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A. MUĆKA� and A. B. ROMANOWSKA

(Received 29 October 2014; accepted 29 October 2015; first published online 26 February 2016)

Communicated by M. Jackson

Abstract

In an earlier paper, Romanowska, Ślusarski and Smith described a duality between the category of
polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category
of intersections of hypercubes, considered as barycentric algebras with additional constant operations.
The present paper provides an extension of this duality to a much more general class of so-called
quasipolytopes, that is, convex sets with polytopes as closures. The dual spaces of quasipolytopes are
Płonka sums of open polytopes, which are considered as barycentric algebras with some additional
operations. In constructing this duality, we use several known and new dualities: the Hofmann–Mislove–
Stralka duality for semilattices; the Romanowska–Ślusarski–Smith duality for polytopes; a new duality
for open polytopes; and a new duality for injective Płonka sums of polytopes.
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1. Introduction

The main motivation for this work is the search for a duality theory of barycentric
algebras and, in particular, of convex sets. There is a well-known self-duality for
the category of finite-dimensional (real) vector spaces which can be adapted to the
category of corresponding affine spaces. However, this duality cannot be restricted to
provide a duality for the category of all convex subsets of (real) affine spaces. The
previously known dualities only cover restricted classes of convex sets, which include
finite-dimensional real simplices, as finitely generated free barycentric algebras [19],
and the class of quadrilaterals in [20]. A more general duality was provided by
Romanowska et al. [21] for the category of polytopes (finitely generated real convex
sets considered as barycentric algebras). Pontryagin duality for semilattices [11] may
also be considered as a duality for a limited class of barycentric algebras.

This research was supported by the Warsaw University of Technology under grant number
504P11200102.
c© 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 $16.00

95

https://doi.org/10.1017/S1446788715000683 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000683
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In this paper, we extend the earlier results and present a duality for the class of
quasipolytopes, convex subsets of affine spaces over a subfield R of the field R of
real numbers, having polytopes as closures, and as before considered previously to
be (cancellative) barycentric algebras. As in the earlier cases, this duality is again
of ‘classical’ type, and is given by an infinite object, the open unit interval of R.
However, this time it is extended by the addition of a new element playing the
role of ‘zero’. Although this object is not a quasipolytope, it plays the role of a
schizophrenic object. In the new duality, the class of representation spaces is a class
of certain barycentric algebras which are Płonka sums of open polytopes. They are
considered to be barycentric algebras with an additional left-zero operation and with
new constant operations (and with the corresponding homomorphisms preserving the
new operations). The duality does not involve any topology or additional relations.

In constructing this duality, we use several known and new dualities: the Hofmann–
Mislove–Stralka duality for semilattices; the Romanowska–Ślusarski–Smith duality
for convex polytopes; a new duality for open polytopes; and a new duality between
the class of Płonka sums of polytopes with injective Płonka homomorphisms and a
certain class of Płonka sums of polytopes considered as barycentic algebras with some
additional operations.

The paper is organised as follows. Section 2 gives a brief introduction to real affine
spaces, convex sets and barycentric algebras. Płonka sums of barycentric algebras and
their basic properties are recalled in Section 3, where we also provide an alternative
description of barycentric algebras and a characterisation of barycentric algebras in
the smallest quasivariety containing all convex sets and all semilattices. Algebras
in this class are Płonka sums of convex sets with injective Płonka homomorphisms.
For the convenience of the reader, and to make the paper relatively self-contained,
Sections 4 and 5 provide the background necessary for understanding the dualities
considered in this paper. In particular, duality for semilattices is described in Section 5.
Section 6 recalls those basic facts concerning duality for polytopes which we need to
describe a duality for open polytopes in Section 7. An essential role is played by
Section 8, where a duality for injective Płonka sums of polytopes is provided. The
role of a schizophrenic object is played by the extended closed unit interval of R. The
representation spaces are Płonka sums of first duals of summands of given injective
Płonka sums, and are considered as barycentric algebras with one new binary operation
and three new constant operations. In the proof, we use the duality for semilattices,
and the duality for polytopes. The next two sections deal with the first and second
duals of the duality for quasipolytopes. The duality is given by the extended open unit
interval of the field R, which plays the role of a schizophrenic object. In a certain
sense, it is constructed alongside the duality for injective Płonka sums of polytopes.
The representation spaces are Płonka sums of the first duals of open polytopes, and
are special subalgebras of Płonka sums of certain polytopes. They are considered to
be barycentric algebras with additional operations. The main result (Corollary 10.2)
establishes the full duality between the category of quasipolytopes and the category of
corresponding representation spaces.
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We use notation and conventions similar to those of [26, 29] and the earlier papers.
For details and further information on affine spaces and barycentric algebras, we refer
the reader to those papers and to the monographs [22, 26]. For convex polytopes, see
[2, 10].

2. Modes, affine spaces and barycentric algebras

In the sense of [22, 26], modes are algebras in which each element forms a singleton
subalgebra, and for which each operation is a homomorphism. For algebras (A,Ω) of a
given type τ : Ω→ N, these two properties are equivalent to satisfaction of the identity

x . . . xψ = x

of idempotence for each operator ψ in Ω, and the identity

(x1,1 . . . x1,ψτψ) . . . (xφτ,1 . . . xφτ,ψτψ)φ = (x1,1 . . . xφτ,1φ) . . . (x1,ψτ . . . xφτ,ψτφ)ψ

of entropicity for each pair ψ, φ of operators in Ω.
One of the main families of examples of modes is given by affine spaces over

a commutative unital ring R (affine R-spaces), or, more generally, by subreducts
(subalgebras of reducts) of affine spaces. Affine spaces are considered here as Mal’tsev
modes, as explained in the monographs [22, 26]. In particular, if 2 is invertible in R, an
affine R-space can be considered as the reduct (A,R) of an R-module (A,+,R), where
R is the family of binary operations

r : A2 → A; (x1, x2) 7→ x1x2r = x1(1 − r) + x2r

for each r ∈ R. The class of all affine R-spaces is a variety (see [4]) and is denoted
by R.

An important class of subreducts of affine spaces is given by convex sets, defined
as subreducts of affine R-spaces, where R is the ring of real numbers. Convex sets
are characterised as subsets of a real affine space closed under the operations r of
weighted means coming from the open real unit interval Io = (0, 1). Thus a convex
set contains, along with any two of its points, the line segment joining them. The
class C of convex sets, considered as such algebras (C, Io), generates the variety B of
barycentric algebras, and forms a subquasivariety of B (see [15]). The definition of
real convex sets and barycentric algebras is easily generalised to the case of subfields
R of the field R (see, for instance, [26, Chs 5, 7]).

In this paper we assume that all affine spaces are over a subfield R of the field R of
real numbers, and convex sets are convex subsets of affine R-spaces. In what follows,
the adjective ‘real’ will be used only for affine spaces over R and their convex subsets.
Both the variety R of affine R-spaces and the variety B of barycentric algebras over R
(as well as its subquasivariety C of convex sets) will also be considered as categories
with algebras as objects and the corresponding homomorphisms as morphisms.

The following theorem, providing a characterisation of entropicity, will play an
essential role in this paper. Let τ be the variety of all τ-algebras (algebras of a given
type τ).
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Theorem 2.1 [22, 26]. A τ-algebra A is entropic if and only if, for each τ-algebra X,
the morphism set τ(X, A) is a subalgebra of the power τ-algebra AX .

Corollary 2.2. If K is a prevariety of entropic algebras, then, for each pair A, B of
K-algebras, the morphism set K(B, A) is again a K-algebra.

Recall that the power algebra on the set AB is defined by

ω : (AB)m → AB; ( f1 . . . fm) 7→ f1 . . . fmω = ( f : B→ A),

where
f : B→ A; x 7→ x f = x( f1 . . . fmω) = (x f1 . . . x fm)ω

for each (m-ary) ω in Ω.
The free barycentric algebra over a finite set X = {x0, . . . , xk} is characterised as the

Io-subreduct of the free affine R-space Rk over the same set X. The Io-subreduct is{
x0r0 + · · · + xkrk | ri ∈ I,

k∑
i=0

ri = 1
}
,

where I is the closed unit interval. Its elements are known as convex combinations.
They form the k-dimensional simplex.

We say that a convex set A is k-dimensional if k is the smallest positive integer such
that A embeds as a subreduct into the affine R-space Rk. In such a situation, the convex
set A generates the affine space Rk. Each convex polytope A is finite-dimensional. The
minimal set of generators of A is uniquely determined: it is the set of vertices of A. If
a k-dimensional polytope A has n vertices, then the number of vertices is at least k + 1.
Such a polytope A is closed when considered as a subset of the topological space Rk

with the usual topology.

3. Płonka sums of barycentric algebras

Recall that the variety of barycentric algebras over a subfield R of the field R may
be defined by the identity

xxp = x

of idempotence for each p in Io, the identities

xyp = yx1 − p

of skew-commutativity for each p in Io and the identities

xy p z q = x yz q/(p ◦ q) p ◦ q

of skew-associativity for each p, q in Io. Here p ◦ q = p + q − pq. Setting p′ := 1 − p,
one obtains p ◦ q = (p′q′)′ (see [23, 26, Section 5.8]).

The main models are provided by convex subsets of affine R-spaces and Io-
semilattices, algebras equivalent to semilattices, where the operations in Io are
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associative and any two of them are equal. In what follows, Io-semilattices will simply
be referred to as semilattices. Convex subsets of affine R-spaces are described as
Io-subreducts of affine spaces (A, R). Among barycentric algebras, convex sets are
characterised by cancellativity: that is, they form the subquasivariety C of B defined
by the cancellation laws

(xyp = xzp) −→ (y = z),

which hold for all p ∈ Io. The quasivariety of convex sets and the variety of I◦-
semilattices are the only minimal quasivarieties of barycentric algebras. The variety of
barycentric algebras may, equivalently, be defined as the class of homomorphic images
of convex sets in C.

Recall, also, that each barycentric algebra A is a semilattice sum
⋃

s∈S As of open
convex sets As over its semilattice replica S : that is, it has a homomorphism onto
the largest semilattice image S , with fibres As being open convex sets (each As is
open in the affine space it generates) (see [26, Sections 3.3 and 7.5]). In fact, A is a
subalgebra of a Płonka sum

∑
s∈S Es of convex extensions Es of As over the semilattices

replica S . For the convenience of the reader, we recall, here, the definition of a
Płonka sum of barycentric algebras Es. We consider the semilattice S as a small
category. Let F : S → B be a functor from the category S to the category B of
barycentric algebras, assigning to each s ∈ S an algebra Es and to each arrow s→ t in
S a barycentric algebra homomorphism ϕs,t : Es → Et. (The mappings ϕs,t are called
Płonka homomorphisms.) Then the Płonka sum E =

∑
s∈S Es of algebras Es (over the

semilattice S ) is the disjoint sum of the sets Es with the operations r, for all r ∈ Io,
defined by

asbtr = asϕs,s·tbtϕs,s·tr,

for as ∈ Es, bt ∈ Et. Recall, also, that a wall of a barycentric algebra A is a subalgebra
W such that, for a, b ∈ A and r ∈ Io,

abr ∈ W if and only if a, b ∈ W.

The smallest wall [a] containing an element a is called a principal wall generated
by a. The semilattice replica S of A is the semilattice of its principal walls (see [26,
Theorem 7.5.10]).

An essential role is played by the algebra A∞, obtained from a barycentric algebra A,
as the Płonka sum of A1 = A and the singleton algebra A0 = {∞} over the two-element
(meet) semilattice 2˜ = {0 < 1}. The element ∞ plays the role of a zero added to the

algebra A.
We call a (quasi)variety of algebras irregular if it does not contain the variety

S of semilattices (recall that the variety of semilattices may be considered as the
variety of an arbitrary type with at least one symbol of at least binary operation and
without nullary operations). A (quasi)variety is strongly irregular if it satisfies an
equation x ? y = x for some binary term x ? y. The regularisation Ṽ of a strongly
irregular variety V is the smallest variety containg both V and S. It is known that
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Ṽ consists precisely of Płonka sums of V-algebras, (see, for instance, [26, Ch. 4]).
The quasiregularisation Q̃ of an irregular quasivariety Q is the smallest quasivariety
containing both Q and S. If Q is a variety, its quasiregularisation does not necessary
coincide with its regularisation (see [1]).

The quasivarieties of barycentric algebras were described by Ignatov [12] (see also
[26, Section 7.6]). In particular, the quasiregularisation C̃ of the quasivariety C of
convex sets is the subquasivariety of B defined by the quasi-identities

(xzp = yzp)→ (xyr = xys) (3.1)

for any p, r, s ∈ Io with r , s.
The irregular subquasivarieties of B form a countably infinite chain with the

quasivariety Bω defined by the quasi-identities

(xyp = y)→ (x = y)

for any p ∈ Io as its upper bound. Its quasiregularisation B̃ω is defined by

(xzp = z = yzp)→ (xyr = xys)

for any p, r, s ∈ Io with r , s.
Note that each irregular quasivariety of barycentric algebras is covered by its

quasiregularisation. The structure of algebras in the quasiregularisation B̃ω may be
described in a similar way as in the case of the quasiregularisation of a strongly
irregular variety provided in [1]. However, this requires a slightly different approach
to barycentric algebras.

We will first define two special congruences on a Płonka sum A of algebras As, all in
a strongly irregular quasivariety Q, over its semilattice replica S . The first congruence
σ is the kernel of the semilattice replica homomorphism from A onto S . It is called
the semilattice replica congruence. The second congruence δ is called the thread
congruence, and is defined as follows: for as ∈ As and bt ∈ At, we have (as, bt) ∈ δ,
if there is an index u ∈ S such that asϕs,u = btϕt,u.

The following fact generalises [1, Proposition 3.3].

Proposition 3.1. Let Q be any strongly irregular quasivariety. Let S be the
(quasi)variety of semilattices (considered as algebras of the same type as Q). Let A be
an algebra in the variety V(Q ∪ S) generated by Q ∪ S. Then the following conditions
are equivalent.

(a) A is a subalgebra of a product of algebras in Q ∪ S: that is A ∈ SP(Q ∪ S).
(b) A is a Płonka sum of Q-algebras As over its semilattice replica S with injective

Płonka homomorphisms ϕs,t.
(c) A is a Płonka sum of Q-algebras As over its semilattice replica S , and the

intersection of the thread congruence δ and the semilattice replica congruence
σ is the identity relation on A.
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Proof. (a)⇒ (b). We may assume that A is a subalgebra of a product B × T , where B ∈
Q and T ∈ S. The algebra B × T is a Płonka sum of subalgebras Bt = B × {t}, for t ∈ T ,
over the semilattice T with isomorphisms ϕs,t, for s ≥ t, as Płonka homomorphisms.
Since A ∩ Bt is a subalgebra of A for each t ∈ T , it follows that, for b ∈ Bs ∩ A and
a ∈ Bt ∩ A, one has bϕs,t = bϕs,t ? a ∈ Bt ∩ A. The Płonka homomorphisms on A are
the restrictions of those on B × T . Hence they are injective.

(b) ⇒ (c). Assume that (a, b) ∈ δ ∧ σ. Then there are s, t ∈ S with s ≥ t such that
a, b ∈ As and aϕs,t = bϕs,t. Since ϕs,t are injective, we get a = b.

(c)⇒ (a). Since δ ∧ σ is the identity relation on A, there is a subdirect embedding
of A into A/δ × A/σ. Since A/δ ∈ Q and A/σ ∈ S, it follows that A ∈ SP(Q ∪ S). �

Now note that barycentric algebras may also be defined equivalently, as algebras
with the set I of binary operations coming from the closed unit interval I = [0, 1] of R.
The operations 0 and 1 are defined by

xy0 = x = yx1.

In fact, it is sufficient to include the operation 0 in the type. However, in such a case,
although the identities of idempotence and skew-commutativity are still satisfied for
all the operations of I , there are some problems with skew-associativity. They can be
avoided by a certain small change in the axiomatisation of barycentric algebras [27]:
skew-associativity for (A, I) may be written as

xyp zq = x yz((p ◦ q)→π q) p ◦ q,

where
p ◦ q = q1p,

and
(p ◦ q)→π q = if p ◦ q ≤ q then 1 else q/(p ◦ q).

In this way, all the algebras in B obtain an additional binary strongly irregular
operation ? = 0. Note, however, that while adding the operation ? to algebras in
the quasivariety Bω does not change its irregularity, adding this operation to algebras
in its quasiregularisation will make it irregular. Since we will use the operation ? in
Bω-algebras to describe the structure of algebras in the quasiregularisation B̃ω, in this
section, we will only consider irregular quasivarieties of barycentric algebras as classes
of algebras of the extended type containing ? = 0. In such a situation, we will add a
superscript ? to the symbols of these classes. Note, however, that the quasivarieties
Bω and B?ω are equivalent. As a binary operation, the operation ? in semilattices must
coincide with the multiplication and, in B̃?ω-algebras, the operation ? becomes a left-
normal band operation, (see [17] and [26, Section 4]).

Consider the quasi-identity

(x ? y = x & y ? x = y & x ? z = z ? x = z & y ? z = z ? y = z)→ (x = y). (3.2)

Lemma 3.2. Let Q be an irregular quasivariety of barycentric algebras. Then the
following conditions hold.
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(a) Q? satisfies the quasi-identity (3.2).
(b) S satisfies the quasi-identity (3.2).
(c) For each nontrivial A in Q?, A∞ does not satisfy (3.2).

We omit the simple proof, which is similar to the proof of [1, Lemma 3.2].

Theorem 3.3. Let A be an algebra in the variety V(B?ω ∪ S) generated by B?ω ∪ S.
Then the following conditions are equivalent.

(a) A satisfies the quasi-identity (3.2).
(b) A satisfies the equivalent conditions of Proposition 3.1, in particular,

A ∈ SP(B?ω ∪ S).

(c) A belongs to the quasiregularisation B̃?ω of B?ω.

Proof. (a)⇒ (b). First note that if A satisfies the quasi-identity (3.2) and, for s ≥ t, one
has asϕs,t = bsϕs,t, then, substituting as, bs, asϕs,t for x, y, z in (3.2), one concludes that
as = bs. Then use Proposition 3.1.

(b) ⇒ (a). By Lemma 3.2, every member of B?ω ∪ S satisfies (3.2). Since
the satisfaction of quasi-identities is inherited by both subalgebras and products,
SP(B?ω ∪ S) also satisfies it.

(a)⇔ (c). Let Q be the subquasivariety of V(B?ω ∪ S) defined by the quasi-identity
(3.2). Then Lemma 3.2 and the previous equivalence imply the inclusions

B̃?ω ⊆ Q = SP(B?ω ∪ S) ⊆ B̃?ω. �

Corollary 3.4. Let Q be a subquasivariety of V(B?ω ∪ S). Then the following
conditions are equivalent.

(a) Q = C̃?.

(b) Q is defined by the quasi-identities (3.1) and (3.2).
(c) Q consists of Płonka sums of convex sets with injective Płonka homomorphisms.
(d) Q = SP(C? ∪ S).

Płonka sums of convex sets with injective Płonka homomorphisms will be called
injective Płonka sums.

4. Duality

Let A and X be categories. The category A is usually a class of algebras, for
instance a quasivariety of algebras, considered as a category with homomorphisms as
arrows, while X is a concrete category of representation spaces for A-algebras. We
say that there is a dual equivalence, or simply duality, between A and X if there are
contravariant functors

D :A→ X and E : X→A (4.1)
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such that both DE = E ◦ D and ED = D ◦ E are naturally isomorphic with the
corresponding identity functors on A and X, respectively (see, for example, [13] and
[14, page 91]).

In many cases, the functors of the duality (4.1) are represented by a schizophrenic
object [6], [13, Section VI.4.1]. The schizophrenic object T appears simultaneously
as an object T of A and as an object T

∼
in X. The underlying sets of T and T

∼
coincide

(with T ).
The functors D and E are defined on objects and morphisms by

A A(A,T) f x : A→ B→ T

↓ f
D
7→ ↑ f D ↑

B A(B,T) x : B→ T.

X X(X,T
∼

) ϕα : X → Y → T
∼

↓ ϕ
E
7→ ↑ ϕE ↑

Y X(Y,T
∼

) α : Y → T
∼
.

In left-handed notation,

D(A) = AD =A(A,T) and D( f ) = f D.

The natural isomorphisms e of DE with the identity functor and ε of ED with the
identity functor are given by the evaluations

eA : A→ ADE; a 7→ (aeA : x 7→ ax),
εX : X → XED; x 7→ (xεX : α 7→ xα).

In left-handed notation,

eA(a)(x) = x(a) and εX(x)(α) = α(x).

Note that the ‘natural dualities’ considered in [3, 6, 8, 9, 18] are of a similar type.
However, they require finite schizophrenic objects and satisfaction of certain additional
conditions that are not necessarily obtained for the cases considered in this paper.

5. Duality for semilattices

One example of the duality (4.1) represented by a finite schizophrenic object is
fundamental. This is the duality for semilattices given by

C : S →Z and F :Z→ S. (5.1)

Here S is the variety of semilattices, while Z is the category of all bounded
compact topological semilattices carrying a Boolean topology. The Z-morphisms
are continuous homomorphisms of bounded semilattices. The two-element meet-
semilattice T = ({0 ≤ 1},∧) is an object of S, and T

∼
= ({0 ≤ 1},∧, 0, 1,Θ), where Θ
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is the discrete topology and is an object of Z. The variety S is the closure ISP(T)
of the singleton class {T} under the closure operations P of power, S of subalgebra
and I of isomorphic copy. The category Z is the closure ISP(T

∼
) under the closure

operations P of power, S of closed substructure and I of isomorphic (homeomorphic)
copy. This duality is a modification of the very well-known Hofmann–Mislove–Stralka
duality (called also Pontryagin duality for semilattices) between the category S0 of
semilattices with zero and the category Z0 of compact topological semilattices with
zero carrying a Boolean topology (see [8, 11] and [13, Section VI.3.6] and also the
brief description of the duality (4.1) provided in [25]).

Note also, that for a semilattice H, the set HC may be described in terms of walls.
Let HW denote the set of walls of H. There is a naturalZ-isomorphism

HC → HW; χ 7→ χ−1(1).

All walls of a finite semilattice are principal.
Recall that each Z-space is, in fact, an algebraic lattice [11]. For a Z-space G,

the set GK of compact elements forms a join-semilattice. Then there is a natural
isomorphism

GF → GK; θ 7→ inf θ−1(1).

For a semilattice H, an element Θ ∈ HW is compact if and only if it is principal. Then
there is a natural isomorphism

H → HWK; h 7→ [h].

For aZ-space G, there is a natural isomorphism

G→ GKW; g 7→ GK∩ ↓ g.

For more details see [25].

6. Duality for convex polytopes

Convex polytopes are convex sets with a finite nonempty set of vertices. Considered
as barycentric algebras, they are (finitely) generated by their sets of vertices. The
set G(C) of vertices of a convex polytope C forms a minimal set of its generators.
The paper [21, Theorem 6.5] establishes a duality between the category P of real
convex polytopes considered as (cancellative) barycentric algebras and the category
P̂ of certain polytopes with constants (see also [28]). The category P̂ is the
class of intersections of some polytopes isomorphic to hypercubes, considered as
barycentric algebras with additional constant operations and with the corresponding
homomorphisms preserving these constants.

The duality is represented as

D : P→ P̂ and E : P̂ → P, (6.1)
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and is given by an infinite schizophrenic object T , where T is the unit real interval
I. In particular, for a polytope C, one has CD = P(C, T) and for C ∈ P̂ one has
CE = P̂(C,T

∼
).

Each k-dimensional polytope C is the union
⊕

i∈I Ci of k-dimensional simplices
Ci, each generated by a (k + 1)-element subset of vertices of C. Each CiD = D(Ci) is
isomorphic to the (k + 1)-dimensional hypercube Ik+1. Moreover,

CD = D
(⊕

i∈I

Ci

)
�

⋂
i∈I

D(Ci).

The duality makes use of a strong connection between three structures: namely,
a k-dimensional polytope, the k-dimensional simplex and the k-dimensional affine
space. In a sense, three dualities are carried out in parallel fashion: for simplices, for
polytopes and for barycentric algebra reducts of finitely generated real affine spaces.
The first dual of an affine space Rk is isomorphic to Rk+1, and the first dual CD of
a k-dimensional polytope C embeds as a subreduct into Rk+1. The set CD contains
the points 0̄ = (0, . . . , 0), 1̄ = (1, . . . , 1) and hence all r̄ = (r, . . . , r) for r ∈ I. They are
then considered as the constant operations of CD. The three dualities do not involve
any topology or additional relations. The results obtained in [21] carry over, mutatis
mutandis, to convex polytopes over subfields R of the field R.

Finally, note that the duality (6.1) for the class of convex polytopes over R would
not work for a broader class of convex sets.

Example 6.1. Consider the closed interval (I, Io). Note that the homomorphisms from
(I, Io) to (I, Io) are in one-to-one correspondence with pairs of elements of I, the pair
(0h, 1h) for each homomorphism h : I → I. Hence, it is easy to see that the first dual
ID of I is isomorphic to the square (I2, Io). However, we will get the same square
when we replace the closed interval I by the open interval Io and form the first dual
IoD of Io.

In his doctoral dissertation [28], Ślusarski established dualities for certain classes
of real convex sets by considering different convex sets as schizophrenic objects.
However these dualities are rather complicated and do not provide a uniform approach
to a duality for more general classes of real convex sets. In this paper, we take a
different approach.

7. Duality for open polytopes
In what follows, we fix a given subfield R of R, and consider convex subsets of

affine R-spaces (and, in particular, convex polytopes) as barycentric algebras (A, Io)
with barycentric algebra homomorphisms as morphisms.

As observed in [21, Section 3], each polytope A embeds as a subreduct into the
uniquely defined canonical affine R-space R(A) that it generates.

Definition 7.1. A convex set A is called a quasipolytope if its closure A in the canonical
affine space extension R(A) is a polytope. If, additionally, A coincides with the interior
of A in R(A), then we say that A is an open polytope.
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A duality for open polytopes may be developed alongside the duality for (closed)
polytopes, as follows. Instead of the schizophrenic object T = I, we will take as T the
open unit interval Io of R. The category of open polytopes is denoted by Po, and the
category of representation spaces is the category P̂o of interiors of members of P̂ in
their canonical affine space extensions. Algebras of the latter category are considered
as barycentric algebras with constants r̄ for all r ∈ Io.

We will show that the duality is represented as

Do : Po → P̂o and Eo : P̂o →Po, (7.1)

and is given by the schizophrenic object T = Io. In particular, for an open polytope C,
one has CDo = Po(C,T) and for C ∈ P̂o one has CEo = P̂o(C,T

∼
).

First, let us note that there is a one-to-one correspondence between open and closed
polytopes. The closure A of an open polytope A is a polytope, and the interior Bo in
R(B) of a polytope B is an open polytope. Next we will show, in a purely algebraic way,
that there is also a one-to-one correspondence between surjective homomorphisms
connecting two closed polytopes and surjective homomorphisms connecting two open
polytopes.

Closures of convex sets in finite-dimensional affine R-spaces were characterised
in algebraic fashion in [5]. In the case when R is a field, they can be described as
follows. For a convex set C with elements a and b, the pair (a, b) is eligible (denoted
by (a, b) ∈ E(C)) if, for any x in the interval generated by a and b with x , a, b, one has
xbs−1 ∈ C for an arbitrarily chosen s ∈ Io. It was shown in [5] that the definition does
not depend on the choice of s. So, in the case of a field, one can choose, for instance,
s = 1/2. Then the closure C of C is described as the set

{ab2 | (a, b) ∈ E(C)}. (7.2)

Lemma 7.2. Let A and B be two open polytopes, with closures A and B. Then each
barycentric algebra homomorphism h : A→ B from A onto B extends uniquely to a
barycentric algebra homomorphism h : A→ B from A onto B.

Proof. Describe the closures A and B as in (7.2) above. Note that, for each eligible
pair (a, b) of A, the pair (ah, bh) is eligible in B. Then extend the homomorphism h to
h by defining its values on elements of the form ab2, which do not belong to A, in the
only possible way as

(ab2)h = ah bh2.

Then, clearly, h is a homomorphism from A onto B. �

To show that, for each surjective homomorphism between (closed) polytopes, there
is a uniquely defined surjective homomorphism between their interiors, we first note
the following.

Lemma 7.3. Let A and B be nontrivial polytopes. Let h : A→ B be a homomorphism
from A onto B. Then, for each a ∈ Ao, one has ah ∈ Bo.
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Proof. Let G(A) = { f1, . . . , fm} be the set of vertices of A, and let G(B) = {g1, . . . , gn}

be the set of vertices of B. Note that, since h is surjective, it follows that each vertex
gi of B is the image f jh of a generator f j of A.

Then note that if an element a ∈ A has the form a = t( fi1 , . . . , fik ) for some convex
combination t and generators fi1 , . . . , fik of A, then ah = t( fi1 h, . . . , fik h). In particular,
for each element b ∈ Ao, there is a convex combination s such that b = s( f1, . . . , fm)
(see [26, Section 5.8]). Then bh = s( f1h, . . . , fmh) and { f1h, . . . , fmh} ⊇ G(B). Hence,
there is a convex combination s′ such that bh = s( f1h, . . . , fmh) = s′(g1, . . . , gn). It is
clear that b ∈ Bo. �

Corollary 7.4. Let A and B be nontrivial polytopes. Then each homomorphism
h : A→ B from A onto B restricts to a homomorphism ho : Ao → Bo from Ao onto Bo.

Proof. By Lemma 7.3, we already know that h(Ao) ⊆ Bo. By Lemma 7.2, the
restriction h : Ao → h(Ao) extends uniquely to h̄ : A = Ao → h(Ao) ⊆ B. Note that
the images under h of all the vertices of A belong to h(Ao), and hence the set G(B)
of vertices of B is also contained in h(Ao). It follows that h(Ao) = B, and hence
h(Ao) = Bo. �

Let us also mention some further properties of walls of polytopes. First, recall that
each wall of a polytope A is again a polytope, and that it is a principal wall. However,
it is also generated (as a wall) by a (finite) subset of the set G(A) of the vertices. In
particular, the wall generated by an element a ∈ Ao is the whole polytope A (see [26,
Section 5.8]).

Lemma 7.5. Let A and B be nontrivial polytopes. Let h : A→ B be a homomorphism
from A onto B. Then, for each wall W of B, the preimage h−1(W) is a wall of A.

Proof. We keep the notation from the proof of Lemma 7.3. For each gi in G(B),
let Gi be the set { fi1 , . . . , fik(i)} of vertices in G(A) with fip h = gi for p = 1, . . . , k(i).
Then it is easy to see that, for the wall [Gi] generated by Gi, one has h([Gi]) = {gi}.
Hence, the preimage of a principal wall of B consisting of one vertex is a wall. Now
consider a wall H = [g j1 , . . . , g jl ] of B generated by vertices g j1 , . . . , g jl and the wall
W = [

⋃
(G jp | p = 1, . . . , l)] of A generated by the union of all G jp . An obvious

calculation shows that h(W) = H. Consequently, the preimage of the wall H is a
wall. �

Let us note that, for a wall W of A, the image h(W) does not need to be a wall.

Proposition 7.6. Let A be a polytope. The elements h : A→ I of AD which take some
vertices of A to zero or one form the boundary ∂(AD) of AD.

Proof. Assume that A is a k-dimensional polytope with n + 1 ≥ k vertices
g0, g1, . . . , gk, . . . , gn. Recall that A is a union of k-dimensional simplices Ai, each
generated by a (k + 1)-element subset of vertices of A. The dual AiD of Ai is
isomorphic to the (k + 1)-dimensional hypercube Ik+1. The dual AD is the intersection
of the duals AiD. If the dimension of AD is equal to, say, m, then the boundary of AD
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consists of walls of dimension m − 1, and is determined by the vertices of AD. The
vertices of AD are given by the homomorphisms of AD which take some generators gi

of the polytope A to zero or one. �

Theorem 7.7. There is a duality between the categories Po and P̂o given by the
schizophrenic object Io.

Proof. Let A be an open polytope. Consider the sets ADo = Po(A, Io) and ĀD =

P(A, I). It follows, by Lemma 7.2, that any element h : A→ Io of ADo extends
uniquely to the homomorphism h : A→ Io = I of AD. Let

f : ADo → AD; (h : A→ Io) 7→ (h : Ā→ I).

Note that f is an embedding of barycentric algebras. Moreover,

f (ADo) = {h : A→ I | gih , 0, 1},

for all generators g0, . . . , gn of A. By Proposition 7.6, it follows that

f (ADo) � ADr∂(AD).

This allows us to identify ADo with the subalgebra f (ADo) of AD, which is the interior
of AD.

Now the second dual of A is given by the algebra ADE = P̂(AD, I) of
homomorphisms from AD to I preserving constants, and is isomorphic to A. Using
an argument similar to that in the first part of the proof, we may easily observe that
the restriction of ADE to the interior f (ADo) of AD consists of homomorphisms with
images contained in Io. This gives

ADE| f (ADo) � (A)o � A

and, consequently,
ADoEo � A.

To complete the proof, one uses the duality for convex polytopes described in
Section 6 and a similar argument to that used above. �

8. Duality for injective Płonka sums of polytopes

Let us recall that injective Płonka sums of polytopes are Płonka sums with injective
Płonka homomorphisms, and that they are barycentric algebras. In particular, we will
be interested in such Płonka sums over finite semilattices, and we will consider them
as members of the category C̃?. The class of injective Płonka sums of polytopes over
finite semilattices will be denoted by PP. A duality for such barycentric algebras
may be described using two dualities: the duality for polytopes described in Section 6
and the duality for semilattices described in Section 5. The role of a schizophrenic
object will be taken by the extended unit interval T = I∞. Note, however, that I∞ is
not an injective Płonka sum. Note also that the methods developed earlier concerning
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dualities for Płonka sums (see [7, 24, 25]) cannot be directly applied in our case, since
the categories considered in this section do not satisfy all the assumptions of those
works. The category of corresponding representation spaces will be denoted by P̂P.
The duality we look for should have the form

D̄ : PP→ P̂P and Ē : P̂P → PP.

For a Płonka sum A, its dual AD̄ will consist of homomorphisms from A to T. By
Corollary 2.2, the algebra AD̄ is again a barycentric algebra. It is equipped with
certain constant operations, to be described later. The category P̂P will consist of
barycentric algebras AD̄ belonging to C̃? with constants and with homomorphisms
preserving these constants. For X ∈ P̂P, its dual XĒ will consist of homomorphisms
from X to T

∼
that preserve the constant operations.

As polytopes are considered, in this section, as members of the category C?, each
homomorphism from A to T belonging to AD̄ (and, similarly, each homomorphism
from AD̄ to T

∼
belonging to AD̄Ē) maps convex subsets to convex subsets.

Lemma 8.1. Let A =
∑

s∈S As be a member of PP. Then the following conditions hold.

(a) Each wall of A has the form Ws =
∑

t≥s At for some s ∈ S .
(b) For each h ∈ AD̄, the elements of A mapped to I form a wall of A.
(c) There is a one-to-one correspondence between the walls of A and the

homomorphisms from A to I∞.

Proof. We omit the obvious proofs of (a) and (b). To show that (c) holds, it is sufficient
to note that a mapping h : A→ I∞ such that h|Ws is a homomorphism, h(Ws) ⊆ I and
h(ArWs) = {∞} is a barycentric algebra homomorphism. �

For a given s ∈ S , the homomorphism h corresponding to the wall Ws described
in the proof of Lemma 8.1 is said to be determined by s, and the set of all such
homomorphisms is denoted by Hs.

Lemma 8.2. Let A =
∑

s∈S As be a member of PP. For t ≥ s, let ϕt,s : At → As be the
Płonka homomorphism. For each h ∈ Hs and xt ∈ At,

xth = xtϕt,sh.

We omit the proof, which follows from a general description of homomorphisms
between Płonka sums (see [7, 25]).

Corollary 8.3. The set Hs of homomorphisms determined by an element s ∈ S forms
an algebra isomorphic to the algebra AsD of all homomorphisms from As to the unit
interval I. It is a subalgebra of the first dual AD̄ of A.

Proof. Let Ws =
∑

t≥s At be a wall of A. Let

Hs = {h : A→ I∞ | h(Ws) ⊆ I and h(ArWs) = {∞}}

https://doi.org/10.1017/S1446788715000683 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000683
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be the set of homomorphisms determined by s. Note that, for each h ∈ Hs, the
restriction h|As : As → I belongs to AsD. Then use Lemma 8.2 to show that each
homomorphism of AsD extends uniquely to a homomorphism h : A→ I∞. It follows
that the mapping

α : Hs → AsD : h 7→ h|As

is a bijection. We omit a standard proof showing that α is a barycentric algebra
homomorphism. �

The following lemma is a consequence of the fact that, for each s in S , the algebra
AsD has a trivial semilattice replica. See, also, the more general results of [25]
concerning so-called semilattice representations.

Lemma 8.4. Let A =
∑

s∈S As be a member of PP. The semilattice replica R of AD̄ is
isomorphic to the first dual S C of the semilattice replica S of A under the functor C of
the semilattice duality.

Note that, since S is finite, its dual SC is a lattice isomorphic to the lattice obtained
from S by adjoining a new greatest element corresponding to the improper wall S .

Lemmas 8.1–8.4 and Corollary 8.3 provide the proof of the following theorem.

Theorem 8.5. Let A =
∑

s∈S As be a member of PP. Then the barycentric algebra AD̄
is isomorphic to the Płonka sum

∑
AsD of the first duals AsD of the polytopes As over

the first dual SC of S .

Recall that the duals AsD of polytopes As are polytopes with constants 0̄ and 1̄ (and
hence with all r̄ for r ∈ I). It follows that AD̄ is, in fact, a Płonka sum with constants
(see [16, 17]). The constants are chosen from the summand AS D, determined by the
largest element S of R = SC. (Note that the constants of other summands are obtained
as homomorphic images (under Płonka homomorphisms) of the constants in the fibre
AS D.)

To describe the second dual, we will need one more basic constant operation ∞̄
in the Płonka sum AD̄, corresponding to the homomorphism h : A→ {∞}. This is
connected with the fact that the first dual of the semilattice replica S of A is a bounded
semilattice. (See also similar phenomena in the other cases of dualisations of Płonka
sums considered earlier, in [7, 9, 25].) In this way AD̄ becomes the barycentric algebra
with three constants 0̄, 1̄ and ∞̄. The schizophrenic object I∞ will also be considered
as a barycentric algebra with three constants 0, 1 and∞.

As the category P̂P, we take the class of barycentric algebras AD̄ with the three
constant operations described above and homomorphisms respecting these constants.

A reasoning, similar to the one leading to Theorem 8.5 and the dualities for
polytopes and for semilattices, provide the second dual of the category PP.

Theorem 8.6. Let A =
∑

s∈S As be a member ofPP. Then the barycentric algebra AD̄Ē
is isomorphic to the Płonka sum

∑
AsDE of the second duals AsDE of the polytopes

As over the second dual SCF of S , and hence is isomorphic to A =
∑

s∈S As.

The main result of this section follows by Theorem 8.6 and [21, Theorem 6.5].
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Corollary 8.7. There is a duality between the categories PP and P̂P.

9. Duality for quasipolytopes – first dual

In this section, we consider quasipolytopes as barycentric algebras from the class C
with the set Io of basic operations.

Our aim is to find a duality for the class QP of quasipolytopes. We look for a
duality similar to (6.1) given by a (possibly extended) schizophrenic object T . We will
discuss later which barycentric algebra T will be suitable for our purpose. The class
of appropriate representation spaces will be denoted by Q̂P. We expect the duality to
have the form

D̃ : QP→ Q̂P and Ẽ : Q̂P → QP,

with AD̃ as the set of barycentric algebra homomorphisms from a quasipolytope A to
T, and XẼ as the set of morphisms from the representation space X to T

∼
.

By Corollary 2.2, the algebra AD̃ is again a barycentric algebra, although not
necessarily a convex set. In describing our new duality, we will use the dualities
described earlier: that is, the duality (6.1) for polytopes given in Section 6, the duality
(7.1) for open polytopes of Section 7 and the duality (5.1) for semilattices considered in
Section 5, as well as the duality for Płonka sum of polytopes (considered as algebras in
the class C?) described in Section 8. We could already observe that neither the duality
for polytopes nor the duality for open polytopes could be directly extended to the class
containing both closed and open polytopes. (None of them ‘recognises’ both closed
and open sets.) In particular, neither I nor Io could play the role of a schizophrenic
object T in the case in which we are interested, in this section.

The structure of quasipolytopes is crucial for our further investigations. As recalled
in Section 3, each barycentric algebra A is a semilattice sum

⋃
s∈S As of open convex

sets As over its semilattice replica S . The semilattice replica of A is the semilattice of
its principal walls. (Note that walls of a finite semilattice are all principal.) Moreover,
A is a subalgebra of the Płonka sum

∑
s∈S Es of certain convex extensions Es (so-called

envelopes of As (see [26, Section 7])) over its semilattice replica S . We will use a
variant of this theorem in the current section. First, recall that if A is a convex set, then
the envelopes Es are subalgebras of A. In the case where A is a quasipolytope, the
Płonka sum of the envelopes Es has an even more transparent description.

Proposition 9.1. Let A be a quasipolytope and a semilattice sum
⋃

s∈S As of open
polytopes As over its semilattice replica S . Then the following conditions hold.

(a) All walls of A have the form Ws =
⋃

(At | t ≥ s) for s ∈ S . Moreover, each Ws is
the smallest wall containing As.

(b) For each s ∈ S , the envelope Es of As coincides with the wall Ws.
(c) The quasipolytope A embeds into the Płonka sum

∑
s∈S Ws of the envelopes Ws

of As, with embedding of walls as injective Płonka homomorphisms.
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Note that a wall Ws of a quasipolytope A is again a quasipolytope, and the closure
W̄s of Ws is a polytope, coinciding with the closure Ās of As.

We will also use another Płonka sum containing A as a subalgebra. First, note the
following.

Proposition 9.2. Let a quasipolytope A be a semilattice sum
⋃

s∈S As of open polytopes
As over its semilattice replica S and a subalgebra of the Płonka sum

∑
s∈S Ws of its

walls. Then the following conditions hold.

(a) The Płonka sum
∑

s∈S Ws extends to the Płonka sum
∑

s∈S W̄s =
∑

s∈S Ās.
(b) The quasipolytope A may be reconstructed from the sum

∑
s∈S Ās by removing

the boundaries of the closures Ās.

Proof. The first statement follows directly by use of Proposition 9.1 and Lemma 7.3.
The second is obvious. �

Let us note that the decomposition of a quasipolytope A into the (disjoint) sum
of open polytopes As is determined by its walls, and thus by the elements of the
semilattice replica S . There is a one-to-one correspondence between any two of the
three structures: the semilattice sums

⋃
s∈S As of open polytopes As, the Płonka sum∑

s∈S Ws of walls of A and the Płonka sum
∑

s∈S Ās of (closed) polytopes Ās. In each
of the three cases, the semilattice S is the semilattice replica of the sum. Moreover,
the lattices of walls of A =

⋃
s∈S As and of

∑
s∈S Ās are isomorphic.

As the Płonka sum
∑

s∈S Ās has injective Płonka homomorphisms, the closures Ās

are polytopes and S is a finite semilattice, it follows that Corollary 8.7 may be applied
to this Płonka sum to, in particular, provide a dual space for this sum.

Before we describe our duality, let us consider the following example.

Example 9.3. As quasipolytopes with operations Io, consider the intervals I, Io and
I/ := [0, 1). We will try to describe the first and second duals of these algebras by
taking T = I∞ as an extended schizophrenic object.

We start with the interval I. Note that the semilattice replica of I is the (meet)
semilattice S = {a, b, 0} with incomparable a and b and smallest element zero. Then
I decomposes as the semilattice sum of Ia = {0}, Ib = {1} and I0 = Io, and embeds
into the Płonka sum

∑
s∈S Īs of the closures Īa = Ia, Īb = Ib and Ī0 = I over S . The

homomorphisms h from A = I to I∞ consist of the four subalgebras:

• A1 = {h : I → I};
• Al = {h | 0 7→ I and x 7→ ∞ for x ∈ (0, 1]};
• Ar = {h | 1 7→ I and x 7→ ∞ for x ∈ [0, 1)}; and
• A∞ = {h : I 7→ ∞}.

Then A1 is isomorphic to the dual AD = P(A, I) = P(I, I), and hence to I2 (see [21]).
The subalgebra Al (and, similarly, the subalgebra Ar) can be considered as the dual 1D
of one-element polytope 1, and hence is isomorphic to I. The set {1, l, r,∞} forms the
(meet) semilattice replica R of ID̃ with smallest element ∞, largest element one and
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two incomparable atoms l and r. The semilattice R is isomorphic to the dual SC of the
semilatice replica S of I. Finally, ID̃ can be considered as the Płonka sum of A1,Al,Ar

and A∞ with Płonka homomorphisms given by

ϕ1,l : (x, y) 7→ (x,∞), ϕ1,r : (x, y) 7→ (∞, y),
ϕl,∞ : (x,∞) 7→ (∞,∞), ϕr,∞ : (∞, y) 7→ (∞,∞).

(Note that A∞ can be considered as the dual of the empty algebra.) The constants of
this Płonka sum are given by 0̄ = (0, 0) and 1̄ = (1, 1). (They generate other constants
of the form r̄ = (r, r) for r ∈ Io.) Note, also, that ID̃ is isomorphic to I∞ × I∞.

A similar analysis can be made for Io and I/. As the first duals, one obtains
subalgebras of the dual ID̃. The algebra IoD̃ is the Płonka sum of A1 and A∞, and
the algebra I/D̃ is the Płonka sum of A1, Al and A∞, all considered as barycentric
algebras with constants. Note that the three duals are pairwise distinct.

The three algebras we obtained as the first duals are Płonka sums of polytopes with
three constant operations 0̄, 1̄, ∞̄. By applying the results of Section 8, we can see
that the duals of these duals are given, respectively, by the Płonka sum

∑
s∈S Īs, the

Płonka sum
∑

s∈{1,∞} Īs and the Płonka sum
∑

s∈{1,l,∞} Īs. In particular, none of them is
isomorphic with the original algebra being dualised.

Example 9.3 shows that either I∞ is not an appropriate candidate for a schizophrenic
object, or the structure of the representation space should be chosen differently.

Now consider the extended open interval (Io)∞ as a candidate for an extended
schizophrenic object T . First, we describe the structure of the barycentric algebra
B(A, (Io)∞) of homomorphisms from a quasipolytope A to (Io)∞. Note that open
convex sets have no homomorphisms onto a nontrivial semilattice. This has two
important consequences. For each h ∈ B(A, (Io)∞) and s ∈ S , the image h(As) is
either contained in Io or consists of one element ∞. Moreover, each homomorphism
h determines a homomorphism from the semilattice replica S into the two-element
semilattice 2˜, the semilattice replica of (Io)∞. More precisely, in analogy with
properties of walls of the Płonka sum

∑
s∈S Ās, the following properties hold.

Lemma 9.4. Let A be a quasipolytope. Then the following conditions hold.

(a) A mapping h : A→ (Io)∞ such that h|Ws is a homomorphism, h(Ws) ⊆ Io and
h(A \Ws) = {∞}, is a barycentric algebra homomorphism.

(b) For each barycentric algebra homomorphism h : A → (Io)∞, the elements
mapped to Io form a wall of A.

In particular, there is a one-to-one correspondence between walls of A and
homomorphisms of AD̃.

We omit the obvious proof. Similarly, as in the case of Płonka sums of polytopes, for
a given s ∈ S , homomorphisms described in Lemma 9.4(a) are said to be determined
by s, and the set of all such homomorphisms is denoted by Hs.
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Lemma 9.5. Let A be a quasipolytope as above. Let

Ws =
⋃

(At | t ≥ s)

be a wall.

(a) The set Hs of homomorphisms determined by s is a subalgebra of AD̃.
(b) For each homomorphism h ∈ Hs, the restriction hs = h|Ws extends uniquely to a

homomorphism h̄s : W̄s → I.
(c) For t ≥ s, let ϕt,s : Wt → Ws be the Płonka homomorphism in the Płonka sum∑

s∈S Ws, and let ϕ̄t,s : W̄t → W̄s be the Płonka homomorphism in the Płonka sum∑
s∈S W̄s. For each h ∈ Hs and xt ∈ W̄t,

xth̄s = xtϕt,sh̄s.

(d) The algebra Hs is isomorphic to the algebra Hw
s = {Ws → Io} of all

homomorphisms from the wall Ws to the open unit interval Io.
(e) The algebra Hs embeds into the algebra H̄s = {W̄s → I} of all homomorphisms

from the closure W̄s of Ws to the unit interval I, the closure of Io.

Again, we omit the easy proof.

Example 9.6. Consider again the three intervals of Example 9.3. But this time take as
an object T the extended unit open interval (Io)∞. Then the first dual of I is calculated
similarly as in Example 9.3, and gives as ID̃ the Płonka sum of the open polytopes:

• Ao
1 = {h : I → Io};

• Ao
l = {h | 0 7→ Io and x 7→ ∞ for x ∈ (0, 1]};

• Ao
r = {h | 1 7→ Io and x 7→ ∞ for x ∈ [0, 1)}; and

• Ao
∞ = {h : Io 7→ ∞},

with constant operations r̄, for r ∈ Io and ∞̄, and with Płonka homomorphisms being
restrictions of Płonka homomorphisms of the previous example. Note that ID̃ is
isomorphic to (Io)∞ × (Io)∞.

In a similar way, one obtains the first duals of the intervals Io and I/ := [0, 1) as
subalgebras of ID̃, the Płonka sums of the corresponding open polytopes, with the
constants r̄ and ∞̄.

Corollary 9.7. Let Ws be a wall of a quasipolytope A =
⋃

s∈S As. The algebra Hs of
all homomorphisms determined by s forms a barycentric subalgebra of AD̃ isomorphic
to the first dual AsDo of As under the functor Do of the duality for open polytopes.

Proof. We omit the obvious proof showing that Hs is a subalgebra of AD̃. Then
it is sufficient to note that, for each s ∈ S , the algebra AsDo is the interior of the
first dual ĀsD of the closure Ās of As under the functor D of the duality for convex
polytopes, and to use the duality results for open polytopes of Section 7, Corollary 8.3
and Lemma 9.5(e). �

The following lemma may be proved in a similar fashion to Lemma 8.4.
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Lemma 9.8. Let A be a quasipolytope. The semilattice replica of AD̃ is isomorphic to
the first dual SC of the semilattice replica S of A under the functor C of the semilattice
duality.

The first main result describing the dual AD̃ of A follows directly from the preceding
results.

Theorem 9.9. Let A be a quasipolytope and a semilattice sum
⋃

s∈S As of open
polytopes As over its semilattice replica S . Then the barycentric algebra AD̃ of
homomorphisms from A to (Io)∞ is isomorphic to the Płonka sum

∑
(AsDo) of the

first duals AsDo of the open polytopes As over the first dual SC of S .

In general, the barycentric algebra AD̃ is not a quasipolytope. Observe, also, that
the algebra AD̃ is a subalgebra of the barycentric algebra (

∑
s∈S Ās)D̄ =

∑
ĀsD of

homomorphisms from the Płonka sum
∑

s∈S Ās into I∞, with the Płonka fibres of AD̃
being the interiors of the summands ĀsD.

10. Duality for quasipolytopes – second dual

The second dual of a quasipolytope A may be obtained using the second dual of
the barycentric algebra (

∑
s∈S Ās)D̄ =

∑
ĀsD and the duality for open polytopes of

Section 7, by similar methods as in the case of the first dual. This provides the
following theorem.

Theorem 10.1. Let A be a quasipolytope and a semilattice sum
⋃

s∈S As of open
polytopes As over its semilattice replica S . Then the barycentric algebra AD̃Ẽ of
homomorphisms from AD̃ to (Io)∞ is isomorphic to the semilattice sum

⋃
(AsDoEo) of

the second duals AsDoEo of the open polytopes As over the second dual SCF of S .

As a final consequence of the previous theorems, one obtains the required
duality between the category of quasipolytopes and the corresponding category of
representation spaces.

Corollary 10.2. There is a duality between the categories QP and Q̂P.

Example 10.3. We consider, again, the three intervals of Examples 9.3 and 9.6, and
the duality given by the (extended) schizophrenic object (Io)∞. The first dual ID̃ was
calculated in 9.6 as the Płonka sum of four open polytopes Ao

1, A
o
l , A

o
r and Ao

∞.
The algebra ID̃ has three proper walls:

• W1 = Ao
1;

• Wr = Ao
r ∪ Ao

1; and
• Wl = Ao

l ∪ Ao
1,

which determine, respectively, the sets of homomorphisms H1, Hr and Hl from ID̃ to
(Io)∞ and preserves the three constants 0̄, 1̄ and ∞̄. Then the algebra H1 is isomorphic
to IoDoEo � Io and the algebras Hr and Hl, both trivial, are the second duals of the
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end-points of I. The resulting algebra is a semilattice sum of these three subalgebras
and is isomorphic to I.

The second duals of the two remaining intervals are calculated in a similar fashion.

As a final remark, let us note that the methods we used in this paper do not work
in the case of bounded finite-dimensional convex sets, such as open circles, which are
not quasipolytopes. To find a duality for the class of bounded convex sets, in general,
would require different methods.
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