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Abstract

We prove that for two connected sets E, F ⊂ R2 with cardinalities greater than 1, if one of E and F is
compact and not a line segment, then the arithmetic sum E + F has nonempty interior. This improves a
recent result of Banakh et al. [‘The continuity of additive and convex functions which are upper bounded
on non-flat continua in Rn’, Topol. Methods Nonlinear Anal. 54(1)(2019), 247–256] in dimension two by
relaxing their assumption that E and F are both compact.
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1. Introduction

Given finitely many sets E1, . . . , En ⊂ Rd, their arithmetic sum is defined by

E1 + · · · + En = {x1 + · · · + xn : xi ∈ Ei for 1 ≤ i ≤ n}.
A fundamental question is to find suitable conditions on E1, . . . , En under which their
arithmetic sum has nonempty interior. There are two classical results on this question.
First, if two sets E, F ⊂ Rd are large in the sense of having positive Lebesgue measure
(and measurable), then the (generalised) Steinhaus theorem states that E + F has
nonempty interior. Second, Picard’s theorem says that the same conclusion holds when
E and F are large in the sense of being of second category in Rd and having the Baire
property. The monograph of Oxtoby [10] gives a detailed account of these two results.

There are also many results on this question for sets that are small in the sense of
both measure and topology, which are often fractal sets. Studies in this direction also
date back to a work of Steinhaus, who in [15] first observed that the arithmetic sum of
the middle-third Cantor set with itself is the interval [0, 2]. Subsequent generalisations
were given by Hall [7], Newhouse [9] and Astels [2]. Very recently, Feng and the
author [6] considered fractal sets in higher dimensional Euclidean spaces.

Recently, considerable attention has been given to the study of arithmetic sums
involving connected sets. Chang [5] proved that if E ⊂ R2 is a curve connecting
the points (0, 0) and (1, 0), and F ⊂ R2 is a curve connecting (0, 0) and (0, 1),

© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

507

https://doi.org/10.1017/S0004972722001654 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972722001654
https://orcid.org/0000-0001-8930-1202
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972722001654&domain=pdf
https://doi.org/10.1017/S0004972722001654


508 Y.-F. Wu [2]

then E + F + Z2 = R2. Simon and Taylor [13] studied the question when the arithmetic
sum of a C2 curve and a certain class of fractal sets inR2 has nonempty interior. In [14],
they also studied the dimension and measure of the arithmetic sum of a C2 curve and a
set in the plane. Very recently, Banakh, Jabłońska and Jabłoński proved the following
result, which motivated the present paper.

THEOREM 1.1 [3, Theorem 4]. Let K1, . . . , Kd ⊂ Rd be compact connected sets.
Suppose that there exist ai, bi ∈ Ki, for i = 1, . . . , d, such that the d vectors
a1 − b1, . . . , ad − bd are linearly independent. Then, K1 + · · · + Kd has nonempty
interior.

Banakh et al. proved Theorem 1.1 by making elegant use of a result in topology
on products of continua (see [3, Proposition 1]). It is natural to ask whether the
compactness assumption in Theorem 1.1 can be relaxed. In this note, we investigate
this question in the case when d = 2. By using a completely different approach, we
obtain the following result.

THEOREM 1.2. Let E, F ⊂ R2 be connected sets with cardinalities greater than 1. If F
is compact and not a line segment, then E + F has nonempty interior.

Theorem 1.2 improves Theorem 1.1 when d = 2, since we allow one of the two
connected sets to be noncompact. We also show that the assumptions in Theorem 1.2
cannot be further relaxed. More precisely, we show that if F ⊂ R2 is a line segment,
then there exists a noncompact connected set E ⊂ R2 not lying in a line such that
E + F has empty interior. Also, we will give examples of noncompact connected sets
E, F ⊂ R2, neither of which is contained in a line, such that E + F has empty interior.
Theorem 1.2 combined with these examples gives a full answer to the above question
on the compactness assumption in Theorem 1.1 for the case when d = 2.

Our strategy to prove Theorem 1.2 is as follows. First, we prove the conclusion
when the complement of F has at least one bounded connected component. Then we
refine this result by proving that if there is a compact set K lying in a line in R2 such
that the complement of F ∪ K has at least one bounded connected component, then
E + F has nonempty interior as well. These two results are stated and proved in Rd

(see Lemmas 2.1–2.2). Next, we prove that when F has empty interior, there exists a
compact set K lying in a line in R2 such that the complement of F ∪ K has at least one
bounded connected component (see Proposition 3.3). Finally, Theorem 1.2 follows by
combining Lemma 2.2 and Proposition 3.3.

The paper is organised as follows. In Section 2, we give some preliminary lemmas.
Then we prove Theorem 1.2 in Section 3. Finally, in Section 4, we present examples to
show that the assumptions in Theorem 1.2 cannot be further relaxed.

2. Preliminary lemmas

For A ⊂ Rd, let Ac, Ao, ∂A and A denote respectively the complement, interior,
boundary and closure of A. We first prove a useful lemma.
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LEMMA 2.1. Let E ⊂ Rd be a connected set with cardinality greater than 1. Let F ⊂ Rd

be a compact set so that Fc has at least one bounded connected component. Then the
arithmetic sum E + F has nonempty interior.

PROOF. We assume that the interior of F is empty, otherwise there is nothing to
prove. Let U be the unbounded connected component of Fc. Write V = Fc\U. By the
assumption that Fc has at least one bounded connected component, V is a nonempty
bounded open subset of Rd. Set

W = {x ∈ Rd : there exists a, b ∈ E such that x ∈ (a + U) ∩ (b + V)}.

Clearly W is open. We claim that W � ∅. To prove this claim, it suffices to show that
(s + V) ∩ U � ∅ for each nonzero s ∈ Rd. To this end, fix a nonzero s ∈ Rd and define
Ps : Rd → R by Ps(x) = 〈x, s〉, where 〈·, ·〉 is the standard inner product in Rd. Since V
is bounded,

λ := sup
x∈V

Ps(x) < ∞.

Pick x0 ∈ V so that Ps(x0) > λ − ‖s‖2/2, and take a small r ∈ (0, ‖s‖/2) so that
Bo(x0, r) ⊂ V , where Bo(x0, r) stands for the open ball centred at x0 of radius r. Then
for each y ∈ Rd with ‖y − x0‖ < r,

〈s + y, s〉 = 〈s + x0, s〉 + 〈y − x0, s〉
≥ 〈x0, s〉 + ‖s‖2 − ‖y − x0‖ · ‖s‖
≥ 〈x0, s〉 + ‖s‖2/2 > λ,

which implies that s + y � V and so s + Bo(x0, r) ⊂ Vc. Since F has empty interior, it
follows that (s + Bo(x0, r)) ∩ Fc � ∅, equivalently, (s + Bo(x0, r)) ∩ (U ∪ V) � ∅. Since
s + Bo(x0, r) ⊂ Vc, we get (s + Bo(x0, r)) ∩ U � ∅, so (s + V) ∩ U � ∅, as desired. This
proves W � ∅.

Finally, we prove that W ⊂ E + F, which immediately implies that E + F has
nonempty interior. Suppose this is not true, that is, there exists x ∈ W so that x � E + F.
By the definition of W, there exist a, b ∈ E so that

x ∈ (a + U) ∩ (b + V). (2.1)

Since x � E + F, it follows that

(x − E) ⊂ Fc = U ∪ V . (2.2)

However, according to (2.1), (x − E) ∩ U ⊃ {x − a} and (x − E) ∩ V ⊃ {x − b}. This
together with (2.2) implies that x − E is not connected, leading to a contradiction. �

The next lemma is a refined version of Lemma 2.1.

LEMMA 2.2. Let E ⊂ Rd be a connected set with cardinality greater than 1. Let F ⊂ Rd

be compact. Suppose that there exists a compact set K ⊂ Rd so that the following two
properties hold:
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(i) K is contained in a hyperplane;
(ii) (F ∪ K)c has at least one bounded connected component.

Then the arithmetic sum E + F has nonempty interior.

Lemma 2.2 is a direct consequence of the following result.

LEMMA 2.3. Let F, K ⊂ Rd be as in Lemma 2.2. Let D be a dense subset of Rd. Then
the set

A :=
⋂
z∈D

(z − F)c

is totally disconnected.

PROOF. By taking a suitable rotation and translation if necessary, we may assume
that K is contained in the linear subspace {(x1, . . . , xd) ∈ Rd : xd = 0} and that at least
one bounded connected component of (F ∪ K)c has nonempty intersection with the
half-space H := {(x1, . . . , xd) ∈ Rd : xd > 0}.

Let U be a bounded connected component of (F ∪ K)c so that V := U ∩ H is
nonempty. Since ∂U ⊂ F ∪ K and K ⊂ ∂H, we easily see that ∂V ⊂ F ∪ (U ∩ ∂H).
Write K̃ = U ∩ ∂H. Then K̃ is a compact subset of the linear subspace

∂H = {(x1, . . . , xd) ∈ Rd : xd = 0}
and

∂V ⊂ F ∪ K̃. (2.3)

Set

h := supΠ(V),

where Π : Rd → R is the mapping (x1, . . . , xd) �→ xd. Then h is positive and finite.
To prove that A is totally disconnected, we may assume that #A ≥ 2, since otherwise

there is nothing to prove. Let u, v ∈ A with u � v. In the following, we are going to
construct an open set W ⊂ Rd such that

u ∈ W, v � W and ∂W ∩ A = ∅. (2.4)

Since u, v ∈ A with u � v are arbitrary, it will follow that A is totally disconnected.
To prove (2.4), first notice that the open set (u + V) \ (v + V) is nonempty. Indeed,

since u � v and (u + V) \ (v + V) = ((u − v + V) \ V) + v, it suffices to show that
(a + V) \ V � ∅ for any nonzero a ∈ Rd. To this end, fix a ∈ Rd with a � 0. Define

λ := sup
x∈V
〈x, a〉,

where 〈·, ·〉 is the standard inner product in Rd. Then λ is finite as V is bounded. Also,
it is clear that λ = supx∈V〈x, a〉. Since a � 0, we have 〈a, a〉 > 0. Hence, we can find
x0 ∈ V such that 〈x0, a〉 > λ − 〈a, a〉. Thus, we have

〈a + x0, a〉 = 〈x0, a〉 + 〈a, a〉 > λ,
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which implies that a + x0 ∈ (a + V) \ V . Hence, (u + V) \ (v + V) is a nonempty
open set. By the density of D, we can pick a point z ∈ D ∩ [(u + V) \ (v + V)].
Then we have

u ∈ z − V and v � z − V . (2.5)

Let

D̃ = {x ∈ D : Π(x) > Π(u) + h}.

Since D is dense in Rd, D̃ is clearly dense in the open half-space

{x ∈ Rd : Π(x) > Π(u) + h}. (2.6)

Let x ∈ Rd with Π(x) > Π(u). Since x + V is open and

supΠ(x + V) = Π(x) + h > Π(u) + h,

we see from (2.6) that (x + V) ∩ D̃ � ∅. Equivalently, x ∈ D̃ − V . Hence, we have

D̃ − V ⊃ {x ∈ Rd : Π(x) > Π(u)}. (2.7)

Since K̃ is contained in the linear subspace {(x1, . . . , xd) ∈ Rd : xd = 0}, V is
contained in the open half-space {(x1, . . . , xd) ∈ Rd : xd > 0} and z ∈ u + V , we have

Π(z − K̃) = {Π(z)} and Π(z) > Π(u). (2.8)

Then by (2.7), (2.8) and the compactness of z − K̃, we can find finitely many points
z1, . . . , zk ∈ D̃ so that

z − K̃ ⊂
k⋃

i=1

(zi − V). (2.9)

Set

W := (z − V) \
( k⋃

i=1

(zi − V)
)
. (2.10)

See Figure 1 for an illustration of the definition of W, where for simplicity we assume
that V is an open half disk. Below, we show that the open set W satisfies (2.4).

First notice that v � W since v � z − V (see (2.5)). Moreover, since z1, . . . , zk ∈ D̃,

infΠ
( k⋃

i=1

(zi − V)
)
= min

1≤i≤k
(Π(zi) − h) > Π(u),

which implies that

u �
k⋃

i=1

(zi − V).

Since u ∈ z − V , it follows that u ∈ W. In the following, we show that ∂W ∩ A = ∅.
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FIGURE 1. Definition of W in the proof of Lemma 2.3.

To see this, observe that by (2.3) and (2.10),

∂W ⊂ (z − F) ∪ (z − K̃) ∪
( k⋃

i=1

(zi − F)
)
∪
( k⋃

i=1

(zi − K̃)
)
. (2.11)

By (2.9), (2.10) and the compactness of z − K̃, we see that W is disjoint from a
neighbourhood of z − K̃. In particular, this implies that

∂W ∩ (z − K̃) = ∅.

Next we show that

∂W ∩
( k⋃

i=1

(zi − K̃)
)
= ∅. (2.12)

To see this, since K̃ ⊂ {(x1, . . . , xd) ∈ Rd : xd = 0}, we have for i ∈ {1, . . . , k},

Π(zi − K̃) = {Π(zi)}. (2.13)

Moreover, since z1, . . . , zk ∈ D̃, we see that

Π(zi) > h + Π(u), i = 1, . . . , k.

However, since V ⊂ {(x1, . . . , xd) ∈ Rd : xd > 0} and z ∈ u + V ,

h + Π(u) ≥ Π(z) ≥ supΠ(z − V) ≥ supΠ(W), (2.14)

where the last inequality is by (2.10). Now (2.13)–(2.14) imply that for i ∈ {1, . . . , k},

infΠ(zi − K̃) = Π(zi) > supΠ(∂W)

and from this, (2.12) follows.
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By (2.11)–(2.12), we see that

∂W ⊂ (z − F) ∪
( k⋃

i=1

(zi − F)
)
. (2.15)

Since z, z1, . . . , zk ∈ D, the definition of A implies that A has no intersection with the
right-hand side of (2.15). As a consequence, A ∩ ∂W = ∅. Hence, (2.4) is proved and
we finish the proof of the lemma. For an illustration of the proof, see Figure 1. �

Now we deduce Lemma 2.2 from Lemma 2.3.

PROOF OF LEMMA 2.2. We prove the lemma by contradiction. Suppose that
(E + F)◦ = ∅. Then we have, equivalently, that the set

D := (E + F)c

is dense in Rd. Hence, by Lemma 2.3,
⋂

z∈D(z − F)c is totally disconnected. However,
from the definition of D, we see that

E ⊂
⋂
z∈D

(z − F)c.

This contradicts the assumption that E is a connected set with cardinality greater
than 1. Hence, we have (E + F)◦ � ∅, completing the proof of the lemma. �

3. Proof of Theorem 1.2

We first state a classical result in convex analysis. The reader is referred to
[11, Theorem 17.1] for a proof.

THEOREM 3.1 (Carathéodory’s theorem). Let S ⊂ Rd and let conv(S) denote the
convex hull of S. Then any x ∈ conv(S) can be represented as a convex combination of
d + 1 elements of S.

Now we apply the above theorem to prove the following fact.

LEMMA 3.2. Let S be a compact subset of R2. Suppose that x ∈ ∂(conv(S))\S. Then
there exist u, v ∈ S with u � v such that x is contained in the line segment connecting
u, v, and moreover, S lies completely on one side of the line passing through u, v.

PROOF. The result might be well known. However, we are not able to find a reference,
so we include a proof. By Carathéodory’s theorem, x can be represented as a convex
combination of three elements of S. Equivalently, x lies in a triangle with vertices in S.
Since x is on the boundary of conv(S), it follows that x lies on one edge of the triangle.
Let u, v ∈ S be the endpoints of this edge. Since x � S, we have u � v.

Let Lu,v denote the straight line passing through the points u, v. We show that S lies
completely on one side of Lu,v. Suppose, in contrast, that S does not lie on one side
of Lu,v. Then we can pick w1, w2 ∈ S such that w1, w2 lie on different sides of Lu,v.
Clearly, the point x lies in the interior of the quadrilateral with vertices u, v, w1, w2
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w1
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FIGURE 2. Illustration for the proof of Lemma 3.2.

(see Figure 2). However, this quadrilateral is a subset of conv(S), contradicting the
assumption that x ∈ ∂(conv(S)). �

Next we prove the following proposition, which plays a key role in the proof of
Theorem 1.2.

PROPOSITION 3.3. Let F be a compact connected subset of R2 with empty interior.
Suppose that F does not lie in a line. Then there exists a compact set K ⊂ R2 lying in
a line such that (F ∪ K)c has at least one bounded connected component.

PROOF. We may assume that Fc has no bounded connected components, otherwise
we simply take K = ∅.

Let conv(F) denote the convex hull of F. Since F is not contained in a straight line,
conv(F) has nonempty interior and there exists a homeomorphism h : R2 → R2 so that
h(conv(F)) is the unit closed ball centred at the origin (see, for example, [4, Exercise
8.11]).

We claim ∂(conv(F)) � F. Suppose, in contrast, that ∂(conv(F)) ⊂ F. As ∂(conv(F))
is homeomorphic to the unit circle, R2\∂(conv(F)) has exactly two connected com-
ponents V1, V2, where V1 is unbounded and V2 bounded. Since ∂(conv(F)) ⊂ F, it
follows that Fc ⊂ V1 ∪ V2. Since F is compact, Fc ∩ V1 � ∅ and so Fc ⊂ V1 by the
connectedness of Fc. This implies that V2 ⊂ F, contradicting the assumption that F
has empty interior.

Pick z ∈ ∂(conv(F))\F. By Lemma 3.2, there exist u, v ∈ F such that the straight line
Lu,v passes through z and F lies completely on one side of Lu,v. By taking a suitable
rotation and translation to F, we may assume that z = (0, 0), Lu,v is the x-axis, u is on
the negative part of the x-axis and v is on the positive part of the x-axis, and F lies
entirely on the upper half plane.

Choose a large R > 0 such that F is contained in the closed half disc

S := {(x, y) ∈ R2 : y ≥ 0, x2 + y2 ≤ R2}.

Let K be the line segment [−R, R] × {0}, which is the bottom edge of S. Below, we
show that (F ∪ K)c has at least one bounded connected component.
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[9] Arithmetic sums of connected sets in R2 515

FIGURE 3. Illustration for the proof of Proposition 3.3.

Since the origin is not contained in F, there exists a small r > 0 such that the open
half disc

T := {(x, y) ∈ R2 : y > 0, x2 + y2 < r2}
is contained in (F ∪ K)c. Let V be the connected component of (F ∪ K)c that
contains T. Notice that Sc is contained in the unbounded connected component U of
(F ∪ K)c. To show that V is bounded, it is enough to show that V � U (keep in mind
that (F ∪ K)c has a unique unbounded connected component, due to the compactness
of F ∪ K).

Suppose, on the contrary, that V = U. Then U ⊃ T ∪ Sc. Pick a ∈ T and b ∈ Sc.
Since U is open and connected, there exists a simple curve γ ⊂ U such that γ consists
of finitely many line segments and γ joins the points a, b (see, for example, [1, page 56]
for a proof). Clearly, γ must intersect the open half circle

Γ := {(x, y) : x2 + y2 = R2, y > 0}
at one or more than one points. As γ is a polygon, we may choose a sub-polygon γ1
which joins a and a point c ∈ Γ such that c is the unique intersection point of γ1 and Γ.
Connect the point a and the origin by a simple polygon γ2 ⊂ T such that γ2 intersects
γ1 only at the point a, and γ2 intersects K only at the origin.

Let η = γ1 ∪ γ2. Then η is a simple polygon, joining the origin and the point c.
Except for the endpoints, points of η are contained in U ∩ So. Hence, η ∩ F = ∅.

Write c = (c1, c2). Let L+, L− be the vertical half lines L+ := {(c1, y) : y ≥ c2}
and L− := {(0, y) : y ≤ 0}. Then the union η ∪ L+ ∪ L− has no intersection with F.
Moreover, its complement has two connected components, with u, v being contained in
different components. This implies that F is disconnected, leading to a contradiction.
See Figure 3 for an illustration of the proof. �

Now we combine Lemma 2.2 and Proposition 3.3 to prove Theorem 1.2.

PROOF OF THEOREM 1.2. We can assume that F◦ = ∅, since otherwise there is
nothing to prove. Since F is compact, connected, F◦ = ∅ and F is not a line segment,
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by Proposition 3.3, there exists a compact set K contained in a line segment such that
(F ∪ K)c has a bounded connected component. Then it follows from Lemma 2.2 that
E + F has nonempty interior. �

4. Some examples

We have proved our main result Theorem 1.2 in the previous section: if E, F ⊂ R2

are connected sets with cardinalities greater than 1, and F is compact and not a line
segment, then E + F has nonempty interior. In this section, we present examples to
show that the assumptions in this result cannot be further relaxed.

Our first example shows that there are noncompact connected sets E, F ⊂ R2,
neither of which is contained in a line, such that E + F has empty interior. Therefore,
the compactness assumption for F in Theorem 1.2 cannot be dropped.

The example that we will give involves a result on additive functions on R. A
function f : R→ R is said to be additive if f (x + y) = f (x) + f (y) for all x, y ∈ R. It
is well known that under some regularity assumptions, for instance continuity at a
point or Lebesgue measurability, an additive function is necessarily linear. However,
Jones [8, Theorem 5] proved the existence of discontinuous additive functions with
connected graphs. Based on this result, we give the following example.

EXAMPLE 4.1. Let f : R→ R be a discontinuous additive function whose graph
G f := {(x, f (x)) : x ∈ R} is connected. Let E = F = G f . Then both E, F are connected
and not contained in a line in R2. Moreover, since f is additive, it follows that
E + F = G f and so E + F has empty interior.

We next give examples to show that the conclusion of Theorem 1.2 may fail if
F ⊂ R2 is a line segment and E ⊂ R2 is a connected set which is not contained in a line
in R2. In our examples, we will take F to be a vertical line segment and E the graph of
a certain function.

We first give a simple necessary and sufficient condition in terms of the oscillations
of a function f : R→ R for the existence of a vertical line segment L such that G f + L
has empty interior.

Given a function f : R→ R, the oscillation of f at a point x ∈ R is defined by

ω f (x) = lim
δ→0

[ sup
y∈[x−δ,x+δ]

f (y) − inf
y∈[x−δ,x+δ]

f (y)].

We say that f is uniformly oscillated if infx∈R ω f (x) > 0. Clearly, f is not uniformly
oscillated if f has a point of continuity.

LEMMA 4.2. Let f : R→ R be a function. Then there exists a vertical line segment
L ⊂ R2 such that G f + L has empty interior if and only if f is uniformly oscillated.

PROOF. In one direction, assume that infx∈R ω f (x) > 0. Let L be a vertical line segment
with length 0 < � < infx∈R ω f (x). Below, we show that (G f + L)◦ = ∅.
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By applying a suitable translation, we can assume that L = {0} × [0, �]. Suppose,
in contrast, that (G f + L)◦ � ∅. Then, in particular, G f + L contains a horizontal line
segment, say, [a, b] × {c} for some a, b, c ∈ R with a < b. Notice that

G f + L =
⋃
x∈R

((x, f (x)) + L) =
⋃
x∈R

({x} × [ f (x), f (x) + �])

is a disjoint union of vertical line segments. By this and our assumption that G f + L ⊃
[a, b] × {c}, we easily see that

(x, c) ∈ {x} × [ f (x), f (x) + �] for all x ∈ [a, b],

and thus

c − � ≤ f (x) ≤ c for all x ∈ [a, b]. (4.1)

Let x0 = (a + b)/2. Then (4.1) implies that ω f (x0) ≤ �, contradicting infx∈R ω f (x) > �.
The contradiction yields (G f + L)◦ = ∅.

In the other direction, we will prove that if infx∈R ω f (x) = 0, then (G f + L)◦ � ∅
for any vertical line segment L. Assume that infx∈R ω f (x) = 0. Let L be a vertical line
segment with length � > 0. Again, we can assume that L = {0} × [0, �].

Since infx∈R ω f (x) = 0, then by definition, we can find x0 ∈ R and δ > 0 such that

sup
x∈[x0−δ,x0+δ]

f (x) − inf
x∈[x0−δ,x0+δ]

f (x) < �/4.

This clearly implies that

f (x0) − �/4 < f (x) < f (x0) + �/4 (4.2)

for all x ∈ [x0 − δ, x0 + δ]. We claim that G f + L contains the rectangle

R := [x0 − δ, x0 + δ] × [ f (x0) + �/4, f (x0) + (3�)/4].

To see this, let (x, y) ∈ R. Then, f (x0) + �/4 ≤ y ≤ f (x0) + (3�)/4. By this and (4.2),
we see that 0 ≤ y − f (x) ≤ �. Hence, (0, y − f (x)) ∈ L. Therefore, we have

(x, y) = (x, f (x)) + (0, y − f (x)) ∈ G f + L.

Since (x, y) ∈ R is arbitrary, it follows that R ⊂ G f + L. This proves the above claim,
and in particular, that (G f + L)◦ � ∅. �

According to Lemma 4.2, if f : R→ R is a uniformly oscillated function with a
connected graph, then taking E = G f and F an appropriate vertical line segment, E + F
has empty interior. Such functions do exist as shown in the following examples.

EXAMPLE 4.3. Jones [8, Theorems 1,2] proved that there are additive functions on R
whose graphs are connected and dense in R2. Let f be such a function. Since G f is
dense in R2, it is easy to see that infx∈R ω f (x) = ∞. Let E = G f and let F ⊂ R2 be a
vertical line segment. From the proof of Lemma 4.2, E + F has empty interior.
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Recently, Rosen [12] proved that the set E in Example 4.3 has positive
two-dimensional Lebesgue measure. Hence, by Fubini’s theorem, E is not Lebesgue
measurable. Below, we give another example in which E is Borel.

EXAMPLE 4.4. The Cesàro function f : [0, 1]→ R is defined by

f (x) := lim sup
n→∞

a1(x) + · · · + an(x)
n

,

where

x =
∞∑

n=1

an(x)
2n

is the binary expansion of x. Here, we adopt the convention that an(x) = 1 for all large
n if x has two different binary expansions.

Notice that f is a Borel function, and hence its graph G f is a Borel subset of R2.
Also, it is easy to check that infx∈[0,1] ω f (x) = 1. Moreover, Vietoris [16] proved that
G f is connected.

Let E = G f and F ⊂ R2 be a vertical line segment of length less than 1. Then, we
see from the proof of Lemma 4.2 that E + F has empty interior.
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