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INTERIOR ESTIMATES FOR ELLIPTIC PARTIAL 
DIFFERENTIAL EQUATIONS IN THEJ^A ) SPACES 

OF STRONG TYPE 

AKIRA ONO 

Introduction. Recently the Sg^^ spaces have been investigated by many 
authors and the theory of these spaces has proved to be particularly 
important for research in partial differential equations (see for example 
[15], [16] and [18] ). 

The equations of elliptic type in these spaces were first studied by C. B. 
Morrey [8], [9], who applied his well-known imbedding theorems, and 
afterwards by S. Campanato [3], [4] with the aid of isomorphism theorems 
and the so-called fundamental inequalities due to him. 

On the other hand, G. Stampacchia introduced the i ^ A ) spaces of 
strong type [17], the structures of which are more general and complicated 
than those of i?((7A) S p a c e s m the usual sense, and greater part of them 
were characterized by him, L. C. Piccinini, Y. Furusho, the author and 
others (see [5], [11]-[14], [16] and [17]). 

Furthermore, M. Nakamura has given precise interior estimates for 
elliptic partial differential equations [10] by using theorems due to S. 
Agmon, A. Doughs and L. Nirenberg [1] and previous results obtained by 
the author. 

In this paper, we will deduce more precise estimates for the solutions of 
elliptic partial differential equations in more general situations, that is, 
including equations of integral form. 

This paper is organized as follows: 
In Section 1 relevant definitions, fundamental assumptions on the 

equations and the first main theorems are stated. The proof of the 
theorems are given in Section 2. 

In Section 3 we prove the Schauder estimates, that is, the strong Holder 
continuity of the solutions. 

The main tools for the proof of these theorems are theorems and 
techniques found in [1], [3], [4], [2], [7], [6], [12], [13], [14]. 

In Section 4 we apply the Morrey-Sobolev type imbedding theorems 
proved in [12] to deduce the regularity of the lower order derivatives of the 
solutions. 

Additional comments on the above theorems are given in Section 5. 

1. The strong S?^^ estimates. Throughout this paper we denote by A, 
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£>i, D2 and D arbitrary fixed bounded domains in the Euclidean «-space 
En such that 

A c Â c Dx c Dl c D2 c Z)2 c D 

and such that all have sufficiently smooth boundaries. 
We always consider subfamilies of integrable functions on D and an 

arbitrary subcube Q of the domain D with its sides parallel to the axes 
(from now on, subcube means such a parallel subcube). Furthermore, we 
denote the measure of a subcube Q by \Q\ and the mean value of a 
function u over Q by 

UQ'.UQ = \Q\~l J u(x)dx. 

Definition 1. A function u e Lq(D) is said to belong to the space 
space of strong type/?), if the following inequality 

holds for u: 

(1) [ W W M ( Z ) ) = sup_ 

where 1 ^ /> < oo, 1 ^ q < oo, — oo < À < oo and 5 is the family of all 
systems of subcubes {Qf. U, Qj c /)} of finite number, no two of which 
have common interior point. Taking as the norm of the space ^p

q^\D), 

\W\\^X\D) = W]j?yx\D) + \M\L«(D) 

we obtain a Banach space. 
Here, we note that the domain D is occasionally replaced by the 

subdomain A, D\ or D2. 

Definition 2. The Sobolev space Hl,p(D) is the completion of the space 
Cl(D) with respect to the norm 

\\U\\H1^(D) = 2 \\D^U\\LP{D). 

Now, we consider the following linear elliptic partial differential 
equation: 

(E) 2 a^x)D^u=f(x\ u <= Hlm*(D). 

Or, of the integral form: 

(£) ' 2 Dy[apy(x)Dpu] = 2 Dyfy(x), u <= Hl*P(D), 

\y\^2m-l 

(/ < 2m) 

2(16/ - 1 

1 , 1 » ( A - ) - « e , | « * ) » < oo 
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under the fundamental assumptions for the equation (E): 
(A)^(qM I. The coefficients {ap} and the (/ — 2m)-th derivatives (/ = 

2m) of the function/belong to the spaces C m p q(D) and ^X)(D) 
• \ 

respectively, where 0 < X < n and 0 < - — - < 1. 
P q 

II. (Uniform ellipticity). There exists a constant E greater than unity 
such that the following inequality holds: 

(2) E~l\&2m^ 2 afa)? ^ E\&2m V J C G D , 
\P\=2m 

Or, for the equation (E)': 
(A)'g>(qM I. The coefficients {apy} and the functions {fy} belong to the 

spaces Cp q(D) and £Pp
q^(D) respectively, where 0 < X < n and 

n X 
0 < - - - < 1. 

p q 
II. (Uniform ellipticity). The leading coefficients satisfy the following 

condition: there exists a constant E greater than unity such that 

(2 / E-l\t\2m^ 2 apyixtiP+i ^ E\t\2m V I E D . 
\/3 + y\=2m 

Now, our first main results read as follows: 

THEOREM 1. Under the condition (A)^(qM the l-th derivatives of the 
solution u of the equation (E) belong to the space £>{

p
qM(A)and the following 

estimate holds for u: 

(3) 2 \\DPU\\^M(A) ^ C ( 2 ||Z)7Ï| ^M{D) + \\u\\LP(D)) 
\P\^l V | y | ^ / -2m ; 

where C is a constant independent of u. 

THEOREM 2. Under the condition (A)'g>(qM the l-th derivatives of the 
solution u of the equation (E)' belong to the space Se^\A ) and the following 
estimate holds for u: 

(4) 2 \\D^U\\^M{A) ^ C ( 2 \\fy\\^M(D) + \\u\\LP{D)) 

where C is a constant independent of u. 

Here, we remark that throughout this paper we denote by the same 
letter C constants possibly different but independent of the function u or 
sometimes v. 
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2. Proof of theorems 1, 2. Before proceeding to prove Theorem 1, we 
prepare some lemmas. 

LEMMA 1. [1] Let u be a Hlmp{D) solution of the equation (E) under the 
condition (A)^(^M. Then u belongs in fact to the space HP(A) and we have 

(5) \\U\\HLP(A) ^ C ( 2 WDVWLP(D) + IMI/AD)). 
V | y | ^ / -2m 7 

Here, we note that the space ^p
q'X)(D) is imbedded into the space 

LP(D) and therefore the right hand side of (5) is finite (see Lemma 2 
below). 

Next, we make the following definition so as to state Lemma 2. 

Definition 3. A function u G LP(D) is said to belong to the space Lip (a, 
p, D), that is, to satisfy a Lipshitz condition of order a in LP(D), if the 
following inequality holds for u: 

(6) [w]up(a^,D) = 

sup |A|- f l+* ( L\J^u(x + A) - D"u(x)fdx) < OO 

where 1 ^i /? < oo, 0 < a < oo and a is the greatest integer less than a. We 
define a norm ||w||Lip(^,D) by 

iu]Up(a,p,D) + IMIzZ(Z))-

Endowed with this norm, the space Lip(a, /?, D) is a Banach space. 

Then, the second lemma which we need is the following: 

LEMMA 2. [12]. The space J ^ ' \D) is isomorphic to the space 
• (n A \ 

Lip I - — - , /?, D I #«<3 we /ztfve 

(7) C-1|M|^U,A>(Z)) ^ IMlLip/„_X^D\ = CWU\\^X)(D) 

where p, q and X are arbitrary constants satisfying 1 < p < oo, 1 < q < oo, 

-q < X < n and 0 < - - - < 1. 

Now, we are going to give the 

Proof of Theorem 1. From the equation (E), we have 

2 a^(x)D^u(x) = - 2 a^(x)D^u(x) + / ( J C ) 
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2 a^x + h)D^u(x + h) 
\P\=2m 

= ~ 2 a^x + h)D^u(x + h) + / ( x + /z) 
| j8 |^2w-l 

Vx, Vx + /i G D. 

Hence, we have easily 

2 a^x)Dp(u(x + /z) - M(X)) 
1,81= 2m 

= ~ 2 («/?(* + /z) - ap(x))D^u(x + /z) 

2 a^x)(D^u(x + /z) - Dfiu(x)) + f(x + h) 
| /8 |^2w- l 

Applying Lemma 1 we obtain the following estimate for w(x + /z) — 
M(X): 

||M(X + h) - u(x)\\HLP{A) 

^ C\ 2 ll^y{ (*/** + h) - afcc) )D^u(x + h) } \\If(D]) 
V |£|^2m 

|y |^ / -2m 

+ 2 ||Z>y{fl/Kx)Z)0(M(x + h) - u(x) ) } \\LP{D]) 
\P\^-2m-\ 
\y\^l-2m 

+ 2 nw(* + A) - /WÎIIL^) 
| y |^ / -2m 

+ \\u(x + h) - u(x) \\u>{Dx)\ 

for an arbitrary vector h with norm sufficiently small such that x e DX 

and x + /z e Z)2-
This means that the following inequality holds: 

\\u{x + h) - w(x)) \\Hi*{A) 

â C { 2 I I ^ W * + A) - ^ ( x ) ) ||Lco(Di) • \\U\\HLP{D]) 

V |£|^2m 
|y |^ / -2w 
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+ 2 WapWc1 2m(D) • \W(x + h) - u(x) \\Hi \<>{Dx) 
| j3 |^2w-l 

+ \\f(x + A) - / ( x ) | | ^ - 2 ^ ( D l ) + ||i/(x + A) - M ( X ) | | L P ( D I ) | . 

Here, applying Lemma 2 t o / , Poincaré's inequality to 

\\u(x + h) - u(x) | | / / /-^(D,) 

and afterwards Lemma 1 to 

\W\\H1*(D2), 

we have 

^ c f|/i|fl( 2 li^lld 2--(Z)) + lJIMItfO) 

+ w I 2 n^iid-^^iz)) + i ) IMIL'(D) 
V | y 8 | ^ 2 m - l 7 

+ (|A| + \h\a)( 2 I k * 2—(D) 
V | /? l=2m 

+ l) 2 HDVII^)(Z))) 

^ C|A|"( 2 \\DV\\^\D) + IMIL><I») (* = - - " ) • 

Applying Lemma 2 again to the left hand side, we can conclude that the 
following estimate holds: 

2 \\DPU\\^M{A) ta c ( 2 ii^yn^^(D) + \\u\\if{DX 
|j8|^/ V | y | ^ / -2m 7 

This completes the proof of Theorem 1. 

Next, by calculations which are similar to but need more precision than 
those of the proof of Theorem 1 we give the 

Proof of Theorem 2. For this purpose, we need the following lemma 
instead of Lemma 1 : 

LEMMA 3. [1] Let u be a Hl,p(D) solution of the equation (E)' under the 
condition (Ay^(q^). Then, we have 

(8) \\U\\HI,{A) ë C ( 2 \\fy\\lP(D) + \\U\\L'(D)). 
V l y | ^2m- / 7 
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Now, from the equation (E)' we have 

2 Dy(aPy(x)Dpu(x)) = ~ 2 D\aPy(x)Dpu(x)) 
\P\=i \P\^i-\ 

\y\^2m-l \y\^2m~l 

+ 2 Dyfy(x) 
\y\^2m-l 

2 Dy(apy(x + h)Dpu(x + h)) 
\fi\=i 

\y\^2m-l 

= - 2 D\aPy(x + h)Dpu(x + A)) 

\y\^2m-l 

+ 2 Dyfy(x + A) VJC, VX + A G Z) 
| y | ^2m- / 

and therefore 

2 Dy{aPy(x)Dp(u(x + A) - a (x)) } 
I0|=/ 

| y | ^2m- / 

= - 2 £y{ ( ^ ( x + A) - ^ y ( x ) )Dpu(x + A) ) } 

|y|^2w-/ 

2 Dy{ah{x)Dp(u(x + A) - w (x) ) } 
|fl=i/-i 

|y| = 2m —/ 

+ 2 Dy(fy(X + h)-fy(x)). 
\y\^2m-l 

Applying Lemma 3 to w(x + A) — w(x), we have 

2 l i a ' W + h) - u(x))\\LP(A) 

^ C { 2 II {ah(x + A) - aPy(x) )Dpu(x + A) ||L,(Dl) 

\y\^2m-l 
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2 \\apy(x)Df(u(x + h) - u(x))\\LP(D] 
\p\^i-\ 

\y\^2m-l 

+ 2 \\fy(x + h) -fy(x)\\LP{Dl) 
\y\^2m-l 

+ \\u(x + h) - U(X)\\LP{D])\. 

Using condition (A)f^(qM I for the coefficients {apy} and applying 
Poincaré's inequality to u(x + /Î) — w(x), this is 

^ C|A|fl { ( 2 IMIcw) -INI^z 
V V 101=1/ 7 

(£>2) 

|y|^2m-/ 

lYl 

C\h\ 

1 a [ 2 ll^yllc"(/))) ' IMI//'*(D2) 
\y\^2m-l 

2 ll/yllnp(^,z)2) + I*!1"" IMI//"(i>2)) (a = - - - ) 

a ( 2 H/yliLip( ,̂Z)2) + IMI/^(Z)2))-
V |y|^2m-/ 7 

Furthermore, applying Lemmas 2 and 3 to the first and second terms 
respectively, we have 

2 \\DP(u(x + h) - U(X))\\LP{A) 

^ C\h\a 2 \\fy\\^\D) + INI 
V |y|^2m-/ 7 

Applying Lemma 2 again to the left hand side of this inequality, we 
have 

2 I ID^II^^) 

^ C( 2 \\fy\\^\D) + IMItf(Z>)V 

Hence, the proof of Theorem 2 is complete. 
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3. Schauder estimates. We begin this section with the following: 

Definition 4. We say that a function u e Ck^a(D) belongs to the space 
J{?p + a(D) (the Holder space of strong typep with exponent k + a) if the 
following condition is satisfied: 

["!#*;'«(/>) = sup ( 2 2 [^w]£«(&.)) < oo 

where k, a, p are constants such that 0 ^ k = integer, 0 < a < 1, 1 < /? 
< oo and in addition 5 is the family of all systems of subcubes of D 
considered in Definition 1. We ensure that the Space J(f*+a(D) is a Banach 
space by taking as the norm 

Mb?** «(D) = WJ?*/«(D) + m ax \u(x)\. 

Now, in place of the fundamental condition (A)^(qM on (E) or (A)f^(qM 
on (E)' we propose the following: 

(A)jp« I. The coefficients {a^} and the function / belong to the space 
3Vl

p-
lm + a(D). 

II. Same as the condition (A)^(qM II. 
(A)'jr« I. The coefficients [^y} and the functions {/y} belong to the 

space jéa
p{D). 

II. Same as the condition (A)f^(qM II. 
Then, the strong Holder continuity of the derivatives of the solution 

read as follow: 

THEOREM 3. Under the condition (A)j^«, the H2mp(D) solution u of the 
>/ -
p 

equation (E) is in fact J^l
p
 + a(A) solution of (E) and the following estimate 

holds for u: 

(9) Mb^+%4) = C(\\f\\^lp-2m + a{D) + \\U\\LP{D)). 

THEOREM 4. Under the condition {A)'^% the Hlp(D) solution u of the 
equation (E)' is infactJfl

p
 + a(A) solution of (E)f and the following estimate 

holds for u: 

(10) M b r / + w = c( 2 WfyïïjrxD) + \\u\\ifiD\ 
P \y\^2m-l ' 

For the proof of these theorems we prepare the following lemmas: 

LEMMA 4. [1] Let u be a H2m,p (D) solution of the equation (E) under the 
condition (A )^«. Then, u is in fact a Cl+a(A ) solution of the equation (E) and 
we have 

(11) IMIc^V) ^ C( \\f\\c'-^«(D) + \M\L?(D))-
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LEMMA 5. [1] Let u be a Hl'p (D) solution of the equation (E)' under the 
condition (A)'je>«. Then, u is in fact a Cl+a(A) solution of the equation (E)f 

and we have 

(12) IMIc'-vn = c ( 2 \\fy\\c\D) + \\u\\Lp{DX 
V | y |^2m-/ 7 

LEMMA 6. The space J^l
p

 + a(D) is isomorphic to the space Lip(/ -f a + 
n 
- , p, D) and we have 
P 

(13) C-1 \\u\\^%D) â I M I u p ^ + n ^ ) S C IMI^/-(l)) 

where 

n 
0 < a < 1, 1 < p < oo tfftd a + - ^ 1. 

/> 

We can prove this lemma by a procedure analogous to the proof of 
Theorem 1 in [12] and with the aid of the following: 

LEMMA 7. {-q < X < 0 [2, 7]; X = 0 [6]; 0 < X < « [14] ). 77ie .space? 

SP^ \D) is isomorphic to the space S£$ ^'(D) and we have 

(14) C" 1
 | |V||^UA) (D) ^ ||v||jg*i.(x/*))(D) ^ I|V||^UA)(Z)) 

where X is an arbitrary constant indicated above and p, q are constants 
satisfying 

l ^ / ? < o o , 1 < g < oo and - ^ - . 
q p 

In particular, for the case of —q < X < 0 we may take Jfp(D) in place of 

(i.M 
JSP^ q} (D); where 0 < a = — À/g < 1, and an analogous inequality to (14) 

Now, the proof of Theorem 3 is analogous to and simpler than that of 
Theorem 4 and therefore we give only the 

Proof of Theorem 4. By the same calculations as in the proof of Theorem 
2 and applying Lemma 3 to u(x + h) — u(x), we have 

\u(x + h) - u(x) \\Hi,P{ '(A) 

C \ 2 \\(apy(x + h) - aPy(x))Dpu\\LP{D{ 

s 2m — / 
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+ 2 \\apX(x)DP(u(x + h) - u(x) ) \\mDx) 
| /8|S/-1 

|y |S2m-/ 

+ 2 \\fy{X + h)~ fy(X) \\LP{D]) 
I Y I ^ 2 W - / 

+ ||w(* + A) - W(X)||LP (Z)I ) j . 

Furthermore, utilizing Poincaré's inequality and Lemma 5 to u this is 

^ C( ||M||C'+«(D1) • 2 H^yO + A) - afiy(x) \\LP(D 

\y\^2m~l 

W \\U\\C^«(D2) • 2 \\afiy\\LP{D 

\fi\^i-\ 
\y\^2m-l 

+ 2 \\fy(x + A) ~ fy(x) \\LP{Dl) + |A| \\U\\CH«(D2) ). 

Applying Lemma 5 to ||w||c/+a again we have 

S C [ f 2 ll/Yllc-(D) + \\u\\l/(D)} 

X \ 2 \\apy(x + A ) - ah(x)\\LP{D-

| y | ^2m- / 

+ l*l( 2 ll^yl!^) + l) J 

+ 2 ll/y(* + A) - / yWl l^Do l -
|y |^2/w-/ 

(^ » « I, this is 
Applying Lemma 6 to {apy} and {/y} taking account of the condition 

this is 

C { ( 2 \\fy\\c(D) + \M\lf(D)) 
* V | y |S2m- / 7 
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( 2 ( iWiup^»,,,) + •) 
|y|^2m-/ 

|Y|^2m-/ V V 

Applying Lemma 6 to the last term again, and furthermore noting that 

{ \\fy\\c\D) }|y|^2m-/ 

are obviously majorized by 

{ Wfy\\je;(D)}\y\^m-h 

we obtain the following inequality: 

\\u(x + h) - u(x)\\HiP{A) ^ 

c ( 2 ll/YII^D) + IML>(D)) \h\*~ 
V | y |^2m- / 7 

Hence, we can conclude that w belongs to the space Lip (/ + a + - , 
P 

p, A) and therefore to the space J$?l
p
 + a(A) by Lemma 6, and the estimate 

(10) holds for u. 
The proof of Theorem 4 is complete. 

4. Applications of Morrey-Sobolev type imbedding theorems. We have 
proved the following theorem: 

LEMMA 8. [12]. Let v be a function such that the derivatives vx belong to 
the space S^^q,\A), where p, q and X are constants such that 1 < p < oo, 1 

< < 7 < o o , 0 < X < n and 0 < - - - < 1. 
P q 

Then, the following estimates hold for v: 
(i) q < À; v belongs to the space Sffr \A) and 

(15) [v]^iW(A) ^ C \\VX\\^M{A) 

where - = - — - and r is an arbitrary constant greater than nq/X. 
q q X 

(ii) q = X; v belongs to the space 

(16) [v]^iruo){A) ^ C \\VX\\J?UM{A) 

where r is as in (i). 
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(iii) q > À; v belongs to the space J^r
 q (A) and 

(17) [V]J^-<A/*>(/<) g C IM|^u,A)(/0 

where r is as in (i). 

Here, we remark that throughout the remainder of this paper, we denote 
always by q the constant defined in (i) of this lemma. 

Combining this lemma and Theorems 1, 2, we can deduce the 
following: 

THEOREM 5. Let u be an Hl,p(D) solution of the equation (E) or (E)' under 
the condition (A)^(gM or (Ay^(qM respectively. Then, the following estimates 
hold for u: 

(i) q < À; the derivatives {D^u)\p\^i-\ belong to the space£ffr \A) and 
we have 

(18) 2 \\D^U\\^M{A) 
| j 8 | 2 i / - l 

^ c ( 2 \\DV\\^M(D) + \\u\\mD)) 
X\y\^/-2m 7 MYI^/-

in the case of (E), or 

C I 2 ll/yll^A)(Z)) + \\u\\LP{D)) 

/« the case of(E)\ where Ç, r are as in (i) of the preceding lemma. 
(ii) q = X; the derivatives {D"u}\p\^i-\ belong to the space &(r

U0)(A) and 
we have 

(19) 2 \\Dpu\\j?(m(A) ^ / ^ right hand side of (IS) 

w/zere r w ^ /w (i). 

(iii) q > À; u belongs to the space Jcr Q (A) and we have 

(20) \\u\\j?ir~^q\A} ^ the right hand side of (\%) 

where r is as in (i). 

Proof. By taking vx = {D^u}\^=/ and applying the preceding lemma the 
conclusion is immediate with the aid of Theorems 1, 2. 

Next, we shall prove that analogous results to Theorem 5 hold under 
weaker conditions than the condition (A)^(qM I or (A)'g>(qM I. 
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For this purpose, we make at first the following condition on (E) 
instead of the condition (A)^(qM I: 

n X 
(A)cp(qM r . / i^ 2m + 1, - < - and the coefficients {ap}\p\^2m a n d 

/ —2 + - — -

the functions {Dyf}\y\^i-2m belong to the spaces C p q(D) and 
£*pi

M(D) respectively. 

Although the condition (A)^(qM Y is of the same type as the condition 
(A)cf(qM I, these two conditions are essentially different: namely, 

LEMMA 9. The condition (A)^QM Y means the following: 

(i) q < X and- < - < - ; {ap}\p\^2m
 and {Dyf}\y\^i-2m-\ belong to 

the spaces 

C~~2m~]+LP~^(D) and^X\D) 

respectively and we have 

(2D 2 nz>yn^> (D) ^ c 2 \\Dy\\K«MiD). 
\y\^l-2m-\ \y\^l-2m 

(ii) q = X; {ap}\p\^2m and [Dy f}\y\^i-2m-\ belong to the spaces 

d~lm~'+'p(D)and^\D) 

respectively and we have 

(22) 2 Wf\\^m{D) ^ C 2 Wn#*XDY 
\y\^l-2m-\ | y | ^ / -2m 

(iii) q > A; {^}|yg|^2m and f belong to the spaces 

</-*"-'+te+-t)( 
/ - 2 m - X 

!(D)andJifp «(D) 

respectively and we have 

(23) ||/lbK-2*-(x/„(Z)) ^ C 2 ||/>VlbK,.x)(D) 
| y | ^ / -2m 

Proof. We note at first the following equality: 

/ - 2m + - - - = / - 2m - 1 + 
\/7 ? ( - - - + ') 
\p a / 
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n X 
= I — 2m — 1 + - — - in the case of (i) 

P 4 
n 

= I - 2m - 1 + - in the case of (ii) 
P 

and afterwards we refer the following theorem for the proof of the 
inequalities (21)-(23). 

L E M M A 10. [12] Let v be a function such that the derivatives vx belong to 
the space ^p

q'\D), where p, q and X are constants such that 1 < p < oo, 
n X 

1 < q < oo, 0 < X < n and - < -. Then, the following estimates hold 
P q 

for v: 

(i) q < X and - < - < - ; v belongs to the space ££^ \D) and we 
q p q 

have 

(24) [V]^M(D) ^ C \\vx\\^M{Dy 

(ii) q = X; v belongs to the space J£^1,0)(Z)) and we have 

(25) [v]jgrfl.0)(D) g C \\vx\\^\Dy 

1 - * 
(iii) q > X; v belongs to the space J^p

 q(D) and we have 

(26) [v]^i (A/«)(Z)) ^ C ||vx||^u,A)(Z)). 

Now, our last main result is the following: 

T H E O R E M 6. Under the conditions (A )^(QM Y and II, Hlp(D) solution (I ^ 
2m + 1) w of the equation (E) satisfies the following estimates: 

(ï) q < X and - < - < - ; {Z>^M}IPI^/ - I ôefortg to fAe .spflce <^ , A ) (v4) 
q p q 

and we have 

Z)) + IMIL'(D) J 
\P\^l-\ V|y|^/-2m 7 

(ii) q = À; {ZF w}|/?|^/-i belong to the space J?^'°\A) and we have 

(28) 2 ll^wlb*1 '0)^) = the right hand side of (21). 
Ifl^/-1 ' 

/ - * 
(iii) q > X; u belongs to the J^p

 q(A) and we have 

(29) \\u\\j?ip-^q){A) ^ the right hand side of (21). 

Proof, (i) By taking / — 1 ( ^ 2m), q in place of /, q in Theorem 1 
respectively, we can easily verify the following inequality: 
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D) + \W\\iP(D))-
\P\^l-\ V |y |^ / -2m-l 7 

And applying Lemma 9 (i) to the first term of the right hand side of the 
above inequality, we can conclude that the estimate (27) holds for w, which 
completes the proof of the case (i). 

By similar arguments as in the proof of the case (i), we can deduce the 
estimates (28), (29) for the cases (ii), (iii) respectively. 

Hence, the proof of this theorem is complete. 

Moreover, we can assert that there holds the following: 

PROPOSITION X.Letu be an Hl,p(D) solution (/ ^ 2m + 1) of the equation 
n X 

(E) under the condition (A)^(qM with - = - . Then, the estimates of the 
p P q 

same type as in Theorem 5 hold for u. 

Proof. Let r be an arbitrary constant greater than/? = nq/X. Then, using 
Theorem 6, the estimates (27)-(29) hold for u with r in place of/?. 

Hence, the conclusion follows directly by using the well known 
inequality (see [17] ): 

\\DV\^\D) ^ \\DV\\^\Dy 

Remark 1. This proposition asserts that Theorem 5 concerning the 

equation (E) (/ ^ 2m + 1) holds as long as - ^ - < - + 1, that is, it 
q p q 

is still valid for the limiting case. 
Now, we terminate this section by showing a proposition concerning the 

limiting case of the equation (E)' as follows: 

PROPOSITION 2. Let u be an Hl,p(D) solution of(E)' (1 ^ / ^ 2m) under 
the condition (A)f^(qM with p = nq/X. Then, the following estimates hold for 
u: 

(i) q ^ À; {D^u}\^^i-\ belong to the space ^^(A) and 

(30) 2 \\D^U\\^M{A) fk C ( 2 \\fy\U«M(D) + \\U\\LP(D)) 

wherep\, qx and q\ are constants such that 

ng Xpi t 7 1 1 1 
1 < P\ < p = -T-, q\ = > 1 and — = — — - . 

A n qx qx X 

/ -A 
(ii) q > X; u belongs to the space 3%L q](A) and 

https://doi.org/10.4153/CJM-1984-024-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-024-8


INTERIOR ESTIMATES 401 

(31) \\u\\jfi (^i)(/i) = the right hand side of (30) 

where p\ and q\ are as in (i). 

For the proof of this proposition, we make use of the following 
lemmas. 

(i.M 
LEMMA 11. [6]. Let v be a function belonging to the space <Sfp

y q } (D) 
(p = nq/X). Then, in fact v belongs to the space LP](D)for any constant such 
as 1 < p\ < p and 
(32) \\V\\LP{D) ^ C ||v||^(i-(^)(Z)). 

LEMMA 12. [11]. The space ^?j)
Ph"~P]\A) is isomorphic to the Sobolev 

space HX'Px (A) and 

(33) C~1\\V\\H^PKA) ^ \\V\\J?P(PW)(A) ^ C\\v\\H^Pi{A). 

Proof of Proposition 2. We give the proof for the cases (i) and (ii) 
simultaneously. 

As the functions {fy}\y\^2m-i belong to the space LPx (D) by Lemma 11, 
the following estimate holds for u by Lemma 3: 

2 \\DPU\\LPKA) S C ( 2 II/YIIL'.(Z» + \\u\\Lpi(D)). 
\P\^l X\X\^2m-l ' 

This means that the functions {D^ w}|/?l^/-i belong to the Sobolev space 
HUp] (A) and therefore to the space^{

p
p^n~P])(A) by Lemma 12. Here, we 

note that/?i is equal to nq\/\ (1 < q\ < q) and therefore 

£?(P\<»-P\)(A) = Se}x \'*\qi ''(A) 

= gû^XA) in the case of (i) 

or 

i-A 
= J^px i\ (A) in the case of (ii). 

The last isomorphism relations follow from Lemma 7. 
Hence, the proof is complete with the aid of the following inequality 

(see (32) ): 

2 \\fy\\w\D) + \M\LP\D) 
\y\^2m-l 

^ C( 2 \\fy\\^\D) + IMIl>(Z» ) 
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Remark 2. If we take the strong Morrey space Ûp
q'X\D) (p = nq/X; for 

the definition see [16]) instead of space J^ ,A)(Z>), then we can obtain 
slightly stronger results than those of Proposition 2, which are closely 
analogous to those of Theorem 5; namely, the following estimates hold for 
u\ 

(i) q < X; {/A}|0|=i/-i belong to the space SP{
p*

X)(A ) and 

(34) 2 \\DPU\\&W(A) ^ C [ 2 ||/Y|lLi^( D) + \M\LP(D) I 
\P\^l-\ X\y\^2m-l 7 

(ii) q = X; {Dpu}\p\^i-\ belong to the spaceSf{
p

h0\A) and 

(35) 2 \\D^u\y(m(A) g the right hand side of (34). 
\P\^i-\ P 

(iii) q > X\ u belongs to the space3rp
 q(A) and 

(36) \\U\\J^I W<I\A) = the right hand side of (34). 

Actually, the space lSp
q'X\D) (p = nq/X) is isomorphic to the space 

LP{D) (for the proof, see [16] or [17] ) and the conclusion is immediate by 
applying Lemmas 3, 12 and 7 successively, as in the proof of Proposition 
2. 

5. Comments on the theorems. 

1. According to [3], we make the following: 

Definition 5. Let X be a normed function space. Then, a function J is 
said to belong to the multiplie at or space on X:M(X), if the following 
inequality holds for an arbitrary function v belonging to the space X: 

(37) \\$ v\\x S C INI*. 

Therefore, we take the multiplicator spaces fairly wide so as to deduce 
the preceding theorems as follows: 

THEOREM 1. X = {u; {D^u}\mi mfy*\A)}\M{X) 

= cl~2m+p-HD). 

THEOREM 2. X = same as Theorem 1; M{X) = Cp q(D) 

THEOREM 3. X = 3#*p
 + a(A)\ M(X) = ^ ~ 2 m + %D). 

THEOREM 4. X = same as Theorem 3; M(X) = J^(D). 

THEOREM 5. the same type as Theorems 1, 2. 

THEOREM 6. the same type as Theorem 1. 

https://doi.org/10.4153/CJM-1984-024-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-024-8


INTERIOR ESTIMATES 403 

Here, we make the following: 

Remark 3. If — q < X < 0 in Theorems 1, 2, then we may set 

a = — (0 < a < 1) 
9 

and therefore 
n n 

M(X) = C~lm+a+~P(D\ Ca+?(D) respectively. 

On the other hand, in Theorems 3 and 4 M(X) = jel
p~

lm + a(D) and 
n 

J#*i(D) which are isomorphic to the spaces Lip(/ — 2m + a + - , p, D) 
P 

n 
and Lip(a + - , /?, D) respectively by Lemma 6. Obviously, these spaces 

P 
i — lm + a.-r— ai— 

are wider than the spaces C P(D) and C P(D) with their corre
sponding norms respectively. Hence, Theorems 3, 4 give more precise 
estimates for negative X than Theorems 1, 2 because of Lemmas 4-6. 

2. If - — - is equal to or greater than unity, then we can improve some 
P a 

of the preceding theorems as follow: 

THEOREMS 1, 2. The solution u belongs to the Sobolev space Hl+l'p(A ) and 
we have 

(38) IMIJ /Z+I^ ) 

= C ( | | / | | / 7 < - 2 » M + l , ( Z ) ) + \\U\\LP(D)) 

for the equation (E) or 

^ Cl 2 \\fy\\H**(D) + \W\\LP(D) ) 
V | y | ^2m- / 7 

for the equation (E)'. 

THEOREM 5. (i) q < A; the derivatives [D^u}\p\^i-\ oeI°ng t0 tne space 
^f}\A) and we have 

(39) 2 \\Dpu\\jety),A) ^ the right hand side of (3$) 
\fi\^i-\ P 

where p* is the Sobolev's exponent; that is, 

1 _ 1 _ 1 > A 

/?* p n ~ nq 

(ii) q — A; the derivatives {£^w}|/?l^/-i oe^oriS t0 tne space &(l0)(A) and 
we have 

(40) 2 \\Dpu\\jz<\,o)(A) ^ the right hand side o/(38) 
| j 8 | = i / - l P 
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where p* is as in (i). 

/ - * 
(iii) q > X; u belongs to the space J^p*

 q(A) and we have 
(41) \\u\\jfj-^/q)iA) ^ the right hand side of (3%) 

where p* is as in (i). 
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