient condition is established for finite generation. The Schutzenberger
product of two groups is finitely presented as an inverse semigroup if and only if the groups are finitely
presented, but is not finitely presented as a semigroup unless both groups are finite.

2000 Mathematics subject classification: primary 20M05; secondary 20M18.

1. Introduction

This paper concerns Schutzenberger products of semigroups and groups, a con-
struction introduced by M.P. Schutzenberger [11] in connection with his analysis of
monoids without non-trivial subgroups. Subsequently it found other natural applica-
tions both in semigroup theory and in language theory; see, for example, [1,3,5,6].
In this paper we consider Schutzenberger products in the context of finite generation
and finite presentability. This strand of research originates in [5], where the authors
determine generators and relations that define 507", in the case where 5 and T are
monoids. However, unless 5 and T are both finite, the set of generators and the
set of defining relations for 507" are infinite. There is further work on this topic
in [1], in which a more general construction (the Schutzenberger product of n groups)
is considered and two infinite presentations are exhibited, each of which reflect the
structure.
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Let S and T be semigroups and let £?f(S x 7") denote the set of all finite subsets of
the direct product 5 x 7 . Define two actions on £?f{S x T): S acts from the left via
sQ = {(sp,q) : (p,q)e Q) and T acts from the right via Qt = {{p,qt) : (p,q)eQ).

The Schiitzenberger product SOT is the set Sx^f(SxT)xT with multiplication

(1.1) O i , 0 i , r > ) ( s 2 , Qi,h) = (5,52, s,Q2 \JQxh,txt2).

We immediately observe some basic properties of this construction.

(51) SO T is a monoid if and only if S and T are monoids, in which case the identity
of 507" is (15, 0, l r ) .
(52) SO T is finite if and only if Sand Tare finite.

(53) SOT" is countable if and only if S and T are countable.

(54) S x {0} x T is a subsemigroup of 507" isomorphic to the direct product S x T.
Its complement (SO7") \ (S x {0} x T) is an ideal of SOT.

(55) S and T are homomorphic images of SOT.

(56) IfGandW are groups then GOH is an inverse semigroup with set of idempotents

The following are our main results.

THEOREM A. Let S and T be semigroups, at least one of which is infinite. The
Schiitzenberger product SOT is finitely generated if and only if the following conditions
are satisfied:

(i) S and T are finitely generated;
(ii) S has a unique maximal &-class R and there exists a finite A Q S such that

S = RA;
(iii) T has a unique maximal J£-class L and there exists a finite B c 7 such that

T = BL.

THEOREM B. The Schiitzenberger product GOH of two groups is finitely presented
as an inverse monoid if and only if G and H are finitely presented.

THEOREM C. The Schiitzenberger product GOH of two groups is finitely presented
as a monoid if and only if both G and H are finite.

For standard notions of semigroup theory, and especially for Green's relations SP.
and «i? and natural partial orders defined on them, the reader should consult any
standard monograph such as [4]. For the definition and basic properties of inverse
semigroups see [7]. The notions relating to presentations will be reviewed in Section 2.
The above results will be proved in Sections 3, 5 and 6, respectively, while Section 4
contains some necessary technical material. Where S and T are not groups, the
question of finite presentability of SOT remains unsolved.
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2. Preliminaries

Denote by X* the free monoid on an alphabet X. A pair of words (M, V) e X* x X"
is called a relation and will be written as w = v. For a subset R c X* x X* we let /?:

denote the smallest congruence on X* that contains R. We say that (X\R) presents S
as a monoid if S = X*/R~. We write this as S = Mon(X|/?). We say that 5 is finitely
presented as a monoid if there are finite X and R such that 5 = Mon(X|fl).

For an alphabet X we define a new alphabet X'1 = {x~] : x € X} and denote
X±] = X U X'1. For a word u> e (A"*1)*, which we write as w = jcf1.. .**• (with
each Xj e X, 8,• e {1, -1}), we define u;"1 = JC ~J" . . . x^S]. Then the standard inverse
monoid relations on X comprise the set

?i\x = {ww~]w — w, ww~'zz~l — zz~lww~l : w, z € (A"*1)*}.

If S = Mon(X±11R, Wx) then S is an inverse monoid, and we use the abbreviation

Inv(X|/?> =Mon(X±l\R,Wx)

and say that Inv(X|^?) is an inverse monoid presentation of 5, or that ln\(X\R)
presents S. We say that 5 is finitely presented as an inverse monoid if there are
finite X and R such that Inv(X|/?> presents 5.

If an inverse monoid S is finitely presented as a monoid then it is finitely presented
as an inverse monoid. Indeed, if S is inverse and 5 = Mon{X\R) then, by adding
the standard inverse monoid relations (see (T2) below), S = Im{X\R). The converse
does not hold in general: in [10] it is shown that the free inverse monoid is not finitely
presented as a monoid (this result also appeared as Theorem IX.4.7 of [7]).

Let us consider a presentation Mon(X|/?> and two words w\, w2 6 X*. We write
u>i = w2 if they are identical words. We say that Wi — w2 holds by one application
of a relation in R if we may write wt = puxq and xo2 = pu2q where p, q € X* and
(MI = M2) s R or (u2 — Mi) € R. We say that wt = w2 may be deduced from the
relations in R if there is a finite sequence of words V\, ..., vn 6 X* such that V\ = W\,
vn = w2 and for each / = 1,. . . ,«— 1 we have that u,- = vi+i holds by one application
of a relation from R. Then elements s,t € Mon(X|/?) represented as words over X
are equal if and only if this equality can be deduced from the relations R.

The following are called Tietze transformations, which may be applied to any
monoid presentation Mon(X|/?>.

(Tl) Add a symbol z to the list of generators and add z = w, for some w e X*, to
the list of relations.

(T2) If tui = w2, for some io,, w2 e X*, may be deduced from the relations R, then
add this to the list of relations.
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(T3) If there is a symbol x e X and a relation x = w (for some w G (X \ {x})*)
in the list of relations R, then replace X by X \ [x], remove the relation x — w and
replace x by w everywhere else that it occurs in the relations R.
(T4) If a relation W\ = w2, which appears in the list of relations R, can be deduced
from the other relations, then remove this relation.

Tietze transformations produce equivalent presentations; that is, presentations
which define the same semigroup. Moreover, two finite presentations define the
same semigroup if and only if there is a finite sequence of Tietze transformations
which transforms one into the other.

There are analogous notions of semigroup and inverse semigroup presentations.
The basic definitions are given by replacing the free monoid X* by the free semi-
group X+ (which is X* without the empty word) in the above descriptions. Further
information on presentations may be found in [9].

3. Finite generation

In our examination of the finite generation of the Schutzenberger product we will
use connections with the direct product (properties (S4) and (S5)). We say that an
element x of a semigroup S is indecomposable if there do not exist y, z € S such
that x = yz- Then, by [8], the direct product 5 x T is finitely generated if and
only if S and T are finitely generated and if one is infinite then the other contains no
indecomposable elements.

By (S2) above, finite generation of 50T is trivial when 5 and T are finite. Theo-
rem A deals with the non-trivial situation where at least one of the factors is infinite.

PROOF OF THEOREM A. (=>) Assume that X finitely generates 507". By prop-
erty (S5) it follows that 5 and T are finitely generated, so condition (i) holds.

Let k = 1 + max{|(2l : (v. Q. v) <= X). Then, for arbitrary 5 e 5, t e T and
P € £?f(S x 7") with \P\ — k. there are generators (*,-. Qh v,) € X such that

( 5 , P , r ) = (xx. Q u y i ) - - . ( x n , Q n , y n ) .

We first note that n > 1. It is clear that s = X\... xn and t = Vi • • • yn, so neither S
nor T contain any indecomposable elements.

As 5 is finitely generated, it has only finitely many maximal iF-classes, and every
other ^"-class is below one of these. We let /?,, /?/ be the maximal i^-classes
and we select representatives r, e /?,• for / = 1 , . . . . / . Now we consider an arbitrary
element s e S. There are u, v e S such that s = uv and there is / 6 { 1 , . . . , / } such
that Ru < /?,-. Hence there is w e 5 ' such that u — r,ui, so wv e S and s = r,wu.
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We conclude that for each s e S there are a(s) e { 1 , . . . , / } and n(s) e 5 such that

We define the finite set A = C U D where

C = {s € 5 : (5, t) 6 Q for some (x, Q,y)e X and t e T}\

D = [n(s) :seC).

We claim that

(3.1) S=((J/?,)/L

To prove this assertion, we begin by letting 5 € 5 be arbitrary. Further, we pick
t, t\ e T and let P e {?f(S x T) be a &-set containing (s, t). We now consider the
triple (r,, P,t\) and write it as

(3.2) (/-,, P, h) = (*,, Quyi)... (xn, QH, yn),

a product of generators from X. Again we note that n > 1. Then r, = x\ .. ,xn, so
x\ ... Xj• e R\ for every j — 1 , . . . , « . Equating the middle co-ordinates of (3.2) gives
that

n

P = \^Jxi...Xj.iQjyj+i...ytt.

Therefore there is /i e {1 , . . . , «} and (a, &) e Qh (so a 6 C) such that

(j , 0 = (JCI . . . x/,_,a, fcy/,+1 . . . yn).

If h = \ then J = a = ra(a)fj.(a) e /?ff(j)A. If ft > 1 then, clearly, 5 e /?iA. This
proves (3.1).

We now see that either 5 is infinite, in which case, by (3.1), at least one of R\,..., Ri
is infinite, or else 5 is finite and T is infinite. In any case, without loss of generality,
we may assume that Rt x T is infinite. Let P = {(5,, r , ) , . . . , (sk, tk)} c /?, x T be
arbitrary of size & and let t e T be arbitrary. Let us suppose that / > 2. We consider
(r2, P, t) and write it as another product of generators from X:

( r 2 , P , t ) = { x x , Q x , y x ) . . . ( x n , Q n , y n ) .

Yet again, note that n > 1. Further, 2 ; 7̂  0 for some j > 2. For (a, fc) € Q,
it follows that C*i . . . Xj-ta, byJ+i.. .yn) e P, so there is some m e { 1 , . . . , k)
with sm = xi ...Xj-Xa. Also, r2 = X\ ...xn, so X\ € R2- It now follows that
R\ = ^J,,, < .̂v, = R2, a contradiction. Hence / = 1. Therefore 5 has a unique
maximal ,^-class. Returning now to (3.1), we see that condition (ii) holds. By a
symmetric argument, it can be shown that condition (iii) holds as well.
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(-$=) Assume that conditions (i), (ii) and (iii) hold. Neither S nor T contain any
indecomposable elements (by (ii) and (iii)) and both S and T are finitely generated
(by (i)). Hence 5 x T is finitely generated and we let Y be a finite generating set for
5 x {0} x T (= S x 7"). We fix arbitrary r e R, I e L and let

X = Y U {(r, {(a,*)}, /) : a e A, A e fl}.

We will complete this part of the proof by showing that 507" = (X).
By induction on | P | we will show that (s, P, t) <= (X) for all P e &>f(S x T) and

all 5 € 5, t € 7 . The base case | P | = Ois obvious as X includes a generating set for
5 x {0} x T.

Next we consider the case | P | = 1, by letting s, 5, € 5 and t,tt e T be arbitrary
and examining the triple (s, {(s,, ti)),t). As S = RA there are r\ e R, a e A such
that si = r\a. As R is the unique maximal i^-class of 5, there is u 6 S such that
s = r\u, using the fact that s is not indecomposable in the case s = r\. Similarly, there
is u\ 6 5 such that u = ru\. Therefore S\ = r^a and s = r]ru]. A dual argument
shows that there exist b e B, l\ e L and i>, € T such that t\ = bl\ and t — u,//,.
Hence (5. {(s,, r,)}, r) = (r,, 0, u,)(r, {(fl, fc)},/)(«,, 0,/,) e (X).

For the inductive step we assume that (X) 2 {(•*, P,t) : | P | < A-, 5 e S, r e T) for
some positive integer A:. We let 5, 5, 6 5. f, r, 6 7" be arbitrary for / — 1, . . . , k + 1 and
consider the triple (s, {(5,, r,), (sk+], r*+i)}, /")• There exist rt e R andxl 5 x2 e S
such that sk+[ — r,x, and 5 = r,jc2. Also, there are U e L and vi, . . . . .yt.+ i 6 T such
that f — yk+]l] and f, = v,7i for / = 1. . . . , A:. Then

and the claim follows by induction. •

From this point we will mainly consider Schiitzenberger products of groups, so we
make the following observation.

COROLLARY 3.1. Let G and H be groups. The Schiitzenberger product G§H
is finitely generated if and only if G and H are finitely generated. Moreover,
rank(COW) = rank(G x H) + 1.

PROOF. The first statement of the result follows directly from Theorem A. From
the proof of that result, we observe that

so rank(G0//) < rank(G x H) + 1.
From the property (S4) it follows that rank(G0#) > rank(G x / / ) , completing

the proof. •
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4. Schiitzenberger products of two groups: an infinite presentation

In this section we lay foundations for proofs of Theorems B and C by obtain-
ing an infinite, but 'nicely behaved', presentation ((4.2) in Theorem 4.2) for the
Schiitzenberger product of two groups. A very similar presentation (which we label
here as (4.3)) appears in [1 ], where it is derived from a presentation for a more general
structure.

We show another way to derive it, beginning with the following theorem from [5]
and using Tietze transformations.

THEOREM 4.1. lfS = Mon(X|/?5) and T = Mon{Y\RT) then

(4.1)
507" = Mon (X, Y, zs,t (seS.teT) \RS, RT,xy = yx, z2

SJ = zs.,, z,,zu,v = z«,vzs,,,

xzs.t = ZxsjX, zs.,y — yzs,,y (x e X , y e Y , s , u e S , t , v e T)).

We now transform presentation (4.1) in the case where the monoids considered are
groups G and H.

THEOREM 4.2. Let G and H be groups and let G x H = Mon(/i|/?>. Let z be
a new letter not in A. For each (g, h) € G x H we let wsj, 6 A* be a fixed word
representing (g, h) and let zg,h = wgh-izws-\h. Then

(4.2) (A, Z I R, z2 = z, zgiMZg2M = ZgiMZgx.h (gi> #2 eG,huh2€ //))

presents G()H as a monoid.

PROOF. Let (X\RC) and (Y\RH) present G and H, respectively, as monoids. By
Theorem 4.1, a presentation for G§H is given by (4.1) with G and H in place of S
and T respectively.

For every g s C w e let wg e X* be a fixed word representing g. For every h e H
we let wh e Y* be a fixed word representing h. By repeated application of the relations
xzg.h = zXgj,x we can deduce all relations of the form Wgtzg.h = zgiH.hWgl, so we use
the Tietze transformation (T2) to add these to the presentation (4.1). Likewise, from
zghy — yzg.hy we can deduce all relations of the form zg,hU)hl = wh]zg.hh,, so we use
(T2) to add these to (4.1) as well.

Now, from wglzg.i, = zglg,hWgl, zg,hwhl = whlzg,i,ht, RG and RH we can deduce all
relations of the form wgwh-\Z\G,\Hwhwg-\ = zg,h, so we use (T2) to add these to our
presentation.

We now use (T3) to remove all zg.h, except for Zic.iH, from the generating set, and
delete all relations zg,h — wgwh-iZ\c.\Hwhwg-i from the set of defining relations and
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replace zg,h by the above word in the remaining relations. For the sake of brevity
we will rename z\a.\H as z. We will also continue to use the symbols ZKM with the
understanding that they represent the corresponding words wswh-\zwhwg-i.

From the relations Re, RH and z2 - z we can deduce all relations of the form
zl.h ~ zH.h s o w e u s e (T4) to remove these from our presentation, except for z2 = z.

Similarly, from RG, RH and xv = yx we can deduce all relations of the forms
wglZf..i, = z^g.hWg, and zg.i,wht = wh]zsJ,h] so we use (T4) to delete these from our
presentation. Thus we have transformed the original presentation (4.1) for GO// into

(4.3) (X, Y, z\RG, RH. xy = yx, z2 = z, <:«,./,, ̂ ,./,: = z^z^.i,,

(x € X, ye Y,gi,g2 eG,hi,h2 e / /)) .

Since both {X, Y\RG. RH, xy = yx (x e X. y e Y)) and {A\R) define G x H,
there is a sequence of Tietze transformations which converts the former into the latter.
Applying the same sequence to (4.3) yields the presentation (4.2), as desired. •

5. Finite presentability of G()H as an inverse monoid

We now use Theorem 4.2 to consider presentations for GO// as an inverse monoid.

THEOREM 5.1. IfG x H = Mon(A\R) then GOH = Inv{A. z\R. r = z).

PROOF. This follows immediately from (4.2) because relations of the form

say that certain idempotents commute, which occurs in any inverse monoid. Thus
these relations are consequences of J>iAU(-| and may be deleted. •

We note, from the above presentation, that G§H is the inverse monoid free product
of G x H and the two-element semilattice. More importantly, Theorem B now readily
follows.

PROOF OF THEOREM B. (=>•) Assume that GOH is finitely presented as an inverse
monoid. Again we use property (S4). Corollary 5.4 of [2] states that a subsemigroup
with an ideal complement inherits finite presentability (this also appears in [9]), so it
follows that G x H is finitely presented. In turn this implies that G and H are each
finitely presented.

(<=) If G and H are finitely presented, then G x H is finitely presented and
Theorem 5.1 gives a finite presentation for GO// as an inverse monoid. •
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6. (Non)finite presentability of GOH as a monoid

We return to the question of the finite presentability of GOH as a monoid. Again
we use Theorem 4.2.

PROOF OF THEOREM C. Assume that G and H are not both finite but that GOH is
finitely presented. Therefore, by the same argument as the proof of Theorem B, but
applied to monoid presentations, G x H is finitely presented as a monoid by (A\R),
say. Remembering the definition of zg,i, in Theorem 4.2, we rearrange those relations
using g = gj~'g: and h — h\h^ to see that

(6.1) [A, Z \R, Z2 = z, wgj,zwg-\j,-\zwgj, — zwgJ,z ((g, h) e G x H))

presents GOH as a monoid. As GOH is finitely presented, the generators of (6.1)
and a finite subset of those relations will suffice to define it. Therefore, for some finite
W c G x H, we have

(6.2) GOH = Mon(y4,z \R, Z2 = Z, wgMzwg-\M^zwgM = zwg.hz ((g,h) e W)) .

We will complete the proof by showing that this is not possible.
Consider a word of the form zwg,hz for some fixed g e G,h e H such that

(g, h) $ W U W'1 U {(1G, \H)}. We claim that any word obtained from zwgJ,z by
applying the relations from (6.2) is of the form

(6.3) a^^z... arzPzar+i ... zar+i-\zotr+,

for some a, € A* (i = 1 , . . . , r + l), all of which represent ( l c , 1«), and some /J e A*
which represents (g, h). Intuitively, a word of the form (6.3) has 'centre' zfiz, which
is surrounded by 'redundant' factors which do not change the element of GOH that
the word represents. Clearly the word zwg,hz is of this form. We proceed to show
that applying any relation from presentation (6.2) to a word of the form (6.3) yields
another word of the same form.

A relation from R contains no occurrences of z. Hence any application of such
a relation is wholly within y, where y = a, or y = P, and it does not change the
element of G x H that y represents.

The result of applying the relation z2 — z to a word of the form (6.3) is that,
depending on whether the right hand side is substituted for the left or vice versa,
the number of occurrences of z is decreased or increased by one and an empty a, is
removed or inserted.

We now consider the effect of applying the relation
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for some particular (gu h{) e W, to a word of the form (6.3). We first consider the
case where this relation is applied by replacing the left hand side by the right. Consider
the particular occurrence of wgt ,Al zwg-> ,,-i zu^,./,, as a subword, which is to be replaced
by zwg,^^. If this occurrence is in a,_iza,za,+1, then a,_, = cwgl.hl, a, = wg-i ,,-»,
a,+i = Wguhld for some c, d e A*. But a, represents ( l c , lw), so all of the words
ujju,./,,. 10^,-1/ri, c and <i in fact represent ( l c , 1//). Applying the relation as stated
transforms the subword CW^J^ZVJ^ h-^zWgiAud into czw^.^zd and leaves the rest of
the word unchanged. In particular, the newly obtained word also has the form (6.3).
If •w^j,lzwf,-ij,-izwgi,hl appears as a subword mar_\zotrzf5 or fizar+izar+2, then Wguh>

again represents (1 G , lw) and, by an argument similar to that above, we deduce that
applying the relation as stated produces a new word which also has the form (6.3). If
Wgx_hizWg-\_h-\zWgtjH is a subword in arz/3zar+], then p = tu -i h-i. This leads to the

contradiction (g, h) = (g,. /ii)~' 6 W'\ and so this case cannot arise.

We now consider the case where the same relation can be applied by replacing the
right hand side by the left hand side. Then zWgxjn z appears as a subword of (6.3). If this
subword is zamz, then am = Wgu,n and hence (g,, h\) — (1G, lw) = (g^1. h\x). Ap-
plying the relation as stated keeps the overall word in the given form. If zWgiJuz
appears in the word as zpz then /S = wyi,i,t, which leads to the contradiction
(g, h) — (g:. hi) € W. Our claim is shown.

To complete the proof of the theorem we note that since (g, h) ^ ( l c , lw), the
word Wg.hZWg-ij^zWgj, is not of the form (6.3). Thus the relation

holds in G()H but is not a consequence of presentation (6.2), a contradiction. •

There is an interesting dichotomy, reminiscent of the free inverse monoid, that the
Schiitzenberger product G O / / , where G and H are finitely presented infinite groups
(or one infinite and one finite), is finitely presented as an inverse monoid but not
finitely presented as a monoid.

There remains an obvious unsolved question.

OPEN PROBLEM 6.1. Let S and T be monoids, or even semigroups. Can SOT be
finitely presented (without S and T both being finite) and, if so, when?
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