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Abstract

We compute the p-adic L-functions of evil Eisenstein series, showing that they factor
as products of two Kubota–Leopoldt p-adic L-functions times a logarithmic term. This
proves in particular a conjecture of Glenn Stevens.
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1. Introduction

The aim of this paper is to compute the p-adic L-functions of evil Eisenstein series (also known
as critical Eisenstein series). Before stating our result, let us recall how this p-adic L-function is
defined.

Let f be a modular newform of level Γ1(N) and weight k+2, with k > 0 an integer. Let p be a
prime not dividing N , and let α and β be the roots of the Hecke polynomial X2−apX+ε(p)pk+1,
where ε is the nebentypus of f and ap is the Tp-eigenvalue of f . To attach a p-adic L-function
to f , one needs to first choose one of its p-refinements fα or fβ. These are forms on

Γ := Γ1(N) ∩ Γ0(p)

defined by

fα(z) = f(z)− βf(pz),

fβ(z) = f(z)− αf(pz),

satisfying Upfα = αfα, Upfβ = βfβ. Choosing one of those two refinements, say fβ, the p-adic
L-function of fβ is traditionally an analytic function L(fβ, σ) where the variable σ runs among
continuous characters Z∗p → C∗p. Already, early in the theory, it was observed that the salient
p-adic object that one attaches to fβ is a p-adic distribution µfβ on Zp, from which we can
retrieve the p-adic L-function by Lp(fβ, σ) = µfβ (σ). Here it is understood that σ is viewed as
a function on Zp by extending the character σ by zero on pZp. Note that the p-adic L-function
determines the restriction of the distribution µfβ to Z∗p, but ignores the distribution on pZp.
Also, it is useful to treat separately the even and odd parts µ+

fβ
and µ−fβ of the distribution µfβ .

Each of them determines the values of the p-adic L-function on half of the characters (the even
ones and the odd ones, respectively).

If ordp(β)< k+1, we are in the so-called non-critical case, and the p-adic L-function of fβ was
defined in the 1970s by the work of Mazur and Swinnerton-Dyer, Manin, Visik, and Amice-Vélu
(see e.g. [MTT86]) by interpolation of the special values of the corresponding Archimedean
L-function. To be precise, if χ is a Dirichlet character of conductor pn with n > 0, and j is an
integer in the range 0 6 j 6 k, then the p-adic L-function satisfies

Lp(fβ, χz
j) =

pn(j+1)j!

βn(−2πi)jG(χ−1)Ω±f
L(f, χ−1, j + 1). (1)

(See [MTT86, Proposition of § 14].) Here G(χ−1) is the usual Gauss sum, while Ω+
f and Ω−f are

Shimura periods chosen to ensure that the right-hand side (RHS) of (1) is algebraic; in (1), the
plus/minus sign is determined by χ(−1) = ±1.

This definition does not apply in the critical case, i.e. when ordp(β) = k + 1. More recently,
Pollack and Stevens provided a definition of Lp(fβ, σ) when ordp(β) = k + 1 but fβ is not in
the image the operator θk, the so-called non-θ-critical case (see [PS13]). Here θk is the map
from overconvergent modular forms of weight −k to overconvergent modular forms of weight
k + 2 that acts as (q(d/dq))k+1 on q-expansions. An evil Eisenstein series is θ-critical, so the
Pollack–Stevens definition does not apply. Therefore, we use the definition of Lp(fβ, σ) given
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in [Bel12] by the first-named author of this paper. This definition extends the Pollack–Stevens
construction as follows.

One uses Stevens’ notion of overconvergent modular symbols: these are group homomorphisms
from the abelian group ∆0 of divisors of degree zero on the set P1(Q) to the space of p-adic
distributions over Zp, which satisfy a special Γ-covariance condition depending on the chosen
weight k. The space of such overconvergent modular symbols is denoted SymbΓ(Dk) and is
endowed with an action of the traditional Hecke operators, and also an involution ι that commutes
with the Hecke operators. We denote by Symb±Γ (Dk)[fβ] the common eigenspace in SymbΓ(Dk)
for the Hecke operators with the same eigenvalues as fβ and for ι with eigenvalue ±1. The main
result of [Bel12] is that, under a mild technical condition on f , called decency, Symb±Γ (Dk)[fβ]
has dimension one. We can thus, if f is decent, choose generators Φ+

fβ
and Φ−fβ of these spaces,

and define the distributions µ+
fβ

and µ−fβ as the images of the divisor {∞} − {0} under Φ+
fβ

and

Φ−fβ . We then define the p-adic L-function by the usual Mellin transform: Lp(fβ, σ) = µ±fβ (σ),

where the sign ± is chosen to be σ(−1). Note that since the symbols Φ+
fβ

and Φ−fβ are defined

up to multiplication by a non-zero p-adic number, there is the same indeterminacy in the p-adic
L-function; the restriction of Lp(fβ, σ) to the space of even characters, and to the space of odd
characters, are each defined up to multiplication by a non-zero p-adic number.

Let us now turn to the case where f is a new Eisenstein series of weight k + 2 and level M .
The complete list of such Eisenstein series is easily given: there are the normal ones:

Ek+2,ψ,τ (q) = c0 +
∑
n>1

cnq
n

with
cn =

∑
d|n

ψ(n/d)τ(d)dk+1

for n > 1, and

c0 =

0 if Q > 1,
1

2
L(τ,−k − 1) = − Bk+2,τ

2(k + 2)
if Q = 1.

Here ψ and τ are primitive Dirichlet characters of conductor Q and R respectively, such that
QR = M , ψτ(−1) = (−1)k, and if ψ = τ = 1, then k 6= 0. The latter condition corresponds to the
well-known fact that holomorphic E2 does not exist. Because of this fact, there are also, when
M = ` is prime, a few exceptional new Eisenstein series

E2,` =
`− 1

24
+
∑
n>1

cnq
n with cn =

∑
d|n
`-d

dk+1.

To each new Eisenstein series f as above is attached a sign ε(f) = ±1, defined as the eigenvalue
for the ι-involution of the unique (up to scalars) classical modular symbol in SymbΓ1(M)(Vk)[f ].
(See § 2 for precise definitions; here Vk is the dual of the space of polynomials of degree at most k.)
One shows (Proposition 2.9) that ε(f) = ψ(−1) if f = Ek+2,ψ,τ and ε(f) = 1 in the exceptional
cases.

If f is a new Eisenstein series as above, and p -M , then the two roots α and β are ψ(p) and
τ(p)pk+1 (respectively 1 and pk+1 in the exceptional case). The form fα is ordinary, whereas the
form fβ is critical. The interpolation formula (1) and the well-known factorization of the classical
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L-function of f allows one to easily calculate the p-adic L-function of the ordinary p-stabilization
fα in terms of the Kubota–Leopoldt p-adic L-functions associated to the characters ψ and τ :

Lp(fα, σ) =

0 if σ(−1) = ε(f),
G(ψ)

2Q
σ−1(Q)Lp(ψ, σz)Lp(τ, σz

−k) if σ(−1) = −ε(f),
(2)

in the normal case f = Ek+2,ψ,τ , and

Lp(fα, σ) =

{
0 if σ(−1) = 1,
1
2(1− σ−1(`))ζp(σz)ζp(σ) if σ(−1) = −1,

(3)

in the exceptional case f = E2,`. Here the Kubota–Leopoldt p-adic L-function Lp(ψ, σ) is defined
by interpolation of classical values (see (44)–(45) in the proof of Proposition 6.1 for the precise
interpolation formula). We have chosen the periods Ω±f = −2πi. A proof of (2) is given in
Proposition 6.1, and (3) is similar.

Our main result is a similar formula for the critical p-stabilization fβ, when its p-adic L-
function is defined, i.e. when f is decent. For a new Eisenstein series, f is decent unless f is a
normal Eisenstein series of the form E2,ψ,τ and there exists a prime ` dividing with the same
order ν > 0 both the conductors Q and R, and such that the restriction of ψ and τ to (Z/`νZ)∗

are equal. In the rest of this article, we will always assume that our Eisenstein series f is decent
(cf. Remark 1.7 for a brief discussion of the indecent case).

To state our result, we recall from [Bel] the analytic function log
[k]
p , defined as follows. Let σ

denote a continuous character Z∗p → C∗p. The function

dkσ

dzk
· zk

σ(z)

is constant on Z∗p; we define log
[k]
p (σ) ∈ Cp to be this constant. An equivalent definition for log

[k]
p

is log
[k]
p (σ) = w(σ)(w(σ) − 1) . . . (w(σ) − k + 1) where w(σ) = logp(σ(1 + p))/ logp(1 + p). The

analytic function log
[k]
p vanishes precisely (to order 1) at the characters σ of the form z 7→ zjχ(z),

where χ is finite order and j is an integer such that 0 6 j 6 k − 1.

Theorem 1.1. Let f be a new Eisenstein series of level M and p a prime not dividing M . Let
fβ be the critical slope refinement of f . We have

Lp(fβ, σ) = 0 if σ(−1) = −ε(f). (4)

In the normal case f = Ek+2,ψ,τ , we have

Lp(fβ, σ) = σ−1(R) log[k+1]
p (σ)Lp(ψ, σz)Lp(τ, σz

−k) if σ(−1) = ε(f). (5)

In the exceptional case f = E2,`, ` prime, we have

Lp(fβ, σ) = log[1]
p (σ)(1− σ−1(`))ζp(σz)ζp(σ) if σ(−1) = 1. (6)

Note that (5) and (6) are to be interpreted as equalities up to multiplication by a
non-zero p-adic number, since their left-hand sides (LHS) are defined only up to multiplication
by a non-zero p-adic number. However, see Remark 1.6 below.
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Remark 1.2. The −ε(f)-part of the theorem is relatively easy. The proof is given in
Proposition 5.9. The ε(f)-part is much harder. The proof is given at the end of the paper.

Let χ denote a Dirichlet character of p-power conductor with χ(−1) = ε(f). It is customary to
write p-adic L-functions in terms of a variable s ∈ Zp instead of the variable σ, writing Lp(fβ, χ, s)
for what we call Lp(fβ, χ〈z〉s).1 Here 〈z〉 := z/ω(z) is the component in 1 + pZp (or 1 + 4Zp if
p = 2) of z ∈ Z∗p, and ω denotes the Teichmüller character. Similarly, the Kubota–Leopoldt p-adic
L-function is often written as a function of s ∈ Zp via:

Lp(ν, χ〈z〉s) =

{
Lp(νχ

−1ω, s) if νχ−1 is odd,

Lp(ν
−1χ, 1− s) if νχ−1 is even,

for any Dirichlet character χ of p-power conductor.
With this notation (5) becomes (for f = Ek+2,ψ,τ and χ(−1) = ψ(−1))

Lp(fβ, χ, s) = χ−1(R)〈R〉−ss(s− 1) · · · (s− k)Lp(ψχ
−1, s+ 1)Lp(τ

−1χω−k, 1− s+ k).

Equation (6) becomes (for f = E2,`, ` prime)

Lp(fβ, s) = s(1− 〈`〉−s)ζp(s+ 1)ζp(1− s). (7)

In the case p = 3, ` = 11, formula (7) was conjectured by Glenn Stevens based on numerical
computations that he carried out with Vincent Pasol using software written by Robert Pollack.

Remark 1.3. Ander Steele (work in preparation) has taken a different approach towards
Theorem 1.1. In his thesis, Kalin Kostadinov constructed a p-adic family of modular symbols for
Γ0(11) and p = 3 valued in a space of distributions ‘with rational poles,’ and showed that the
appropriate specialization of this family yields the formula for the p-adic L-function conjectured
by Pasol–Stevens [Kos10]. The work of Steele generalizes Kostadinov’s result using the Shintani
cocycle for GL2(Q) to construct families of modular symbols valued in distributions with poles;
he shows that this cocycle specializes to the p-adic L-function of any evil Eisenstein series.

Remark 1.4. Let us indicate some future arithmetic applications of the result of this paper.
A natural question is whether the Iwasawa main conjecture holds for evil Eisenstein series.

A statement of the main conjecture in a setting sufficiently general to contain the case of evil
Eisenstein series was first given by Perrin-Riou, and then recently reformulated in terms of
(φ,Γ)-modules by Pottharst. Thus, by their work, one disposes of an algebraic p-adic L-function
of an evil Eisenstein series. This paper computes a formula for the analytic p-adic L-function of an
evil Eisenstein series. The main conjecture is the assertion that the two are equal. This conjecture
is proved in a work in preparation by Yurong Zhang, who has computed, using Pottharst’s
definition and computations of cohomology of (φ,Γ)-modules, a formula for the algebraic p-adic
L-function which exactly matches ours.

Once the main conjecture for evil Eisenstein series is proved, a possible application could be
to propagate the main conjecture to classical points on the eigencurve sufficiently close to evil
Eisenstein points (or perhaps to all the classical points on the irreducible components through
them), in the spirit of [EPW06]. Those points correspond in general to cuspidal non-CM forms
with a non-ordinary (but non-critical either) refinement, and the main conjecture for those
forms is not known.

1 Here we have chosen the convention of [MTT86]. Note that [GS93] and other works of Stevens use the convention
Lp(fβ , χ, s) = Lp(fβ , χ〈z〉s−1) exacted by the change of variable s 7→ s− 1.
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Another application in the same spirit would use the easy part of our theorem, that is,

the identical vanishing of our p-adic L-function on half of the weight space, to deduce some

information about the µ-invariant of ordinary modular forms. This application is an idea of

R. Pollack and a joint work on it is in progress with him.

Remark 1.5. An important open question about the Eisenstein series fβ is whether there exist

non-classical overconvergent modular forms that are generalized Hecke eigenvectors with the

same eigenvalues as fβ. If we call e the dimension of the space of such forms (classical or not),

the question is whether e = 1. When f = Ek+2,ψ,τ , the following assertions are equivalent.

(a) We have e = 1.

(b) In the category of p-adic GQ-representations, the unique non-split extension of ψ by

τ(k + 1) that has good reduction everywhere in the sense of Bloch–Kato is non-split at p; that

is, the restriction map

H1
f (Q, ψ−1τ(k + 1)) → H1

f (Qp, ψ
−1τ(k + 1))

is injective (hence an isomorphism, since both the source and the target have dimension one).

(c) We have Lp(ψ
−1τ, zk+1) 6= 0.

The equivalence is proved in [BC06] in the case τ = ψ = 1. The general case can be proved

similarly, using [Bel12]. It is conjectured that these properties always hold; in fact, (b) is a

consequence of Jannsen’s conjecture [Jan87], cf. [Bel09, Prediction 5.1]. It is widely expected

that a proof of such a result would require some progress in transcendence theory (e.g. a suitable

generalization of Baker’s results on independence of logarithms, as adapted by Brumer to the

p-adic setting, to the case of polylogarithms).

It is proved in [Bel12] that if e > 2, then Lp(fβ, σ) vanishes at every interpolation character

σ, i.e. characters of the form χzj with χ a finite-order character and j an integer 0 6 j 6 k. An

example is given to show that this does not necessarily hold when e = 1.

Let us check that this result is compatible with Theorem 1.1 in the case of a normal Eisenstein

series with ψ = τ = 1, so k is even and k > 2 (other cases are similar). Observe that the

factor log
[k+1]
p (σ) has a simple zero at every interpolation character and no other zeroes. So

the only interpolation characters σ for which Lp(fβ, σ) may possibly not vanish are the poles

of Lp(ψ, σz) = ζp(σz) and Lp(τ, σz
−k) = ζp(σz

−k). The p-adic zeta function ζp(σ) has (simple)

poles precisely at the characters σ(z) = 1 and σ(z) = z. Since we are interested in characters σ

such that σ(−1) = 1, the only pole of the second factor ζp(σz
−k) is σ = zk. For this σ, the other

term in our factorization formula for Lp(fβ, σ) is ζp(σz) = ζp(z
k+1), which by the equivalence

between (a) and (c) vanishes if and only if e 6= 1. Therefore, we find that Lp(fβ, z
k) is non-zero

if and only if e = 1. A similar analysis holds for the pole of the first factor ζp(σz) at σ = 1, using

the functional equation of the p-adic zeta function. Our factorization formula therefore conforms

with the result proved in [Bel12] and mentioned in the previous paragraph. Unfortunately, but

not surprisingly, we cannot prove independently that Lp(fβ, z
k) 6= 0 and therefore conclude the

Leopoldt-like conjecture (a) (equivalently, (b) and (c)).

Also, note that in the exceptional case f = E2,`, one always has e = 1. This follows from (6),

which shows that Lp(fβ, σ) does not vanish when σ is the trivial character.
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Remark 1.6. With the notation of the preceding remark, assume e = 1. Then it is possible to

reduce the indeterminacy of the modular symbol Φ
ε(f)
fβ

, hence of the p-adic L-function Lp(fβ, σ).

Actually, e = 1 is equivalent to the fact that the map

ρk : Symb
ε(f)
Γ (Dk)[fβ] → SymbΓ(Vk)[fβ]

is an isomorphism. Here, ρk is induced by the restriction map (i.e. ρk sends a distribution to the
linear form it induces on polynomials of degree at most k). One can then pick an element φfβ in

SymbΓ(Vk) and ask that ρk(Φ
ε(f)
fβ

) = φfβ , which reduces the indeterminacy on Φ
ε(f)
fβ

to whatever

indeterminacy we have in our choice of φfβ . We shall consider two ways to normalize φfβ .
The first normalization, following Pollack–Stevens, is the one used in [PS13] in the cuspidal

critical slope case: if L is a finite extension of Qp on which φfβ is defined, and if OL is
its ring of integers, we normalize φfβ to be a generator of the free OL-module of rank one

SymbΓ(Vk(OL))[fβ]. This determines φfβ , and hence Φ
ε(f)
fβ

and Lp(fβ, σ), up to multiplication

by an element of O∗L instead of L∗. In particular, p-adic orders of the value of Lp are well-defined.
One can then ask for an integral version of (5), which would hold up to a unit in OL. We shall
content ourselves with the case f = Ek+2,1,1 for an even k > 2. In this case, assuming p 6= 2,

Lp(fβ, σ) =
pk−1

ζp(k + 1)k!
log[k+1]

p (σ)ζp(σz
−k)ζp(σz), (8)

where Lp(fβ, σ) is normalized following Pollack–Stevens, and = here means equality up to a unit
in OL. Note that ζp(k+ 1) 6= 0 since we have assumed e = 1. To prove (8), it suffices to evaluate
both sides of (5) at the character σ(z) = zk. For the LHS one uses [Bel12, Example 4.10], and
for the RHS one uses the well-known residue of ζp at the character σ = z (cf. [Col00]). It is
also possible to prove a formula in the general case using a similar method; we leave this to the
interested reader.

The second normalization is the one used by Stevens in the case f = E2,` when ` = 11 and
p = 3. It can be used for the exceptional Eisenstein series E2,` without restriction on ` and p
(since e = 1 in the exceptional case). One simply requires φfβ ({∞}−{0}) = 1, which determines

φfβ , and hence Φ+
fβ

and L(fβ, σ), uniquely. One then has

Lp(fβ, s) =
p− 1

p logp(`)
s(1− 〈`〉−s)ζp(s+ 1)ζp(1− s). (9)

Here = means a genuine equality, and we say that Lp(fβ, s) is normalized following Stevens. If
p = 3, ` = 11, one obtains the precise formula conjectured by Stevens (unpublished).

We now give some indications about the proof of Theorem 1.1. The basic difficulty in
computing the p-adic L-function of a modular form of critical slope is that the interpolation
property does not suffice to characterize the p-adic L-function, in contrast to the case of
non-critical slope (in particular ordinary) modular forms. The basic strategy to overcome this
difficulty is the same as the one used in the CM case in [Bel]: there is an injective map

Θk : SymbΓ(D−2−k) −→ SymbΓ(Dk)

induced by the (k + 1)st derivative on distributions, which serves as a close analog of
the aforementioned map θk on overconvergent modular forms. The map Θk commutes with the
action of the Hecke operators and the ι involution, up to a simple twist (T` and U` are multiplied
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by `k+1, ι by (−1)k+1). The basic strategy is to find an eigenvector Φ−2−k in SymbΓ(D−2−k)

whose eigenvalues are such that the eigenvalues of ΘkΦ−2−k are those of Φ±fβ . By uniqueness, we

would know that ΘkΦ−2−k = Φ±fβ up to a scalar, and from this it is easy to deduce a relation

between the p-adic L-function of Φ±fβ (the very object we are trying to compute) and the one

of Φ−2−k. We then hope to get some grasp on the p-adic L-function of Φ−2−k, which is now an

ordinary modular symbol. This can perhaps be done by putting it in a family of ordinary modular

symbols Φk′ whose p-adic L-functions can be computed for positive integer k′, or by other means.

In our case, since Φ±fβ has the eigenvalues (for the T`, Up and diamond operators) of the

critical Eisenstein series fβ = Ecrit
k+2,ψ,τ , the sought-after Φ−2−k should have the eigenvalues

of the ordinary p-adic Eisenstein series Eord
−k,τ,ψ (note the negative weight, and the inversion of

the order of the characters). It should also have sign, i.e. eigenvalue for ι, equal to ±(−1)k+1.

When the sign ± is −ε(fβ) = −ψ(−1), we therefore want Φ−2−k to be of sign τ(−1). In this

case, we can find a suitable Φ−2−k which is in fact a boundary modular symbol that we can

compute explicitly. It is then easy to compute its p-adic L-function, which is always zero. This

allows the determination of half of the p-adic L-function of fβ, and accounts for the easy part

of Theorem 1.1.

Unfortunately, this method fails for the other, more interesting, part of that p-adic L-function,

the one of sign ± = ε(fβ) = ψ(−1). There are simply no modular symbols Φ−2−k with the right

eigenvalues and the right sign −τ(−1) (at least when e = 1 in the sense of Remark 1.5, which is

always expected to be the case.) To solve this problem, we employ the notion of partial modular

symbols due to the second-named author (see [Das04, DD06]). A partial modular symbol is a

modular symbol defined only on the divisors of degree zero on a non-empty subset C of the set

of cusps P1(Q), instead of the whole set of cusps P1(Q) as for a usual full modular symbol.

From the point of view of partial modular symbols for a subset C of cusps, an Eisenstein

series that vanishes at all the cusps in C looks like a cusp form. It is therefore possible to attach

to such an Eisenstein series a partial modular symbol by integration, exactly as one does in the

Manin–Shokurov construction of modular symbols attached to cusp forms. For example, if

the Eisenstein series Ek+2,τ,ψ vanishes at both the cusps zero and ∞ (this is the case when

both τ and ψ are non-trivial), it is possible to attach by integration (and Stevens’ lifting) an

ordinary partial modular symbol Φk in SymbΓ,C(Dk) for a suitable set of cusps C containing

zero and ∞ with the same eigenvalues as Eord
k+2,τ,ψ and the right sign −τ(−1).

Moreover, the very construction by integration of Φk allows us to compute its p-adic

L-function as a product of two Dirichlet p-adic L-functions. By interpolation, using computations

made in [DD06], we can define a partial modular symbol Φ−2−k in SymbΓ,C(D−2−k) with the

right eigenvalues and sign.

To finish the proof we need to deduce that ΘkΦ−2−k is the same, up to a non-zero scalar,

as the restriction to the set of cusps C of the full modular symbol Φ
ψ(−1)
fβ

. For this we need to

know two things: that the eigenspace we are considering in the space of partial modular symbols

has dimension one, and that the restriction of Φ
ψ(−1)
fβ

to a partial modular symbol over C is still

non-zero. The first of these facts is proven with a method that is similar to the one used in [Bel12]

to prove the same result for full modular symbols: it involves constructing the eigencurve for

partial modular symbols and comparing it with various other eigencurves. The second of these

facts is perhaps the most technically difficult point of the paper: it involves a very careful study

of boundary overconvergent modular symbols.
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This description of our method applies for an Eisenstein series that vanishes at zero and ∞,
but not all Eisenstein series are of this type. However, if f is an Eisenstein series, it is always
possible to chose two auxiliary primes `1 and `2 and a linear combination g of f(z), f(`1z), f(`2z)
and f(`1`2z) that vanishes at both zero and ∞. By applying the method described above to g,
with some complication due to the fact that g is no longer a newform, we eventually get a
formula for the p-adic L-function of fβ which is (5) up to parasitic factors involving `1 and
`2. An important point in the proof is the fact that the eigencurve is still smooth at the old
point g, which can be proved assuming that `1 and `2 are outside a set of bad primes depending
on f . When f is a normal Eisenstein series, the set of bad prime is finite, and by letting the
auxiliary primes `1 and `2 vary, we can show that the parasitic factors cancel, yielding our desired
result in the normal case. This methods breaks down in the exceptional case f = E2,` because
for all choices of an auxiliary prime `1, the eigencurve of tame level ``1 is non-smooth (even
non-irreducible) at the old point corresponding to f . We therefore need an alternative method
for the final steps of our proof, which we provide in the last section, based on a certain numerical
coincidence that arises only in the exceptional case.

Remark 1.7. Let us discuss now briefly what happens in the indecent case. Let f = Ek+2,τ,ψ be
a normal new Eisenstein series which is not decent and let fβ be its critical refinement. Let C
be the set of cusps where fβ vanishes. Then it is still possible to construct a canonical partial

modular symbol Φ
ψ(−1)
fβ ,C

in SymbΓ,C(Dk) with the Hecke eigenvalues of fβ and the right sign

ψ(−1). Indeed, since ψ 6= 1 and τ 6= 1 in the indecent case, C contains the cusp zero and ∞ and
we are in the simplest case of Definition 6.2, the case when N = QR and there is no auxiliary

prime `1 or `2. We define Φ
ψ(−1)
fβ ,C

as the modular symbol denoted by Φcrit
k in Corollary 6.7.

Moreover, that corollary shows directly that the p-adic L-function attached to Φ
ψ(−1)
fβ ,C

(which is

defined because C contains 0 and ∞) is given by Theorem 1.1. Note that since there is no
auxiliary prime `1 or `2 in this case, the geometric arguments of § 6.3, which use decency, are
not needed.

We thank the referee for a suggestion allowing one to prove that when ψ 6= τ , there is

actually a canonical full modular symbol Φ
ψ(−1)
fβ

in SymbΓ(Dk) with the same eigenvalues of fβ

and the right sign ψ(−1), whose restriction to C is Φ
ψ(−1)
fβ ,C

, and in particular, which has its p-adic

L-function given by Theorem 1.1. Indeed, if f is not decent and ψ 6= τ , there exist two integers
N0 > 1 and d such that N = N0d

2, and three Dirichlet characters ψ0, τ0, and η such that η is of
conductor d, τ = ητ0, ψ = ηψ0, and f0 = Ek+2,ψ0,τ0 is a decent Eisenstein series of level Γ1(N0).
One can then make use of the twisting map

twη : SymbΓ1(N0)(V ) → SymbΓ1(N)(V )

φ 7→
d−1∑
i=0

η(i)φ
|
(

1 i/d
0 1

)
to define Φ

ψ(−1)
fβ

as the image by twη of Φ
ψ0(−1)
(f0)β0

. The fact that twη commutes with all operators

used in this paper makes it easy to prove that this Φ
ψ(−1)
fβ

has the desired properties.

Thus, if we had agreed to define the p-adic L-function of fβ as the one associated to the

canonical modular symbol Φ
ψ(−1)
fβ ,C

(or Φ
ψ(−1)
fβ

when ψ 6= τ) then Theorem 1.1 would be proved

even in the indecent case. However, as we do not know whether Φ
ψ(−1)
fβ ,C

(or Φ
ψ(−1)
fβ

) are unique

up to a scalar in their respective eigenspaces, we refrain from defining the p-adic L-function in
the indecent case.
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2. Partial modular symbols

2.1 Hecke operators
Let Γ and Γ′ be congruence subgroups of GL2(Q), S a submonoid of GL2(Q) containing Γ and
Γ′, and W a right S-module. For each double coset ΓsΓ′ with s ∈ S, we have a morphism

[ΓsΓ′]W : WΓ
→ WΓ′

called a Hecke operator, defined by

w|[ΓsΓ′] =
∑
i

w|si .

Here the si ∈ S are defined by

ΓsΓ′ =
∐
i

Γsi (finite decomposition).

We often drop W from the notation of the Hecke operators.
In this paper, W will always be a vector space over a field L of characteristic zero, and the

action of S will be L-linear. It follows that the Hecke operators are also L-linear.
We recall standard names for some Hecke operators that we will use throughout the paper.

When Γ = Γ′ is Γ1(N), Γ0(N), or any group in between, we denote by T` (respectively U`) the
Hecke operator [Γ

(
1 0
0 `

)
Γ] for ` - N (respectively for ` | N). Note that

Γ

(
1 0
0 `

)
Γ =

`−1∐
a=0

Γ

(
1 a
0 `

)∐
Γ

(
` 0
0 1

)
if ` - N . The same holds without the last coset for ` | N . For a ∈ (Z/NZ)∗, we denote by 〈a〉 the
Hecke operator ΓsaΓ, where sa is any matrix in Γ0(N) whose upper-left entry is congruent to
a (mod N). All these operators commute.

Now let M , N , and t be positive integers such that Mt | N . Let Γ = Γ1(M) or Γ0(M), and
let Γ′ = Γ ∩ Γ0(N). Let αt =

(
1 0
0 t−1

)
and denote by Vt the operator

t−1[ΓαtΓ
′] : WΓ

→ WΓ′ .

Observe that ΓαtΓ
′ = Γαt, so w|Vt = t−1w|αt . It follows that Vtt′ = VtVt′ whenever Mtt′ | N , so

it is enough to consider V` for ` a prime factor of N/M . It is clear that V` commutes with any
operator T`′ or U`′ for `′ 6= `, as well as with the diamond operators.

A simple computation shows that if we write iΓ,Γ′ for the inclusion WΓ
→ WΓ′ , then

w|V`U` = iΓ,Γ′(w), (10)

and if ` | N but ` -M , then

iΓ,Γ′(w|T`) = iΓ,Γ′(w)|U` + `w|V`T (`,`), (11)

where T (`, `) is the operator Γ′
(
` 0
0 `

)
Γ′.

Finally, we let α∞ :=
(

1 0
0 −1

)
∈ S and define an involution ι : WΓ

→ WΓ by ι = [Γα∞Γ]. Note
that ι is simply given by w 7→ w|α∞ .

Let Wuniv be the Q-vector space of maps S → Q, endowed with its obvious right S-action
by left-translations. We write H(S,Γ) for the Q-algebra generated by all Hecke operators [ΓsΓ]
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acting on Wuniv. It is easy to see that H(S,Γ) acts on every right S-module W (by letting
[ΓsΓ]Wuniv act by [ΓsΓ]W ), making W a right H(S,Γ)-module.

The basic example of these actions is when W is the space of holomorphic functions
f : H → C, where H is the Poincaré upper half-plane, and S = GL+

2 (Q) (matrices with positive
determinant) acts by

f|γ(z) = (det γ)k+1(cz + d)−k−2f

(
az + b

cz + d

)
for γ =

(
a b
c d

)
, (12)

for a fixed integer k. Then WΓ contains the space of modular forms of level Γ and weight k + 2
as a subspace stabilized by the action of H(GL+

2 (Q),Γ). The reader can check that with these
conventions, if f(z) =

∑∞
n=0 anq

n with q = e2iπz, then

f|V`(z) = f(`z) =
∞∑
n=0

anq
`n

and

f|U`(z) =

∞∑
n=0

an`q
nz.

2.2 Definition of partial modular symbols
We let GL2(Q) act on the left on P1(Q) by γ · x = (ax+ b)/(cx+ d). Let Γ be a congruence
subgroup of SL2(Z). Let C be a non-empty Γ-invariant subset of P1(Q). We denote by ∆C the
abelian group of divisors on C, i.e.

∆C =

{∑
c∈C

nc{c} : nc ∈ Z, nc = 0 for almost all c

}
,

and by ∆0
C the subgroup of divisors of degree zero (i.e. such that

∑
c∈C nc = 0). The group Γ

acts naturally on the left on ∆C and ∆0
C .

If V is any abelian group endowed with a right action of Γ, we provide Hom(∆0
C , V ) with a

right Γ-action by setting, for φ ∈ Hom(∆0
C , V ),

φ|γ(D) = φ(γ ·D)|γ .

Definition 2.1. A partial modular symbol on C for Γ with values in V is a Γ-invariant element
φ ∈ Hom(∆0

C , V ). We write

SymbΓ,C(V ) := Hom(∆0
C , V )Γ

for the abelian group of partial modular symbols.
When C = P1(Q), we drop C from the notation and call SymbΓ(V ) the space of (full) modular

symbols for Γ with values in V .

Assume that we are given a submonoid S of GL2(Q) containing Γ that acts on the right on
V in a way extending the action of Γ, and that preserves the set C ⊂ P1(Q). Then Hom(∆0

C , V )
has a natural right action of S extending the one of Γ, and thus SymbΓ,C(V ) is endowed with
a right action of the Hecke algebra H(S,Γ). It is clear that SymbΓ,C(V ) is a functor from the
category of right Γ-modules V (respectively right S-modules V ) to the category of abelian groups
(respectively right H(S,Γ)-modules).
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2.3 Comparison between partial and full modular symbols
The exact sequence of abelian groups

0 → ∆0
C → ∆C → Z → 0

is split, and hence we have an exact sequence of S-modules:

0 → V → Hom(∆C , V ) → Hom(∆0
C , V ) → 0. (13)

The long exact sequence of group cohomology for Γ attached to this short exact sequence gives
an exact sequence of H(S,Γ)-modules:

0 // V Γ // Hom(∆C , V )Γ bC // SymbΓ,C(C)
hC // H1(Γ, V ). (14)

Definition 2.2. We write BSymbΓ,C(V ) for the image of the map bC in the above exact
sequence, and call this submodule of SymbΓ,C(V ) the module of boundary partial modular
symbols.

By (14), we have an isomorphism of H(S,Γ)-modules

BSymbΓ,C(V ) ' Hom(∆C , V )Γ/V Γ (15)

and an exact sequence of H(S,Γ)-modules

0 // BSymbΓ,C(V ) // SymbΓ,C(V )
hC // H1(Γ, V ). (16)

When C = P1(Q), this exact sequence is well known and we have a commutative diagram:

0 // BSymbΓ(V ) //

��

SymbΓ(V ) //

resC

��

H1(Γ, V )

'
��

0 // BSymbΓ,C(V ) // SymbΓ,C(V ) // H1(Γ, V )

An easy diagram-chase yields the following result.

Lemma 2.3. The kernel of the restriction map

resC : SymbΓ(V ) → SymbΓ,C(V )

is contained in BSymbΓ(V ).

2.4 Cohomological interpretation
In this subsection we mimic the arguments of [AS86, Proposition 4.2] to give a cohomological
interpretation of partial modular symbols.

Let H be the Poincaré upper half-plane, and HC = HtC with its usual topology. Let V be
the constant sheaf on HC . The long exact sequence of relative cohomology of (HC , C) gives

0 → H0(HC , C, V ) → H0(HC , V ) → H0(C, V ) → H1(HC , C, V ) → H1(HC , V ).

The first term H0(HC , C, V ) vanishes because HC is connected and C is not empty. The last
term H1(HC , V ) also vanishes because HC is contractible. We therefore obtain an exact sequence
of Γ-modules

0 → H0(HC , V ) → H0(C, V ) → H1(HC , C, V ) → 0. (17)
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We claim that (17) is isomorphic as an exact sequence of S-modules to the sequence (13).

Indeed there is a natural isomorphism H0(HC , V ) → V since HC is connected, and a natural

isomorphismH0(C, V ) → Hom(∆C , V ) since C is discrete. Thus there is an isomorphismH1(HC ,

C, V ) → Hom(∆0
C , V ). By taking the Γ-invariants, there is an isomorphism H1(HC , C, V )Γ

→

SymbΓ,C(V ). The Hochschild–Serre spectral sequence then leads to the following proposition.

Proposition 2.4. There is a natural H(S,Γ)-equivariant isomorphism, functorial in V :

SymbΓ,C(V ) ∼= H1(Γ\HC ,Γ\C, Ṽ ),

where Ṽ is the sheaf on Γ\HC corresponding to V .

2.5 Classical partial modular symbols
Let L be a field of characteristic zero and k > 0 an integer. Recall that the algebra H(GL+

2 (Q),Γ)
acts naturally on the space of modular forms Mk+2(Γ, L), cusp forms Sk+2(Γ, L), and Eisenstein
series Ek+2(Γ, L). Let Pk(L) be the L-space of polynomials in one variable z of degree at most
k. Let S = GL2(Q) act on the left on Pk(L) by

(γ · P )(z) = (a− cz)kP
(
dz − b
a− cz

)
. (18)

Define Vk(L) = Pk(L)∨ = HomL(Pk, L) with a right action of S given by

f|γ(P ) = f(γ · P ) for all P ∈ Pk(L).

The space SymbΓ(Vk(L)) is called the space of classical modular symbols of weight k over L. We

call SymbΓ,C(Vk(L)) the space of classical partial modular symbols.

We write h for the natural map

h : SymbΓ(Vk(L)) = H1
c (Γ,Vk(L)) → H1(Γ,Vk(L)).

The following proposition is a version of the classical Eichler–Shimura isomorphism.

Proposition 2.5. Assume that the congruence subgroup Γ satisfies Γ1(N) ⊂ Γ ⊂ Γ0(N) for

some integer N . Then, after possibly replacing L by a finite extension, the following hold:

(i) we have an exact sequence of H(GL+
2 (Q),Γ)-modules

0 −→ BSymbΓ(Vk(L)) −→ SymbΓ(Vk(L))
h−→ H1(Γ,Vk(L)) −→ Ek+2(Γ, L) −→ 0;

(ii) there exists an isomorphism of H(GL+
2 (Q),Γ)-modules

Imh ' Sk+2(Γ, L)2;

(iii) there exists an isomorphism

BSymbΓ(Vk(L)) ' Ek+2(Γ, L)

that is compatible with the Hecke operators T` for ` - N , U` for ` | N , and 〈a〉 for a ∈
(Z/NZ)∗.
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Proof. The point (ii) is the most classical. A convenient reference is [Hid93, § 6.3, Theorem 1].
Let us recall the salient point of the proof. One defines an R-linear map compatible with the
action of H(GL+

2 (Q),Γ),

φ : Sk+2(Γ,C) → SymbΓ(Vk(R))

f 7→ φf ,

by the formula

φf ({x} − {y})(P ) = Re

∫ x

y
f(z)P (z) dz

for any two cusps x and y. One proves that h ◦ φ is injective by proving that it transforms
the real or imaginary part of the Peterson inner product (in the cases k is odd or k is even,
respectively) into the Poincaré duality product. So h ◦ φ defines an injective map Sk+2(Γ,C) →

Imh which is proved to be an isomorphism by equality of dimension of the target and the source.
Complexifying, we get the desired isomorphism over C. To deduce it over some finite extension
of Q, we need to choose a period for each new form.

To prove (i), we construct a map ψ : Ek+2(Γ,C) → H1(Γ,Vk(C)) by sending f to the class
of the cocycle

γ 7→
(
P 7→

∫ γx

x
f(z)P (z) dz

)
,

where x is a fixed point in H. It is clear that this map does not depend on x, is injective, and
is compatible with the action of H(GL+

2 (Q),Γ). The image of ψ has trivial intersection with
Imh since Eisenstein series and cupsidal forms have different systems of Hecke eigenvalues, and
actually H1(Γ,Vk(C)) = Imh⊕ Imψ by dimension-counting. The result follows.

To show (iii), note that BSymbΓ(Vk(L)) = kerh is in perfect duality (with respect to the
Poincaré bilinear map on SymbΓ(Vk(L)) induced by the natural self-duality on Vk(L)) with
coker h = Ek+2(Γ, L). For this duality the T` are self-adjoint, but not the U` and 〈a〉. However,
there exists a slight modification of Poincare’s pairing [DS05, Exercise 5.5.1] that is still perfect
and for which the U` and 〈a〉 as well as the T` are self-adjoint. This gives an isomorphism
BSymbΓ(Vk(L)) ' Ek+2(Γ, L)∨. Since it is not hard to prove (e.g. [Bel10]) that Ek+2(Γ, L) is
self-dual as a module over the Hecke operators T`, U`, and 〈a〉, the result follows. 2

Remark 2.6. We warn the reader that if M,N , and t satisfy Mt | N , then the isomorphisms
of Proposition 2.5(iii) for Γ = Γ1(M),Γ1(N) may not in general be chosen to be compatible
with the Hecke operators Vt. Actually, in § 2.7, we shall provide an independent proof of the
special case of (iii) that we need in this paper. Namely, for f an Eisenstein series for Γ1(M), and
Γ = Γ1(N) for N a multiple of M satisfying certain conditions (cf. (24)), we shall construct an
explicit isomorphism

BSymbΓ(Vk(L))[f ] ' Ek+2(Γ, L)[f ]

and we shall also compute the actions of the operators Vt on both sides. This computation will
play an essential role in § 5, and will also make clear that in some cases no isomorphism can
respect these operators.

Corollary 2.7. Retain the assumptions of Proposition 2.5. Let C be non-empty set of cusps
that is stable under Γ. As a module over the algebra generated by the Hecke operators T` (or U`)
for all primes ` such that

(
1 0
0 `

)
stabilizes C, and 〈a〉 for all a ∈ (Z/NZ)∗ such that sa stabilizes

C, the semi-simplification of SymbΓ,C(Vk(L)) is isomorphic to a submodule of two copies of
Mk+2(Γ, L).
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Proof. We have the commutative diagram

0 // BSymbΓ(Vk(L)) //

a

��

SymbΓ(Vk(L))
h //

��

H1(Γ,Vk(L)) //

=

��

Ek+2(Γ, L) //

b

��

0

0 // kerhC // SymbΓ,C(Vk(L))
hC // H1(Γ,Vk(L)) // cokerhC // 0

from which we get two exact sequences (compatible with the Hecke operators listed in the
statement of the corollary):

0 −→ kerhC −→ SymbΓ,C(Vk(L)) −→ ImhC −→ 0

and
0 −→ Imh −→ ImhC −→ ker b −→ 0.

After semi-simplification, we thus obtain an injective morphism

SymbΓ,C(Vk(L))ss ⊂ (Imh)ss ⊕ (kerhC)ss ⊕ (ker b)ss.

By Proposition 2.5, (Imh)ss ⊂ (Sk+2(Γ, L)ss)2. The leftmost vertical arrow a is identified with

BSymbΓ(Vk(L)) → BSymbΓ,C(Vk(L)),

which is clearly surjective. Hence kerhC is a quotient of Ek+2(Γ) according to the proposition,
yielding an injection (kerhC)ss ⊂ Ek+2(Γ, L)ss. Clearly ker b ⊂ Ek+2(Γ, L). The result follows. 2

The proof of Corollary 2.7 explains our interest in partial modular symbols. By restricting to
a subset C of the cusps we remove some boundary symbols, but more importantly we gain some
‘honest’ modular symbols associated to Eisenstein series (namely those Eisenstein series that are
C-cuspidal); these symbols are defined by periods on the upper half-plane and are hence related
to values of classical L-functions. This is explored in detail in § 3.

2.6 The boundary symbol associated to an Eisenstein series
Consider the new Eisenstein series Ek+2,ψ,τ and E2,` defined in the introduction. If t is a positive
integer, we write

Ek+2,ψ,τ,t = (Ek+2,ψ,τ )|Vt

(i.e. Ek+2,ψ,τ,t(z) = Ek+2,ψ,τ (tz)) and E2,`,t = (E2,`)|Vt . We recall the following classification of
Eisenstein series, which can be found in [Miy76] and in the precise form given below in [Ste07].

Proposition 2.8. Let L be a field of charcteristic zero containing the ϕ(N)th roots of unity.
For k > 0, the series Ek+2,ψ,τ,t for ψ a Dirichlet character of conductor Q and τ a Dirichlet
character of conductor R such that τψ(−1) = (−1)k, and t a positive integer such that QRt|N ,
form a basis of Ek+2(Γ1(N), L). For k = 0, the same is true if we remove from the above basis
the series E2,1,1,t and add instead the series E2,`,t for `t|N .

We now construct a basis of the space of boundary modular symbols similar to the basis of
Eisenstein series given in Proposition 2.8.

Let M be a positive integer. Let u and v be relatively prime integers. Define φk,u,v ∈ Hom(∆,
Vk)Γ1(M) to be supported on the Γ1(M)-orbit of u/v ∈ P1(Q) and given on that orbit by the
formula

φk,u,v

(
γ

(
u

v

))
(P (z)) = P

(
γ

(
u

v

))
· (cu+ dv)k, γ =

(
a b
c d

)
∈ Γ1(M). (19)
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The RHS of (19) has the expected meaning when γ(u/v) = ∞, i.e. the value ak(au + bv)k if
P (x) = akx

k + ak−1x
k−1 + · · · . One must check that (19) is well-defined, i.e. that if γ ∈ Γ1(M)

stabilizes u/v, then the value of (19) is equal to P (u/v)vk. It is easy to check that this holds
unless M | 4 and k is odd; since there are no odd characters of conductor 1 or 2; the only problem
occurs when M = 4 and k is odd. In this case one furthermore sees that a problem occurs only
when v ≡ 2 (mod 4); we will not need to define φk,u,v in this case.

Note that
φk,−u,−v = (−1)kφk,u,v. (20)

Furthermore

φk,au+bv,cu+dv = φk,u,v,

(
a b
c d

)
∈ Γ1(M). (21)

In particular, φk,u,v depends only on the Γ1(M)-orbit of u/v when k is even, and the same is
true up to sign if k is odd.

Now let ψ and τ be Dirichlet characters of conductors Q,R, respectively, with QR = M and
ψτ(−1) = (−1)k. Define φk,ψ,τ ∈ Hom(∆,Vk)Γ1(M) by

φk,ψ,τ =
∑

x (mod Q)
(x,Q)=1

∑
y (mod R)
(y,R)=1

ψ−1(x)τ(y)φk,x,Qy. (22)

Equations (20) and (21) together with ψτ(−1) = (−1)k imply that each summand
ψ−1(x)τ(y)φk,x,Qy depends only on the cusp of Γ1(M) determined by x/Qy, i.e. only on
x (mod Q) and y (mod R). We omit the proof of the following proposition, which is a simple
computation.

Proposition 2.9. The vector φk,ψ,τ ∈ Hom(∆,Vk)Γ1(M) is an eigenvector for the operators:

(i) T` for ` -M (respectively U` for ` |M) with eigenvalues ψ(`) + τ(`)`k+1;

(ii) 〈a〉 for a ∈ (Z/MZ)∗ with eigenvalues ψ(a)τ(a); and

(iii) ι with eigenvalue ψ(−1).

The vectors φk,ψ,τ ∈ Hom(∆,Vk)Γ1(M) are generators of their eigenspace for the T` (` - M) and
〈a〉.

By (15), the map Hom(∆, Vk)
Γ1(M)

→ BSymbΓ1(M)(Vk) is an isomorphism unless k = 0; in

this case the kernel is the line generated by φ0,1,1. For M = ` a prime, let φ0,` ∈ Hom(∆, Vk)
Γ1(`)

be defined by formula (22) with Q = 1, R = `, ψ the trivial Dirichlet character and τ the
non-primitive principal Dirichlet character of modulus ` but conductor one. Then one checks
that φ0,` is an eigenvector for T`′ (`′ 6= `) with eigenvalue 1 + `′, for 〈a〉 with eigenvalue one (and
is the unique such eigenvector, up to scaling, in BSymbΓ1(`)(V0)), and of U` with eigenvalue one.
The symbol φ0,` has eigenvalue 1 for ι.

2.7 Boundary symbols in raised level
Now let N be a multiple of M = QR. We will be interested studying the subspace of
BSymbΓ1(N)(Vk) on which the Hecke operators T` for ` - N and 〈a〉 for a ∈ (Z/NZ)∗ act via
the corresponding Hecke eigenvalues of Ek+2,ψ,τ ; this subspace will be denoted

BSymbΓ1(N)(Vk)[Ek+2,ψ,τ ].

The statement of the following proposition follows directly from Proposition 2.5(iii). However,
we provide a separate, more computational proof that makes explicit the isomorphism (23).
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Proposition 2.10. Let k > 0 be an integer, and let ψ and τ be Dirichlet characters of conductors
Q,R, respectively, such that Ek+2,ψ,τ is a normal Eisenstein series. Let M = QR. The dimension
of the space

BSymbΓ1(N)(Vk)[Ek+2,ψ,τ ]

is equal to the number of divisors of N/M . More precisely, there exists an isomorphism

BSymbΓ1(N)(Vk)[Ek+2,ψ,τ ] ' Ek+2(Γ1(N))[Ek+2,ψ,τ ], (23)

compatible with the Hecke operators T` for ` - N , U` for ` | N , and 〈a〉 for a ∈ (Z/NZ)∗. The
same is true for the exceptional Eisenstein series E2,`, with M replaced by `.

Proof. We make the following simplifying assumption that is sufficient for the purposes of this
paper:

N/M is squarefree and relatively prime to M. (24)

With this assumption, the space

Ek+2(Γ1(N))[Ek+2,ψ,τ ] (25)

is semi-simple as an algebra for the Hecke operators listed in the proposition. To be precise, for
each prime ` dividing N/M , we define Hecke operators providing the `-ordinary and `-critical
stabilizations of Ek+2,ψ,τ as follows:

O` := 1− τ(`)`k+1V`, C` := 1− ψ(`)V`.

For each factorization N/M = st into positive integers, we define

Es,tk+2,ψ,τ := (Ek+2,ψ,τ )|
∏
`|sO`

∏
`|t C`

. (26)

This form is the s-ordinary, t-critical eigenvector, i.e. the action of the Hecke operator U` for
` | N/M is given by

(Es,tk+2,ψ,τ )|U` = Es,tk+2,ψ,τ ·
{
ψ(`) ` | s,
τ(`)`k+1 ` | t. (27)

The space (25) has as a basis the Es,tk+2,ψ,τ .
It remains to find a basis for BSymbΓ1(N)(Vk)[Ek+2,ψ,τ ] consisting of eigenvectors with these

same eigenvalues. A natural idea would be to define φs,tk+2,ψ,τ from φk+2,ψ,τ following (26).
However, as we shall see, it is possible for O` to annihilate φk+2,ψ,τ . For this reason we must
employ a more explicit approach.

To this end, define φsk,u,v ∈ Hom(∆,Vk)Γ1(M)∩Γ0(s) to be the boundary symbol supported on
the Γ1(M) ∩ Γ0(s)-orbit of u/v, and defined on that orbit by (19), with γ restricted to lie in
Γ1(M) ∩ Γ0(s). We then define

φsk,ψ,τ =
∑

x (mod Q)
(x,Q)=1

∑
y (mod R)
(y,Rs)=1

ψ−1(x)τ(y)φsk,x,Qy. (28)

Finally, define φs,tk,ψ,τ ∈ Hom(∆,Vk)Γ1(M)∩Γ0(N) by

φs,tk,ψ,τ := (φsk,ψ,τ )|
∏
`|t C`

.
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It is not difficult to verify that φs,tk,ψ,τ is s-ordinary and t-critical, i.e. it has eigenvalues for

the U`, ` | N/M , given by (27). We must verify that the vectors φs,tk,ψ,τ are non-zero. It is clear
from the definition (28) that φsk,ψ,τ 6= 0. A simple calculation shows that for ` - Ms and a cusp
c = x/y in lowest form, we have

(φsk,ψ,τ )|V`(c) = φsk,ψ,τ (c) ·
{
ψ−1(`)`−1 ` - y,
τ−1(`)`−k−1 ` | y. (29)

It follows that on the Γ0(`)-orbit of zero, we have (φsk,ψ,τ )|C` = (1− `−1)φsk,ψ,τ 6= 0; therefore, the

φs,tk,ψ,τ are non-zero and hence constitute a basis of eigenvectors for BSymbΓ1(N)(Vk)[Ek+2,ψ,τ ].

The result now follows with the isomorphism (23) given by φs,tk,ψ,τ 7→ Es,tk,ψ,τ . This proof is
valid for the exceptional Eisenstein series E2,` as well, with φk,ψ,τ replaced by φ0,`. 2

Equation (29) implies that for ` -Ms, we have

(φsk,ψ,τ )|O` = (1− τψ−1(`)`k)φs`k,ψ,τ .

The possible vanishing of the factor on the RHS explains why it was necessary to define φsk,ψ,τ
with the explicit formula (28), rather than simply as (φk,ψ,τ )∏

`|sO`
, and motivates the following

definition.

Definition 2.11. Let f be a new Eisenstein series of level Γ1(M), and ` be a prime not dividing
M . We say that ` is bad for f if either f is exceptional, or f is the normal Eisenstein series
Ek+2,ψ,τ with k = 0 and τ(`) = ψ(`).

If we assume that the primes dividing N/M are not bad for Ek+2,ψ,τ , then we arrive at the
following simpler version of Proposition 2.10.

Proposition 2.12. Let Ek+2,ψ,τ be a normal Eisenstein series of level M = QR dividing N .
Suppose that N/M is squarefree, relatively prime to M , and such that all primes ` dividing
N/M are not bad for Ek+2,ψ,τ . Then the symbols (φk,ψ,τ )|Vt for positive integers t dividing N/M
provide a basis for BSymbΓ1(N)(Vk)[Ek+2,ψ,τ ], and the map (φk,ψ,τ )|Vt 7→ (Ek+2,ψ,τ )|Vt yields an
isomorphism

BSymbΓ1(N)(Vk)[Ek+2,ψ,τ ] ' Ek+2(Γ1(N))[Ek+2,ψ,τ ]

that is compatible with the Hecke operators T` for ` - N , U` for ` | N , and 〈a〉 for a ∈ (Z/NZ)∗.

We conclude this section by recording a corollary of these computations that gives a basis for
the space of ordinary boundary symbols. Fix an integer p not dividing N and write Γ = Γ1(N)∩
Γ0(p). Write BSymbΓ(Vk(L))ord for the subspace generated by the generalized eigenvectors for Up
with eigenvalue a root of unity (and similarly for Ek+2(Γ)ord). Note that if L is a finite extension
of Qp, then this definition is unchanged if ‘a root of unity’ is replaced by ‘of p-adic order zero.’

Corollary 2.13. Let L be a field of characteristic 0 containing the ϕ(N)th roots of unity.
Let Ek+2,ψ,τ be a normal Eisenstein series of level M = QR dividing N . Suppose that N/M
is squarefree, relatively prime to M , and such that all primes ` dividing N/M are not bad for
Ek+2,ψ,τ . Let p be a prime not dividing N . Then the symbols φpk,ψ,τ,t := (φpk,ψ,τ )|Vt for positive

integers t dividing N/M provide a basis for BSymbΓ(Vk(L))ord[Ek+2,ψ,τ ], and the map

φpk,ψ,τ,t 7→ Eord
k+2,ψ,τ,t := (Eord

k+2,ψ,τ )|Vt

yields a Hecke-equivariant isomorphism

BSymbΓ(Vk)ord[Ek+2,ψ,τ ] ' Ek+2(Γ)ord[Ek+2,ψ,τ ].
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For future reference, it is useful to note that the vectors φpk,ψ,τ,t appearing in Corollary 2.13

satisfy φk,ψ,τ,t(c) = 0 if c 6∈ Q ∩ Zp, and φpk,ψ,τ,t(c) is a multiple of the linear form P 7→ P (c) if
c ∈ Q ∩ Zp.

3. Eisenstein series and their non-boundary modular symbols

3.1 Notations
We now fix notations that will stay in force for the remainder of this paper. We fix an integer
N and a prime p not dividing N . We set

Γ := Γ1(N) ∩ Γ0(p).

We define the set of cusps
C := Γ0(N)∞∪ Γ0(N)0,

the subset of P1(Q) containing ∞ and all rationals a/m in lowest terms with either N | m or
(N,m) = 1. Note that Γ0(N), and hence its subgroup Γ, stabilizes C. Observe that the matrices(

1 0
0 d

)
also stabilize C whenever d ∈ Z is prime to N . Let S be the submonoid of GL2(Q) generated

by those matrices and Γ0(Np), so S stabilizes C as well.
We shall consider in this paper spaces of partial modular symbols SymbΓ,C(V ) (and

BSymbΓ,C(V )) for various right S-modules V . These spaces have an action of the Hecke operators

T` (for ` - Np), Up, and 〈a〉 for a ∈ (Z/NZ)∗. We denote by H ⊂ H(GL+
2 (Q),Γ) the subalgebra

generated by these operators. Note that there is also an action of the involution ι on the space
SymbΓ,C(V ).

We will also have to consider spaces of full modular symbols SymbΓ(V ) and BSymbΓ(V ).
They also have an action of H and ι. When V has an action of the larger monoid S′ generated
by Γ0(N) and all the matrices

(
1 0
0 d

)
for all d in Z(p), d 6= 0 (in practice this will always be the

case), then we also have an action of operators U` (for ` | N) on SymbΓ(V ), and maps

Vt : SymbΓ1(M)∩Γ0(p)(V ) → SymbΓ(V )

for integers M and t such that Mt | N . These operators and maps will be useful in § 6.

3.2 C-cuspidal modular forms and their symbols
We now turn to the more interesting modular symbols associated to modular forms, in contrast
to the boundary symbols studied in § 2.6. These symbols are defined by integration on the upper
half-plane and are related to special values of L-functions. Recall that if f is a modular form for
Γ, then f has a q-expansion

f(z) =

∞∑
n=0

anq
n, q = e2iπz.

For any Dirichlet character χ, we define the L-function of f twisted by χ as the Dirichlet series

L(f, χ, s) =

∞∑
n=1

anχ(n)n−s. (30)

This converges for Re(s) large enough and admits a meromorphic continuation to the complex
plane. Note that we do not include a0 in the sum. More generally, for any positive integer d,
define

L(f, χ, d, s) = d1−s
∞∑
n=1

andχ(n)n−s,

so (30) is the case d = 1.
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Let f ∈Mk+2(Γ,C) be a modular form of weight k + 2 for Γ. We say that f is C-cuspidal if
it vanishes at all cusps in C = Γ0(N)∞∪ Γ0(N)0. We henceforth assume that f is C-cuspidal.

Let m be an integer relatively prime to N and χ a Dirichlet character of conductor dividing
m, say m = cond(χ) · d. We have the well-known and elementary formula

Γ(s)

(2π)s
L(f, χ, d, s) =

1

G(χ)

∑
a (mod m)

χ(a)

∫ ∞
0

f(iy + a/m)ys−1 dy, (31)

where the integral converges because f vanishes at the cusps a/m and ∞. Here G(χ) denotes
the Gauss sum.

Definition 3.1. For f a C-cuspidal modular form as above, we define

φf ∈ Hom(∆0
C ,Vk(C))

by setting

φf ({∞} − {a/m})(P ) =

∫ i∞

a/m
f(z)P (z) dz

for all P ∈ Pk(C).

The following proposition is a standard computation.

Proposition 3.2. We have φf ∈ SymbΓ,C(Vk(C)). Moreover the map f 7→ φf is H-equivariant.

Recall that SymbΓ,C(Vk(C)) is endowed with an action of the involution ι. We set

φ+
f =

φf + (φf )|ι

2
and φ−f =

φf − (φf )|ι

2
,

so that
φf = φ+

f + φ−f and (φ±f )|ι = ±φ±f .
In view of the definition of φf , (31) implies immediately that for any integer j, 0 6 j 6 k,

and all Dirichlet characters χ of conductor m/d:

j!G(χ)

(−2πi)j+1
L(f, χ, d, j + 1) =

∑
a (mod m)

χ(a)φf ({∞} − {a/m})((z − a/m)j). (32)

Noting that the RHS is multiplied by χ(−1)(−1)j if each occurrence of φf in it is replaced by
(φf )|ι, we see that for every choice of sign ε = ±1, we have

j!G(χ)

(−2πi)j+1
L(f, χ, d, j + 1) =

∑
a (mod m)

χ(a)φεf ({∞} − {a/m})((z − a/m)j) (33)

for any integer j, 0 6 j 6 k, and all Dirichlet characters χ of conductor m/d such that
χ(−1)(−1)j = ε.

From (33) and the linear independence of characters, we deduce the following proposition.

Proposition 3.3. Fix a sign ε = ±1.

(i) We have φf = φεf (i.e. φ−εf = 0) if and only if for all integers j, 0 6 j 6 k, and all Dirichlet

characters χ of conductor prime to N such that χ(−1)(−1)j = −ε and all positive integers d, we
have L(f, χ, d, j + 1) = 0.

(ii) Let Q be the subfield of algebraic numbers in C. We have φεf ∈ SymbΓ,C(Vk(Q)) if and
only if for all integers j, 0 6 j 6 k, all Dirichlet characters χ of conductor prime to N such that
χ(−1)(−1)j = ε, and all positive integers d, we have L(f, χ, d, j + 1)/πj+1 ∈ Q.
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3.3 C-cuspidal Eisenstein series
We now apply the observations of the previous section to the case of C-cuspidal Eisenstein series.

Lemma 3.4. We have the identity

L(Ek+2,τ,ψ,t, χ, d, s) = χ(t)t−sτ(d)d1−s
∑
u|d

uk+1ψτ−1(u)L(τχ, s)Ld/u(ψχ, s− k − 1),

where Ld/u(ψχ, s − k − 1) denotes the Dirichlet L-function with the Euler factors at primes
dividing d/u removed.

Proof. We prove the simpler formula

L(Ek+2,τ,ψ,t, χ, s) = χ(t)t−sL(τχ, s)L(ψχ, s− k − 1)

for the case d = 1, leaving the general case to the reader.
It suffices to prove the result for Re(s) large enough. If a = (an)n>1 is a sequence of complex

numbers, the L-function of a is by definition the function L(a, s) =
∑

n>1 an/n
s, which converges

on some ‘half-plane’ Re(s) > ρ for some ρ ∈ R∪ {−∞,+∞}. If (an) and (bn) are two sequences,
one defines a commutative and associative convolution product (an) ∗ (bn) as the sequence (cn)
given by cn =

∑
d|n adbn/d. It is then elementary and well known that L(c, s) = L(a, s)L(b, s) on

the domains of convergence of those series. Note that if a, b are two sequences, and c is strictly
multiplicative (that is, cnm = cncm for any n,m > 1), then (ac) ∗ (bc) = (a ∗ b)c.

The sequence of coefficients (an) of Ek+2,τ,ψ,t is the convolution product (bn) ∗ (cn) ∗ (dn)
where b, c, d are the sequences defined by the equalities (for n > 1) bn = ψ(n)nk+1, cn = τ(n),
and

dn =

{
1 if n = t,

0 if n 6= t.

The L-function L(Ek+2,τ,ψ,t, χ, s) is by definition the L-function of the sequence aχ, which is
(bχ) ∗ (cχ) ∗ (dχ) since χ is strictly multiplicative. But we have by definition L(bχ, s) = L(ψχ,
s− k − 1), L(cχ, s) = L(τχ, s) and L(dχ, s) = χ(t)t−s. The result follows. 2

Now consider a linear combination f =
∑

t,QRt|N ctEk+2,τ,ψ,t where the ct are algebraic
numbers. If f is C-cuspidal then we can attach to f a partial modular symbol φf over C.

Proposition 3.5. Let ε = −τ(−1). Then (φf )|ι = εφf unless τ = 1 or ψ = 1; in these cases, φ−εf
is a multiple of the boundary symbol φk,τ,ψ defined in § 2.6. In all cases, φf ∈ SymbΓ,C(Vk(K))
for some number field K.

Proof. According to Proposition 3.3, for the first assertion it suffices to prove that for all integers
j such that 0 6 j 6 k, all Dirichlet characters χ of conductor prime to N such that χ(−1)(−1)j =
τ(−1), and all positive integers d, we have L(f, χ, d, j + 1) = 0. But by Lemma 3.4, the value
L(f, χ, d, j + 1) is a linear combination of terms of the form

L(τχ, j + 1)Lu(ψχ, j − k)

for divisors u | d. By the functional equation for Dirichlet L-functions, L(ψχ, j−k) vanishes if j 6
k and ψχ(−1)(−1)j−k = 1, except in the case ψ = χ= 1, j = k. The condition ψχ(−1)(−1)j−k = 1
is equivalent to

χ(−1)(−1)j = ψ(−1)(−1)k = τ(−1).
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We therefore obtain our desired vanishing L(f, χ, d, j+1) = 0 except in the case ψ = χ = 1, j = k
and the case where L(τχ, j + 1) has a pole, namely τ = χ = 1, j = 0. We leave to the reader
the remaining verification from what we have already proved that in the cases τ = 1 or ψ = 1, the
symbol φ−εf is a multiple of the boundary symbol φk,τ,ψ; we will not use this result.

To prove that φf ∈ SymbΓ,C(Vk(Q)) (from which it follows easily by the type finiteness of
∆0
C as a Z[Γ]-module that φf ∈ SymbΓ,C(Vk(K)) for some number field K), it suffices to check

that L(f, χ, d, j+ 1)/(2πi)j+1 are algebraic for 0 6 j 6 k, all Dirichlet characters χ of conductor
prime to N and all positive integers d. But L(τχ, j + 1)/(2πi)j+1 and L(ψχ, j− k) are algebraic
by well-known properties of Dirichlet L-functions. In fact, one can show that φf is defined over
the field Q(τ, ψ) defined by the values of the characters τ, ψ. 2

4. Overconvergent partial modular symbols

We fix embeddings Q ⊂ Qp and Q ⊂ C. We denote by ordp : Q∗p → Q the p-adic valuation,
normalized such that ordp(p) = 1. We define weight space W as the rigid analytic space over Qp

such thatW(L) = Homcont(Z∗p, L∗) for every Qp-Banach algebra L. We see Z as a (Zariski-dense)

subset of W(Qp) by identifying k ∈ Z with the character z 7→ zk.

4.1 Modules of distributions
We recall definitions and notations from [Bel12, § 3], which are generalizations of earlier
definitions of Stevens [Ste].

If L is any Qp-Banach algebra, and r > 0, we write A[r](L) for the L-Banach module of
functions f : Zp → L that are locally analytic of radius r (that is, such that for any e ∈ Zp there
exists a formal series

∑∞
n=0 an(z − e)n with radius of convergence at least r and converging to

f on the closed ball of center e and radius r in Zp). We write D[r](Qp) for the Banach dual of
A[r](Qp), and define a Banach L-module

D[r](L) := D[r](Qp) ⊗̂Qp L.

For r > 0, we write D†[r](L) for the projective limit of D[r′](L) as r′ → r+, which is a (Frechet)
L-module.

Let κ ∈ W(L), i.e. κ is a continuous character Z∗p → L∗. There exists r(κ) ∈ R>0∪{∞} such
that for all 0 < r 6 r(κ), we can provide A[r](L) with an action of

S0(p) =

{
γ =

(
a b

c d

)
∈M2(Z(p)), p - a, p | c, ad− bc 6= 0

}
,

which is said to be of weight κ, by the rule

(γ ·κ f)(z) = κ(a− cz)f
(
dz − b
a− cz

)
. (34)

These actions are compatible for various r. By duality they induce actions on D[r](L) for

0 < r 6 r(κ), and hence on D†[r](L) for 0 6 r < r(κ). We write Dκ[r](L) and D†κ[r](L) for the
modules D[r](L) and D†[r](L) together with the weight κ action of S0(p). (See [Bel12, § 3] for
more details.) For κ = k ∈ Z we can take r(k) =∞.

Of these spaces, the one we shall use most is D†[0]. To lighten notation, we write D†
for D†[0].
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Recall [Ste] that when k is a non-negative integer we have an exact sequence of S0(p)-modules

0 // D†−2−k[1](L)(k + 1)
Θk // D†k[1](L)

ρk // Vk(L) // 0. (35)

The (k+1) after the first term means that the action of s ∈ S0(p) is multiplied by (det s)k+1. The
map Θk is the (k+1)th iteration of the derivation of distribution, i.e. (Θkµ)(σ) = µ(dk+1σ/dzk+1).
The map ρk is the dual of the obvious inclusion map Pk(L) → Ak[1](L).

4.2 Spaces of overconvergent partial modular symbols
The monoid we called S in § 3.1 is contained in S0(p). Therefore, as explained in [Ste], the

modules of partial modular symbols SymbΓ,C(D†κ[r](L)) (or the same without the †) have a
natural action of the Hecke algebra H and the involution ι.

If V is any Qp-vector space on which an operator denoted Up acts, and ν ∈ R, we define the
slope < ν part of V , denoted V <ν , as the sum of the indecomposable Up-submodules of V on
which Up acts (after extending scalars) by eigenvalues of p-adic valuation less than ν.

Proposition 4.1. Assume that L is a finite extension of Qp, and that κ is an integer k > 0.

(i) The Banach space SymbΓ,C(Dk[r](L)) is orthonormalizable, and Up acts on it as a
compact operator. For any ν ∈ R, and 0 < r′ 6 r 6 p, the restriction map induces an isomorphism

SymbΓ,C(Dk[r′](L))<ν −→ SymbΓ,C(Dk[r](L))<ν ,

and these spaces are finite-dimensional. Moreover, for 0 6 r < p, the space SymbΓ,C(D†k[r](L))<ν

is also isomorphic (by the restriction map) to the spaces SymbΓ,C(Dk[r′](L))<ν .

(ii) The exact sequence (35) gives by functoriality a sequence of H-modules

0 // SymbΓ,C(D†−2−k[1](L))(k + 1)
Θk // SymbΓ,C(D†[1]k(L))

ρk // SymbΓ,C(Vk(L)) // 0

(36)
that is still exact, where the (k+ 1) in the first term means that we multiply the action of [ΓsΓ]
by (det s)k+1.

(iii) (Stevens’ control theorem.) For any r such that 0 6 r < p, the map

SymbΓ,C(D†k[r](L))<k+1 ρk // SymbΓ,C(Vk(L))<k+1

given by the composition of ρk from (ii) and the isomorphism from (i) is an isomorphism.

Proof. These results are proved exactly as their counterparts for full modular symbols are proved
in [PS13], using for (ii) the cohomological interpretation given in Proposition 2.4. 2

4.3 The p-adic L-function of an overconvergent partial modular symbol
We shall denote by R the Qp-Frechet space O(W) of the rigid analytic space W. Given a
distribution µ ∈ D†(Qp), we define its Mellin transform Mel(µ) ∈ R by Mel(µ)(σ) =

∫
Z∗p
σ dµ.

This makes sense since a character σ ∈ W(Cp) is always a locally analytic function of some
radius.

The Mellin transform realizes a bijection (even a Frechet isomorphism) between the subspace
of D†(Qp) of distributions with support in Z∗p and R. But note that distributions with support
in pZp have zero Mellin transform.

More generally, for any Qp-Banach algebra L we have a Mellin transform map MelL :D†(L) →

R⊗̂L (cf. [Bel12]).

1021

https://doi.org/10.1112/S0010437X1400788X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400788X
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Definition 4.2. If L is a Qp-Banach algebra, we define a map

Lp : SymbΓ,C(D†κ(L)) → R⊗̂L

by
Lp(Φ) = MelL(Φ({∞} − {0})).

4.4 The eigencurves of partial modular symbols
Proposition 4.3. Let X = SpA be an open affinoid subset of W, and let K ∈ W(A) be the
canonical character, i.e. the A-point of W corresponding to the inclusion X = SpA ⊂ W. We
write r(X) for r(K).

(i) For 0 < r 6 r(X), the modules SymbΓ,C(DK [r](A)) are orthonormalizable Banach
R-modules and Up acts compactly on them. These modules for different r are linked in the
sense of [Buz07, § 5]. The formation of these modules commutes with restriction to an open
affinoid subdomain: if SpA′ = X ′ ↪→ X is an open affinoid subdomain, then

SymbΓ,C(DK [r](A)) ⊗̂AA
′ = SymbΓ,C(DK [r](A′)).

(ii) If ν ∈ R and X is small enough (with respect to ν, but independently of r),
then one can naturally define a sub-module SymbΓ,C(DK [r](A))<ν of SymbΓ,C(DK [r](A)),
which is a finite projective module over A. The restriction maps between these modules for
various r are isomorphisms, and we can therefore identify these modules with a submodule
SymbΓ,C(DK [r]†(A))<ν of SymbΓ,C(D†K(A)) for 0 6 r < r(X).

(iii) Let κ ∈ X be a point with field of definition L(κ), a finite extension of Qp. So κ ∈
X(L(κ)) ⊂ W(L(κ)). The natural specialization morphism of H-modules

SymbΓ,C(D†K(A))<ν ⊗A L(κ) −→ SymbΓ,C(D†κ(L(κ)))<ν (37)

is injective, has corank at most one, and is surjective except possibly if κ is the trivial character.

Proof. The results of (i) and (iii) are proved exactly as those for full modular symbols: see [Bel12,
§ 3] or [Bel10]. The results of (ii) follow from those of (i) and Coleman–Buzzard’s Riesz
theory [Buz07, § 5], [Bel12, § 3] and [Bel10]. 2

We can use the modules SymbΓ,C(DK [r](A)) to construct two eigencurves of partial modular
symbols. To be precise, we split SymbΓ,C(DK [r](A)) into two eigenspaces SymbΓ,C(DK [r](L))±,
with eigenvalue ±1 for the involution ι. We fix a choice of sign ± and apply Buzzard’s eigenvariety
machine [Buz07, Construction 5.7]. For any admissible affinoid subset X = SpA ⊂ W, we
write MX for the module SymbΓ,C(DK [r](A))± where we have chosen an r 6 r(X). For

Buzzard’s commutative Hecke algebra T, we take our algebra H ⊂ H(GL+
2 (Q),Γ), and

for Buzzard’s operator φ ∈ T, we take the operator Up. By Proposition 4.3(i), MX satisfies
Buzzard’s property (Pr) (see [Buz07, § 2]) and the operator φ = Up acts compactly on it.
Moreover, MX ⊗̂AA

′ is linked (in the sense of [Buz07, § 5]) to MX′ if X ′ = SpA′ is a subdomain
of A, as can be proved exactly as the analog statement for full modular symbols in [Bel10].
Therefore we can apply Buzzard’s eigenvariety machine to define the eigencurve C±Γ,C of partial
modular symbols for C and Γ of sign ±. It is independent of the choices we have made (of an
r 6 r(X) for every X).

The eigencurve C±Γ,C enjoys the following usual properties of an eigencurve. It is a reduced
rigid analytic space of equidimension one over Qp, endowed with the following additional
structure:
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(a) a locally finite flat weight map w : C±Γ,C →W;

(b) a morphism of rings H → O(C±Γ,C) that sends Up to an invertible (i.e. non-vanishing)
function.

We do not give a name to the morphism (b): an element t ∈ H defines an analytic function on C±Γ,C
that we denote by the same symbol t. If a point x ∈ C±Γ,C defined over a finite extension L of Qp

maps to a weight κ ∈W(L), then x corresponds to a non-zeroH-eigenspace in SymbΓ,C(D†κ(L))±,
the eigenvalue of an element t ∈ H being the value t(x) of the function t on the eigencurve at

x. Conversely, any eigenspace SymbΓ,C(D†κ(L))± on which the Up-eigenvalue is non-zero (except
perhaps one in the case κ = 0) corresponds to a point x in the eigencurve defined over L and
lying over κ; this is the content of Proposition 4.3(iii) (completed with Proposition 4.1(i)).

By Proposition 4.1(iii), if a point x as above lies over a weight κ that is a non-negative integer
k, and satisfies ordp(Up(x)) < k + 1, then x corresponds in fact to an eigenspace in the space
of classical partial modular symbols SymbΓ,C(Vk(L))±. Such classical points are Zariski-dense

in C±Γ,C .
One can use Chenevier’s comparison theorem [Che05, Proposition 3.2] to establish precise

relations between the C±Γ,C for various choices of sets of cusps C and sign ±, and also between
those curves and the standard Buzzard–Coleman–Mazur eigencurve. We will content ourselves
with the following result, where CΓ,BCM denotes the traditional Buzzard–Coleman–Mazur
eigencurve constructed from overconvergent modular forms, and Ccusp

Γ,BCM denotes the cuspidal
Buzzard–Coleman–Mazur eigencurve (i.e. the part of the eigencurve parameterizing cuspidal
overconvergent modular forms), defined using the same Hecke algebra H.

Proposition 4.4. There are unique closed immersions (compatible with the maps over W, and
the map from H)

Ccusp
Γ,BCM ↪→ C±Γ,C ↪→ CΓ,BCM.

Moreover, if x is a point of Ccusp
Γ,BCM(L) for some finite extension L/Qp, with w(x) = k ∈ Z and

vp(Up(x)) > 0, we have

dimS†k+2(Γ, L)(x) = dim Symb±Γ,C(D†k(L))(x).

Proof. The first statement is an application of Chenevier’s theorem on comparison of
eigenvarieties, given the comparison of their classical structure that we proved in Corollary 2.7.
We do not give the details of the proof as they are similar to the proof of the special case of full
modular symbols given in [Bel12, Theorem 3.27].

For the second, we observe from the same theorem that

dimS†k+2(Γ, L)(x) 6 dim Symb±Γ,C(D†k(L))(x) 6 dimM †k+2(Γ, L)(x).

Since x is non-ordinary, it does not lie on the Eisenstein components of CΓ,BCM, so we have

S†k+2(Γ, L)(x) = M †k+2(Γ, L)(x) and the result follows. 2

Corollary 4.5. Let x ∈ Ccusp
Γ,BCM(L), with w(x) = k ∈ Z and vp(Up(x)) > 0. Assume further that

x is a smooth point of CΓ,BCM. Then for any y ∈ Ccusp
Γ,BCM(L) sufficiently close to x and such

that w(y) = k′ ∈ N and vp(Up(y)) < k′ + 1 (that is, y satisfies the hypothesis of Coleman’s
control theorem [Col96, Theorem 6.1] and is therefore classical), we have

dim Symb±Γ,C(D†k(L))[x] = dimSk+2(Γ, L)[y].
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J. Belläıche and S. Dasgupta

Proof. Again, all the arguments needed for this proof are already in [Bel12]. That is, we prove

exactly as in [Bel12, Proposition 4.3 and Corollary 4.4] that the module Symb±Γ,C(D†k(L))(x) is
free of some rank r over the algebra Tx,k of the connected component of x in the fiber of the
weight map w at k. The same argument shows that Sk+2(Γ, L)(x) is free of some rank r′ over Tx,k
and Proposition 4.4 warrants that r = r′. The arguments of [Bel12, Proposition 4.5] then show
that r = dimSk+2(Γ, L)[y] for any y satisfying our hypotheses (in [Bel12, Proposition 4.5], we
argue further that this dimension is one under a newness hypothesis that we are not assuming
here). Finally, we note that dim Symb±Γ,C(D†k(L))[x] has dimension r by the arguments of [Bel12,
Theorem 4.7 and Corollary 4.8]. 2

In order to apply the above corollary, we will need to know that CΓ,BCM is smooth at certain
points. This is guaranteed by the following result.

Theorem 4.6. Let x be a point of CΓ,BCM corresponding to the critical-slope refinenement of a
decent new Eisenstein series f of level M . We assume that N/M is relatively prime to M and
that none of its prime divisors are bad for f (cf. Definition 2.11). Then CΓ,BCM is smooth at x.

Proof. The case N = M = 1 is the main theorem of [BC06]. The cohomological method used
there extends to the general case under the hypothesis of the theorem. Let us comment briefly
on the important assumption that no prime divisors of N/M are bad for f .

Suppose that f = Ek+2,ψ,τ . Consider the subspace H ⊂ H1(GQ, ψ
−1τωk+1) parameterizing

extensions of 1 by ψ−1τωk+1 that are unramified outside Np and crystalline at p. The duality
formula for Selmer groups implies that the dimension of H is one plus the number of bad primes
dividing N/M . When H has dimension one, the proof of the smoothness of the eigencurve goes
exactly as in [BC06]. Full details are given in [Bel10]. 2

5. Overconvergent boundary modular symbols

In this section, we denote by C0 the set of cusps that are Γ0(p)-equivalent to zero. Thus, C0 =
Q∩Zp, the set of rational numbers that are p-integral. For a cusp c, we denote by Γc the stabilizer
of c in Γ. Other notations used above (especially those of § 3.1) remain in force.

The monoid we called S′ in § 3.1 is contained in S0(p). Therefore, as explained [Bel10], the

modules of full modular symbols SymbΓ(D†κ[r](L)) (or the same without the †, or the same with
boundary modular symbols) have a natural action of the Hecke algebra H, the involution ι, and
in addition actions of U` for ` | N . We also have maps

Vt : SymbΓ1(M)∩Γ0(p)(D†κ[r](L)) → SymbΓ(D†κ[r](L))

for integers M, t such that Mt | N .

5.1 Properties of overconvergent boundary modular symbols

We fix a finite extension L of Qp, and for simplicity of notation, we shall write Dk for Dk(L), D†k
for D†k(L), etc.

Lemma 5.1. Let k ∈ Z. If Φ ∈ BSymbΓ(D†k[1]) and c is a cusp not in C0, then Φ(c) = 0.

Proof. We need to show that (Dk[1]†)Γc = 0 whenever c is a cusp in the Γ0(p) class of ∞. To see

this, let c = γ∞ with γ ∈ Γ0(p), and µ ∈ (D†k[1])Γc . Then µ|γ−1 is invariant by γΓcγ
−1 ⊃ Γn∞ for

some positive n and we are reduced to the case c =∞. In this case,
(

1 n
0 1

)
∈ Γn∞, so µ(f(z+n)) =

µ(f) for all functions f . Such a distribution is zero by [PS13, Proposition 3.1]. 2
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Proposition 5.2. Let j > 0 be an integer. Let Φ ∈ BSymbΓ(D†k) be a generalized eigenvector
for Up corresponding to an eigenvalue λ 6= 0. We assume that if λ is of the form εpi where ε is
a root of unity and i > 0 is an integer, then i = j. Then for c ∈ C0, Φ(c) is a multiple of the
distribution δc,j : f 7→ (df/dzj)(c).

Proof. Since λ 6= 0, we have Φ ∈ BSymbΓ(D†k[1]) by Proposition 4.1(i). In particular, the
preceding lemma applies and we have Φ(c′) = 0 for any c′ 6∈ C0.

Now let c ∈ C0. By hypothesis, we have Φ|(Up−λ)r = 0 for some integer r. The case r = 0
is trivial, and we argue by induction over r, assuming the claim true for r − 1. For any integer
n > 1, the operator (Unp − λn)(Up − λ)r−1 sends Φ to zero. Hence by the induction hypothesis,
we have

(Φ|Unp − λ
nΦ)(c) = xδc,j (38)

for some scalar x ∈ L.
Let us write c =

∑∞
i=0 aip

i, with 0 6 ai 6 p − 1. Since c is rational, the sequence (ai) is
eventually periodic: there exist two integers m > 0 and n > 0 such that for all i > m, ai+n = ai.
Let us assume for now that m = 0. From (38) and the definition of Unp , one gets

pn−1∑
a=0

Φ((c− a)/pn)
|
(

1 −a
0 pn

) = xδc,j + λnΦ(c).

In the sum on the LHS, only one term is not 0, namely the term where a =
∑n−1

i=0 aip
i, because

otherwise (c− a)/pn is not p-integral. For this a, we have c = (c− a)/pn, so we get

Φ(c)
|
(

1 −a
0 pn

) = xδc,j + λnΦ(c).

This implies that for f ∈ A†[1],

Φ(c)(f(pnz + a)− λnf(z)) = x
df

dzj
(c).

Looking at the Taylor expansion at c and using the assumption that λn is not of the form pin

for i > 0 an integer, except perhaps for i = j, one easily sees that the map

ker δc,j → ker δc,j ,

f 7→ f(pnz + a)− λnf(z)

is surjective. Therefore, Φ(c) is zero on ker δc,j and hence is a multiple of δc,j . It remains to treat
the case m > 0, but this can be reduced to the case m = 0 using (38) for m + n instead of n.
Hence we have completed the induction step and the proof of the proposition. 2

Remark 5.3. Expressing the fact that Φ(c) ∈ (D†k)Γc for c ∈ C0 easily leads to the conclusion
that if in the proposition above, j is not zero or k + 1, then Φ(c) is actually zero. We shall not
use this result.

Definition 5.4. For k ∈ Z we call BSymbΓ(D†k)ord (respectively BSymbΓ(D†k)crit in the case

k > 0) the linear span of vectors in BSymbΓ(D†k) that are killed by P (Up) for some non-zero
polynomial P ∈ L[X] all of whose all roots in L̄ have p-adic valuation zero (respectively k + 1).
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Theorem 5.5. For k > 0, the map

Θk : BSymbΓ(D†−2−k)
ord(k + 1) → BSymbΓ(D†k)crit

is a Hecke-equivariant isomorphism.

Proof. The injectivity of Θk : BSymbΓ(D†−2−k)(k + 1) → BSymbΓ(D†k) follows from (35)

since BSymbΓ is a left-exact functor. It is clear that Θk maps BSymbΓ(D†−2−k)
ord into

BSymbΓ(D†k)crit since Up-eigenvalues are multiplied by pk+1. These spaces are finite-dimensional
by Proposition 4.1(i); hence after extending L if necessary we can assume that they are generated
by generalized eigenvectors for Up with eigenvalue λ of p-adic order zero and k+ 1, respectively.
Hence by Lemma 5.1 and Proposition 5.2, any vector Φ in the target has the form

Φ(c) =

{
0 if c 6∈ C0,

τ(c)δc,k+1 if c ∈ C0,

for some τ(c) ∈ L. Define Φ′ ∈ Hom(∆,D−2−k) by

Φ′(c) =

{
0 if c 6∈ C0,

τ(c)δc,0 if c ∈ C0.

Then clearly ΘkΦ
′ = Φ. Since Θk is Γ-equivariant and injective, Φ′ is Γ-invariant, i.e. is an

element of BSymbΓ(D†−2−k)
ord. This proves the surjectivity of Θk. 2

Remark 5.6. We observe from the proof of the theorem that any critical boundary modular
symbol of trivial nebentypus and squarefree level has sign −1. Indeed, such a modular symbol
Φ has Φ(c) a multiple of δc,k+1 with k even, and c and −c are in the same class modulo Γ0(M)
for any squarefree M .

The following is a version of Stevens’ control theorem for boundary symbols.

Proposition 5.7. Assume k > 0. The map ρk : BSymbΓ(D†k)ord
→ BSymbΓ(Vk)ord is an

isomorphism.

Proof. The map ρk : BSymbΓ(D†k)ord
→ BSymbΓ(Vk)ord is injective since it is the restriction

of ρk : SymbΓ(D†k)ord
→ SymbΓ(Vk)ord, which is injective by Stevens’ control theorem

(Proposition 4.1(iii)). For the surjectivity, we just have to check that if φ ∈ BSymbΓ(Vk)ord,

then for each cusp c, φ(c) ∈ (Vk)Γc can be lifted to a distribution in (D†k)Γc . From Corollary 2.13
and the succeeding comments, we see that φ(c) ∈ Vk is zero when c 6∈ C0, and φ(c) is a multiple
of the linear form P 7→ P (c) when c ∈ C0 ⊂ Zp. Such a linear form can be lifted to the invariant
distribution f 7→ f(c). 2

5.2 A basis of the space of ordinary overconvergent boundary modular symbols
In this subsection, L is a finite extension of Qp that contains the ϕ(N)th roots of unity.

For k ∈ Z,M a positive integer that dividesN , and u, v two relatively prime integers such that
p - v, define Φk,u,v ∈ BSymbΓ1(M)∩Γ0(p)(D†k(L)) as follows. Φk,u,v is supported on the Γ1(M) ∩
Γ0(p)-orbit of u/v, and is defined on that orbit by the same formula as (19), with P (z) ∈ Pk
replaced by f(z) ∈ A†k, i.e.

Φk,u,v

(
γ

(
u

v

))
(f(z)) = f

(
γ

(
u

v

))
· (cu+ dv)k, (39)
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where

γ =

(
a b
c d

)
∈ Γ1(M) ∩ Γ0(p).

For any decomposition M = QR and any two Dirichlet characters ψ, τ with conductors Q,R,
respectively, such that ψτ(−1) = (−1)k, define Φk,ψ,τ by the same formula (28) as φpk,ψ,τ with
φk,x,Qy replaced by Φk,x,Qy, i.e.

Φk,ψ,τ =
∑

x (mod Q)
(x,Q)=1

∑
y (mod R)
(y,Rp)=1

ψ−1(x)τ(y)Φk,x,Qy. (40)

Then Φk,ψ,τ ∈ BSymbΓ1(M)∩Γ0(p)(D†k(L)), and we clearly have ρk(Φk,ψ,τ ) = φpk,ψ,τ for k > 0.

The symbol Φk,ψ,τ is a Hecke eigenvector with the same eigenvalues as φpk,ψ,τ , namely:

(i) for T` (` - Np) (respectively U` for ` | N) with eigenvalues ψ(`) + τ(`)`k+1;

(ii) for 〈d〉(d ∈ (Z/nZ)∗) with eigenvalues ψ(d)τ(d);

(iii) for Up with eigenvalue ψ(p); and

(iv) for ι with eigenvalue ψ(−1).

In particular, Φk,ψ,τ ∈ BSymbΓ1(M)∩Γ0(p)(D†k(L))ord.
As usual we set Φk,ψ,τ,t = (Φk,ψ,τ )|Vt . For t such that QRt | N , we have Φk,ψ,τ,t ∈

BSymbΓ(D†k(L))ord. Moreover,

ρk(Φk,ψ,τ,t) = φpk,ψ,τ,t (41)

for k > 0.

Theorem 5.8. Let k ∈ Z, k 6= −1. Let ψ, τ be Dirichlet characters of conductors Q,R,
respectively, such that τψ(−1) = (−1)k and M = QR divides N . Suppose that N/M is
squarefree, relatively prime to M , and such that no primes dividing N/M are bad for Ek+2,ψ,τ .
Then the symbols Φk,ψ,τ,t for positive integers t dividing N/M form a basis of the space

BSymbΓ(D†k(L))ord[Ek+2,ψ,τ ].

Proof. For k > 0, this follows from Proposition 5.7, Corollary 2.13, and (41). We will conclude the
result for negative integers by interpolation. To this end, fix k < 0, and let X = SpA be a closed
ball with radius in pQ in the connected component of W containing k. Then A is a principal
affinoid domain. The module BSymbΓ(D†K(A))ord is free of finite rank by Proposition 4.3(ii). It

follows that the fibers at all points κ ∈ X(Qp) of that module (namely BSymbΓ(D†K(A))ord ⊗A,κ
Qp where the implicit map A → Qp is the one defined by κ) have the same dimension.

We claim that when κ is an integer k′ ∈ Z, the natural map

BSymbΓ(D†K(A))ord ⊗A,k′ Qp → BSymbΓ(D†k′(Qp))
ord

is a Hecke-equivariant isomorphism. The injectivity of this map follows formally from the
left-exactness of the functor BSymbΓ. For the surjectivity, we need to know that if Φ ∈
BSymbΓ(D†k′(Qp))

ord, then for all cusps c, the distribution Φ(c) may be extended to a Γc-invariant

distribution in D†K(A). But Φ(c) is zero if c 6∈ C0 by Lemma 5.1, and Φ(c) is a multiple of the
‘evaluation at c’ distribution δ0,c if c ∈ C0 ⊂ Zp by Proposition 5.2. In both cases, the distributions
can obviously be lifted. This proves the claim.
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Choosing a k′ > 0 in X, we get that

dim BSymbΓ(D†k′(Qp))
ord[Ek+2,ψ,τ ] = dim BSymbΓ(D†k(Qp))

ord[Ek+2,ψ,τ ].

This dimension is the cardinality of the family of elements Φk,ψ,τ,t in the statement of the
theorem, namely, the number of divisors t of N/M . With ψ, τ , and k 6= −1 fixed, the symbols
Φk,ψ,τ,t for t | N/M are linearly independent; this is easily seen as in Corollary 2.13, since the
vectors (Φk,ψ,τ )|O` and (Φk,ψ,τ )|C` for primes ` | N/M have distinct U`-eigenvalues. Therefore

the symbols Φk,ψ,τ,t form a basis of BSymbΓ(D†k(L))ord as desired. 2

5.3 Proof of the −ε(f)-part of Theorem 1.1

Proposition 5.9. Let f be any new Eisenstein series, fβ its critical refinement, and µ
−ε(f)
fβ

defined as in the introduction. Then µ
−ε(f)
fβ

= 0 unless f is a normal Eisenstein series Ek+2,ψ,τ

with τ = 1 or f is an exceptional Eisenstein series E2,`. In the latter cases, the distribution µ
−ε(f)
fβ

has support {0}. In all cases, we have

Lp(fβ, σ) = 0 if σ(−1) = −ε(f).

Proof. The assertion about the p-adic L-function follows from the assertions about µ
−ε(f)
fβ

, since

the Mellin transform of a distribution with support contained in pZp is zero.
We only treat the normal case, leaving the simple modifications for the exceptional case

to the reader. Let f = Ek+2,ψ,τ , with ψ and τ primitive of conductor Q and R, respectively.
Then f is a newform of level N := QR, and fβ is a form of level Γ = Γ1(N) ∩ Γ0(p). We have

ε(f) = ψ(−1) (cf. Proposition 2.9). By definition, Φ
−ε(f)
fβ

is a generator of the one-dimensional

space Symb
−ε(f)
Γ (D†k)[fβ]. We observe that the modular symbol ΘkΦ−2−k,τ,ψ (note the inversion

in the order of ψ and τ) has the same eigenvalues for the Hecke operators T`, Up and 〈d〉 as fβ,
and has sign τ(−1)(−1)k+1 = −ψ(−1) = −ε(f). Therefore, up to a non-zero scalar,

Φ
−ε(f)
fβ

= ΘkΦ−2−k,τ,ψ

and µ
−ε(f)
fβ

is the (k+1)-derivative of the measure Φ−2−k,τ,ψ({∞}−{0}). This measure is readily

seen by its definition (40) to be zero unless τ = 1, in which case it is a multiple of the ‘evaluation
at zero’ measure. This completes the proof. 2

Remark 5.10. It follows from the proof above that Φ
−ε(f)
fβ

is a boundary modular symbol. It is

easy to see (cf. Remark 5.6 above for certain cases or Lemma 6.9 below in general) that on the

contrary Φ
ε(f)
fβ

is not a boundary modular symbol.

6. Families of p-adic L-functions of Eisenstein series: proof of the main theorem in
the normal case

In this section we prove the main theorem in the normal case. As in the introduction, we fix τ a
Dirichlet character of conductor R, ψ a Dirichlet character of conductor Q, and a prime number
p not dividing QR. We will also choose a multiple N of QR not divisible by p; we will have either
N = QR, N = QR`, or N = QR`1`2 for primes `, `1, `2 not dividing QRp. We use the notations
defined in § 3.1 for our given choice of N .
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6.1 The p-adic L-functions of an ordinary Eisenstein series
Consider the Eisenstein series Ek+2,τ,ψ,t of level Γ1(N) where t is a positive integer such that
QRt | N . (As noted earlier, the order of τ and ψ has been switched from the introduction for our
intended application; namely, the operator Θk sends Eord

−k,τ,ψ to Ecrit
k+2,ψ,τ .) Like any eigenform of

that level, Ek+2,τ,ψ,t has two p-refinements, which are eigenforms forH of level Γ = Γ1(N)∩Γ0(p).
They are:

Eord
k+2,τ,ψ,t = Ek+2,τ,ψ,t − ψ(p)pk+1Ek+2,τ,ψ,pt,

Ecrit
k+2,τ,ψ,t = Ek+2,τ,ψ,t − τ(p)Ek+2,τ,ψ,pt.

Both forms have the same eigenvalues as Ek+2,τ,ψ,t for the Hecke operators T` (` - Np) and the
Diamond operators, but they have the following eigenvalues for Up:

UpE
ord
k+2,τ,ψ,t = τ(p)Eord

k+2,τ,ψ,t

UpE
crit
k+2,τ,ψ,t = ψ(p)pk+1Ecrit

k+2,τ,ψ,t.

Since the Up-eigenvalue of Eord
k+2,τ,ψ,t is a p-adic unit, this form is ordinary.

We consider a linear combination

f =
∑

t,QRt|N

ctE
ord
k+2,τ,ψ,t (42)

where the ct are algebraic numbers. The form f is an eigenform of level Γ. Let us assume that f

is C-cuspidal, so that we can consider the partial modular symbol φf ∈ SymbΓ,C(Vk(K)) defined

in § 3.3. Here K ⊂ Q is the number field of Proposition 3.5. We consider the part of φf with sign

−τ(−1), and using the embedding Q ⊂ Qp we view the coefficients as living in Vk(L), where L

is the finite extension of Qp generated by K:

φ
−τ(−1)
f ∈ SymbΓ,C(Vk(L)).

By Proposition 4.1(iii), there is a unique Φf ∈ Symb
−τ(−1)
Γ,C (Dk(L)) such that

ρk(Φf ) = φ
−τ(−1)
f .

Proposition 6.1. Let f be as in (42) such that f is C-cuspidal. If σ ∈ W(Cp) and σ(−1) =

−τ(−1), then

Lp(Φf , σ) =
G(τ)

2R

∑
t,QRt|N

ctt
−1σ(Rt)−1Lp(ψ, σz

−k)Lp(τ, σz). (43)

Proof. We first recall the interpolation properties of the Kubota–Leopoldt p-adic L-functions

Lp(ν, σ) for ν a Dirichlet character of conductor prime to p. If χ is a finite order character of Z∗p
of conductor pn, and m is an integer, we have:

Lp(ν, χz
m) = L(νχ−1,m) (44)

if νχ(−1) = (−1)m+1 and m 6 0. Also,
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Lp(ν, χz
m) =

2Γ(m)(cond(ν)pn)mνχ−1(−1)

(2πi)mG(νχ−1)
L(νχ−1,m) (45)

= L(ν−1χ, 1−m) (46)

if νχ(−1) = (−1)m and m > 1. In (45), G(νχ−1) denotes a Gauss sum. Note that if χ = 1, these
three equations must be altered by removing the Euler factors at p in (44) and (46); in other
words, the RHS of (44) should be multiplied by (1 − ν(p)p−m), and the RHSs of (45) and (46)
should be multiplied by (1− ν−1(p)pm−1).

Let us assume that σ is a special character of the form z 7→ χ(z)zj where χ is a finite order
character of Z∗p of conductor pn and 0 6 j 6 k, and that σ(−1) = −τ(−1). A simple and standard

computation using the fact that ρk(Φf ) = φ
−τ(−1)
f , UpΦf = τ(p)Φf , and that φf satisfies (33)

allows one to compute Lp(Φf , χz
j). If χ is non-trivial, one arrives at the interpolation formula (1)

for f :

Lp(Φf , χz
j) =

pn(j+1)j!

τ(p)n(−2πi)j+1G(χ−1)
L(f, χ−1, j + 1),

where G(χ−1) is the Gauss sum. Using Lemma 3.4, we obtain

Lp(Φf , χz
j) =

∑
t,QRt|N

ct
pn(j+1)j!t−j−1χ−1(t)

τ(p)n(−2πi)j+1G(χ−1)
L(τχ−1, j + 1)L(ψχ−1, j − k). (47)

To express each term of this sum in terms of p-adic L-functions, we apply (44) to ν = ψ and
m = j − k. This is possible since m 6 0 and

ψχ(−1)(−1)j−k+1 = ψσ(−1)(−1)−k+1 = −ψτ(−1)(−1)−k+1 = 1,

and we obtain

L(ψχ−1, j − k) = Lp(ψ, χz
j−k). (48)

Next we apply (45) to ν = τ and m = j + 1. This is possible since m > 1 and

νχ(−1)(−1)m = τχ(−1)(−1)j+1 = (−τ(−1))2 = 1,

and we obtain

L(τχ−1, j + 1) =
(2πi)j+1G(τχ−1)τχ(−1)

2j!(Rpn)j+1
Lp(τ, χz

j+1). (49)

Plugging in (48) and (49) and using G(τχ−1) = τ(pn)χ−1(R)G(τ)G(χ−1), we find

Lp(Φf , χz
j) =

G(τ)

2

∑
t

ctχ(Rt)−1(Rt)−j−1Lp(ψ, χz
j−k)Lp(τ, χz

j+1),

which is (43) for the characters σ = χzj satisfying 0 6 j 6 k and σ(−1) = −τ(−1). There are
infinitely many such characters on each component of W of sign −τ(−1), and both sides of (43)
are bounded functions. The result follows since a non-zero bounded analytic function on an open
ball has at most finitely many zeros. 2

Let us now choose specific constants ct such that the resulting form f is C-cuspidal. The
form f is cuspidal at ∞ automatically if τ 6= 1, and if

∑
t ct = 0 when τ = 1. Similarly,

the form f is cuspidal at zero automatically if ψ 6= 1, and if
∑
ctt
−k−2 = 0 when ψ = 1. It will

be convenient to choose N minimal necessary to achieve C-cuspidality. We therefore propose the
following definition.
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Definition 6.2. Define N and a modular form Fk+2 of level Γ as follows:

– if τ 6= 1, ψ 6= 1, let N = QR and Fk+2 = Eord
k+2,τ,ψ;

– if τ = 1 but ψ 6= 1, choose a prime `1 - QRp such that ψ(`1) 6= 1, let N = QR`1, and let
Fk+2 = Eord

k+2,τ,ψ − Eord
k+2,τ,ψ,`1

;

– if ψ = 1 but τ 6= 1, choose a prime `2 - QRp such that τ(`2) 6= 1, let N = QR`2, and let
Fk+2 = Eord

k+2,τ,ψ − `k+2
2 Eord

k+2,τ,ψ,`2
;

– if τ = ψ = 1 in the normal case (so k > 0), choose primes `1 and `2 not dividing QRp, let
N = QR`1`2, and let

Fk+2 = Eord
k+2,τ,ψ − Eord

k+2,τ,ψ,`1 − `
k+2
2 Eord

k+2,τ,ψ,`2 + `k+2
2 Eord

k+2,τ,ψ,`1`2 .

Note that, by construction, in the normal case the assumptions of Corollary 2.13 and
Theorem 5.8 hold for our choice of N , i.e. no primes dividing N/(QR) are bad for Ek+2,ψ,τ .

From Proposition 6.1 and the succeeding comments, we obtain the following proposition.

Proposition 6.3. The Eisenstein series Fk+2 is C-cuspidal, and for σ ∈ W(Cp) with σ(−1) =
−τ(−1) we have

Lp(Fk+2, σ) = m(k, σ)Lp(ψ, σz
−k)Lp(τ, σz),

where

m(k, σ) =
G(τ)

2Rσ(R)
(1− σ(`1)−1`−1

1 )(1− σ(`2)−1`k+1
2 ), (50)

with the understanding that the factor associated to `1 or `2 does not occur in (50) if the
corresponding prime does not occur in the relevant case of Definition 6.2.

6.2 A family of partial modular symbols
In joint work with H. Darmon, the second-named author proved that ΦFk+2

belongs to a family
of partial modular symbols over the weight space [DD06]. If X = SpA is an open affinoid subset
of W, K ∈ W(A) is the canonical character, Φ ∈ SymbΓ,C(DK(A)), and k ∈ Z, then we write
Φk for the image of Φ⊗ 1 in SymbΓ,C(Dκ)(Qp) by the specialization map (37).

Theorem 6.4 (Dasgupta–Darmon). There exists a unique symbol

Φ ∈ SymbΓ,C(DK(A))

such that for every integer k > 0, we have Φk = Φ
−τ(−1)
Fk+2

.

Proof. LetM(Zp×Z×p ) denote the Γ-module of Z-valued measures on Zp×Z×p . In [DD06, Theorem
4.2], it is proved that there exists a unique partial modular symbol µ ∈ SymbΓ,C(M(Zp × Z×p ))
such that for each homogenous polynomial h(x, y) ∈ Q[x, y] of degree k, we have∫

Zp×Z×p
h(x, y) dµ({r} − {s})(x, y) = φ

−τ(−1)
Fk+2

({r} − {s})(h(z, 1)).

It is then clear that

Φ({r} − {s})(g(z)) :=

∫
Zp×Z×p

g(x/y)K(y) dµ({r} − {s})(x, y)

has the desired property. 2
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Proposition 6.5. Let Φ be as in Theorem 6.4. Assume that Z>0 ∩ X is Zariski-dense in X.
Then

Φ|ι =−τ(−1)Φ

Φ|T` = (τ(`) +K(`)`ψ(`))Φ, ` - Np
Φ|Up = τ(p)Φ

Φ|〈a〉 = τ(a)ψ(a)Φ, a ∈ (Z/NZ)×.

Proof. These results hold after applying the specialization map at any positive integer k. Since

Z>0 ∩X is Zariski-dense, the proposition follows. 2

Theorem 6.6. There exists Ψ ∈ SymbΓ,C(D−2−k(L)) such that

Ψ|ι =−τ(−1)Ψ

Ψ|T` = (τ(`) + `−1−kψ(`))Ψ, ` - Np
Ψ|Up = τ(p)Ψ

Ψ|〈a〉 = τ(a)ψ(a)Ψ, a ∈ (Z/NZ)∗

and such that for σ ∈ W(Cp) with σ(−1) = −τ(−1), we have

Lp(Ψ, σ) = m(−2− k, σ)Lp(ψ, σz
k+2)Lp(τ, σz).

Proof. Choose for X a closed ball around −2 − k in W. Then Z>0 ∩ X is Zariski-dense in X.

Let Φ be as in Theorem 6.4. Applying Proposition 6.5 to X, it follows that the specialization

Ψ := Φ−2−k of Φ has the desired eigenvalues.

Moreover, Lp(Φ) is an element of R⊗̂A, i.e. a two variable p-adic L-function Lp(Φ)(κ, σ)

where κ ∈ X(Cp) and σ ∈ W(Cp), such that Lp(Φ)(k, σ) = Lp(Φk, σ) when κ = k ∈ Z. In

particular, if k > 0, we have by Proposition 6.3

Lp(Φ)(k, σ) = m(k, σ)Lp(ψ, σz
−k)Lp(τ, σz)

whenever σ(−1) = −τ(−1). By interpolation, we have for all κ:

Lp(Φ)(κ, σ) = m(κ, σ)Lp(ψ, σκ
−1)Lp(τ, σz),

where m(κ, σ) has the obvious meaning (namely (50) with k replaced by κ). The result follows

by specialization to κ = −2− k. 2

Corollary 6.7. There exists a modular symbol

Φcrit
k ∈ Symb

ψ(−1)
Γ,C (D†k(L))[Ek+2,ψ,τ ]

such that for σ(−1) = ψ(−1) we have

Lp(Φ
crit
k , σ) = log[k+1](σ)n(k, σ)Lp(ψ, σz)Lp(τ, σz

−k),

where

n(k, σ) = m(−2− k, σz−k−1).
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Proof. Set Φcrit
k = ΘkΨ where Ψ is as in Theorem 6.6, i.e.

Φcrit
k ({r} − {s})(g(z)) = Ψ({r} − {s})

(
dk+1g(z)

dzk+1

)
.

The map Θk multiplies the eigenvalues of the operators ι, T`, Up, and 〈a〉 by (−1)k+1, `k+1, pk+1,

and 1. Therefore, Φcrit
k is in the desired eigenspace of SymbΓ,C(D†k(L)):

Φcrit
k |ι = ψ(−1)Φcrit

k

Φcrit
k |T` = (ψ(`) + `k+1τ(`))Φcrit

k , ` - Np

Φcrit
k |Up = τ(p)pk+1Φcrit

k

Φcrit
k |〈a〉 = τ(a)ψ(a)Φcrit

k , a ∈ (Z/NZ)∗.

One easily calculates from the definition that in general one has

Lp(ΘkΨ, σ) = log[k+1](σ)Lp(Ψ, σz
−k−1)

(see [Bel, Lemma 2.9]). Note also that

σ(−1) = ψ(−1) =⇒ (σz−k−1)(−1) = −τ(−1).

The desired result now follows from the calculation of Lp(Ψ, σ) in Theorem 6.6. 2

6.3 End of the proof in the normal case
Recall that Γ = Γ1(N) ∩ Γ0(p). Set

Γ′ = Γ1(QR) ∩ Γ0(p) ⊃ Γ.

Let f = Ek+2,ψ,τ and β = τ(p)pk+1, and write fβ for the critical refinement of f , also known
as the ‘evil’ Eisenstein series. The form fβ is a modular form for Γ′. We view it as an old form
for Γ.

Let Φfβ be a generator of the space Symb
ψ(−1)
Γ′ (D†k)[fβ] (which is one-dimensional by the

main result of [Bel12]).
The following proposition is the analogue for modular symbols of the linear independence of

the modular forms fβ(tz) for distinct integers t, which is easily seen on q-expansions using the
theory of newforms.

Proposition 6.8. The vectors (Φfβ )|Vt for t | N/(QR) are linearly independent in Symb
ψ(−1)
Γ

(D†k(L))[fβ].

Proof. We distinguish two cases, according to whether the image of Φfβ by the map ρk of (36) is
0 or not. In the latter case, the image ρk(Φfβ ) is (up to a non-zero scalar) the boundary classical
modular symbol φpk,ψ,τ ∈ BSymbΓ′(Vk(L)) by Corollary 2.13 (with N replaced by QR). Applying

the corollary again (with N playing its own role), we see that the vectors ρk((Φfβ )|Vt) = φpk,ψ,τ,t
are linearly independent, and hence the vectors (Φfβ )|Vt are as well.

Let us now turn to the more difficult case ρk(Φfβ ) = 0. As before, define the operators

C` = 1− ψ(`)V` and O` = 1− τ(`)`k+1V`,

C`, O` : SymbΓ′(Dk(L))[fβ] → SymbΓ(Dk(L))[fβ].
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A standard computation using (10) and (11) shows that for each factorization into positive
integers N/QR = st, the corresponding symbol

Φs,t
fβ

:= (Φfβ )|
∏
`|sO`

∏
`|t C`

is a U`-eigenvector for each ` | N/(QR), with eigenvalue τ(`) for ` | s and eigenvalue ψ(`)`k+1

for ` | t. Since these systems of eigenvalues are distinct for distinct factorizations N/QR = st, it
follows that the vectors Φs,t

fβ
are linearly independent as long as they are non-zero. Furthermore,

the vectors in {Φs,t
fβ

: st = N/QR} are clearly linear combinations of the vectors in {(Φfβ )|Vt :

t | N/(QR)} by definition. These two sets have the same size, so the linear independence of the
Φs,t
fβ

implies that of the (Φfβ )|Vt .

It therefore remains to prove that Φs,t
fβ
6= 0. We will prove the following statement.

If Φ is a nonzero symbol in Symb
Ψ(−1)
Γ′ (D†k(L))[fβ] such that ρk(Φ) = 0, ` is a prime

dividing N/QR, and λ ∈ L is not of the form `ν for an integer ν > k + 2, then
Φ− λΦ|V` 6= 0.

The proposition follows by inductively applying this claim for all ` | N/(QR). To prove
the claim, we first show that if Φ − λΦ|V` = 0, then Φ({∞} − {c}) = 0 for any cusp c in the
Γ-equivalence class of zero. Such a cusp may be written c = a/b where a, b are relatively prime
integers, with b coprime to Np (and in particular ` - b). There exists a positive integer n such
that `n ≡ 1 (mod b). We have Φ = λnΦ|V`n . Applying this equation to the divisor {∞} − {a/b},
we get

Φ({∞} − {a/b})(f(z))

= λn`(−k−1)nΦ({∞} − {`na/b})(`nkf(z/`n)) (using the definition of V` and (18))

= (λ/`)nΦ({∞} − {a/b})(f(z/`n +m)) where m =
a

b
(`n − 1) ∈ Z, using Φ

|
(

1 m
0 1

) = Φ.

Therefore, if we set µ := Φ({∞} − {a/b}), then for all f ∈ D†(L),

µ(f(z)) = (λ/`)nµ(f(z/`n +m)).

We claim that such a distribution µ is zero. A change of variable z 7→ z + `nm allows us to
assume m = 0. Hence µ vanishes against all functions g(z) of the form f(z) − (λ/`)nf(z/`n).
One sees easily that all functions g ∈ D†(L) are of this form, unless λ = `ν , with ν an integer
>1, in which case we obtain all functions g whose (ν − 1)th derivative at zero is equal to zero.
On the other hand, since ρk(Φ) = 0, µ also vanishes against any polynomial in z of degree less
than or equal to k.

By our assumption on λ, if λ = `ν with ν an integer >1, then ν 6 k + 1, and hence any
element D†(L) can be written as a sum of a polynomial of degree at most k with a function
whose (ν − 1)th derivative at zero is equal to zero. It therefore follows that µ = 0.

We have thus proved that Φ({∞}−{c}) = 0 for all c ∈ Γ ·0. We deduce that the restriction of

Φ to SymbΓ,Γ·0(D†k(L)) is zero. By Lemma 2.3, Φ is thus a boundary modular symbol. Lemma 6.9
below then shows that Φ = 0, which gives a contradiction. This proves the italicized claim above,
and hence the proposition. 2

Lemma 6.9. One has BSymb
ψ(−1)
Γ (D†k(L))[fβ] = 0.
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Proof. By Theorem 5.5, it suffices to show that there is no Hecke eigenvector in
BSymbΓ(D†−2−k(L)) with the same eigenvalues as in Theorem 6.6 (in particular with ι-eigenvalue
−τ(−1)). By Theorem 5.8, we know that a basis of this eigenspace without the condition on the
ι-eigenvalue is given by the Φ−2−k,τ,ψ,t for QRt|N . All these vectors have sign τ(−1); hence the
lemma is proved. 2

Proposition 6.10. Let S denote the set of divisors of N/(QR). The space of partial modular

symbols Symb
ψ(−1)
Γ,C (D†k(L))[fβ] has dimension |S| and is generated by the restriction of (Φfβ )|Vt

to that space for t ∈ S.

Proof. Let x be the point of CΓ,BCM corresponding to fβ. By Theorem 4.6, x is a smooth point,
and in a neighborhood of x in CΓ,BCM, all classical points are old, but come from newforms of
level Γ′ = Γ1(QR) ∩ Γ0(p).

By Corollary 4.5, the dimension of Symb
ψ(−1)
Γ,C (D†k(L))[x] is the same as the dimension of

Sk′+2(Γ, L)[y] for y a classical point close to x. By the above, this is the dimension of the
eigenspace in Sk′+2(Γ, L) of the system of eigenvalues of a form of level Γ′. Atkin–Lehner’s theory
of newforms gives that the dimension of this space is |S|. (To be precise, if g(z) is a newform on
Γ1(QR) ∩ Γ0(p), then the corresponding eigenspace for forms on Γ has a basis {g(tz) : t ∈ S}.)
This proves the first assertion.

The restriction map

Symb
ψ(−1)
Γ (Dk)[fβ] → Symb

ψ(−1)
Γ,C (Dk)[fβ]

is injective since by Lemma 2.3 the kernel of this map is contained in BSymb
ψ(−1)
Γ (Dk)[fβ], which

is zero by Lemma 6.9. Hence the restrictions of the independent vectors (by Proposition 6.8)

(Φfβ )|Vt are still independent, and hence a basis of Symb
ψ(−1)
Γ,C (D†k(L))[fβ]. 2

To conclude the proof of Theorem 1.1 in the normal case, we write the symbol Φcrit
k of

Corollary 6.7 in the basis above: there exist constants at ∈ L such that

Φcrit
k =

∑
t∈S

at(Φfβ )|Vt .

Taking the Mellin transform, we get for all σ ∈ W(Cp) with σ(−1) = ψ(−1):

L(Φcrit
k , σ) = r(σ)L(Φfβ , σ),

where
r(σ) =

∑
t∈S

att
−1σ(t)−1.

From Corollary 6.7 we obtain

Lp(Φfβ , σ)

log[k+1](σ)Lp(ψ, σz)Lp(τ, σz−k)σ−1(R)
=
n(k, σ)

r(σ)
. (51)

The LHS of (51) is independent of the primes dividing N/(QR), and hence the RHS must be
unchanged if these primes are replaced by other primes. However, the RHS of (51) is a rational
function in functions of the form σ 7→ σ(`). Since any collection of functions of this form for
distinct primes ` are an algebraically independent set of functions on Wψ(−1), the RHS of (51)
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can be independent of the primes dividing N/(QR) only if it is a constant. From the defintion
of n(k, σ) and r(σ), this constant is clearly non-zero, and hence we obtain

Lp(Φfβ , σ) = log[k+1](σ)σ−1(R)Lp(ψ, σz)Lp(τ, σz
−k)

up to a non-zero constant.

7. Proof of the main theorem in the exceptional case

In this section we consider the exceptional Eisenstein series f = E2,`. Our proof of the main
theorem for the normal case in § 6 does not apply here because Theorem 4.6 does not hold in
the exceptional case (since the primes dividing N/QR are necessarily bad), and Proposition 6.10
relies on Theorem 4.6. We therefore employ a more explicit method.

Let p be a prime 6= `, and let fβ = E2,`(z)−E2,`(pz) be the critical refinement of f . Let Φfβ ∈
Symb+

Γ0(p`)(D
†
0(Qp)) be the non-zero overconvergent modular symbol with the same eigenvalues

as fβ, i.e. such that:

(i) T`′Φfβ = (1 + `′)Φfβ , for `′ prime, `′ - `p;
(ii) UpΦfβ = pΦfβ .

The uniqueness of Φfβ up to multiplication by a non-zero scalar is guaranteed by the main result
of [Bel12]. We even have ρ0(Φfβ ) = φfβ up to a non-zero scalar, where φfβ ∈ SymbΓ(`p)(Qp) is
the classical boundary modular symbol attached to fβ, since the eigencurve is étale over the
weight space at fβ (cf. [Bel10]).

In this section, we denote by C0 the set of cusps Γ0(`) · 0 and C∞ the set of cusps Γ0(`) · ∞
(this supersedes the notation used in § 5). Let us choose two integers x and y such that `x−py = 1
and let w` =

( ` y
`p `x

)
∈ GL2(Q). One has detω` = `. An easy computation shows that this matrix

normalizes Γ0(`p), interchanges C0 and C∞, and satisfies w2
` ∈ `SL2(Z). For an S0(p)-module

W , w` induces maps

w` : SymbΓ0(`p)(W ) → SymbΓ0(`p)(W ),

w` : SymbΓ0(`p),C0
(W ) → SymbΓ0(`p),C∞(W )

that are easily seen to be compatible with the Hecke operators Tq for q prime to `p, with Up, and
when −Id acts trivially on W , with the action of ι. In particular, one sees that w`Φfβ is a scalar
times Φfβ . To determine that scalar we use [AL70, Lemma 5], which states that w`(φfβ )+U`(φfβ )
has level Γ0(p), and hence is zero since there is no classical modular symbol (or form) on level
Γ0(p) with the system of eigenvalues of Ecrit

2 . Since U`(φfβ ) = φfβ , we get

w`Φfβ = −Φfβ . (52)

Let us choose an auxiliary prime q not dividing `p. We define Γ = Γ0(q`p) and let Cq,0 =
Γ0(q`) · 0, Cq,∞ = Γ0(q`) · ∞ and Cq = Cq,0

∐
Cq,∞. These sets of cusps fit into the following

diagram, where arrows represent inclusions.

P1(Q)

C0

;;

C∞

cc

Cq,0

OO

// Cq

OO

Cq,∞

OO

oo
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For any sets of cusps C ⊂ C ′ we denote by resC′,C the obvious restriction map on partial modular
symbols, and just resC when C ′ is the full set of cusps P1(Q). We also have operators

Vq : SymbΓ0(`p),C0
→ SymbΓ0(`qp),C0

,

Vq : SymbΓ0(`p),C∞ → SymbΓ0(`qp),C∞ .

Using the construction of Darmon and Dasgupta [DD06], one proves the following result.

Proposition 7.1. There exist non-zero partial overconvergent modular symbols

Φ∞ ∈ Symb+
Γ0(`p),C∞

(D†0(Qp))

Φ0 ∈ Symb+
Γ0(`p),C0

(D†0(Qp))

Φq ∈ Symb+
Γ,Cq

(D†0(Qp))

such that:

(i) T`′Φ∞ = (1 + `′)Φ∞ and T`′Φ0 = (1 + `′)Φ0 for `′ - `p;
(ii) UpΦ∞ = pΦ∞ and UpΦ0 = pΦ0;

(iii) w`Φ0 = −Φ∞;

(iv) one has resCq ,Cq,0Φq = resC0,Cq,0(1− qVq)Φ0 and similarly with zero replaced by ∞;

(v) the p-adic Mellin transform of the distribution Φq({∞} − {0}) is

Lp(Φq)(σ) = log[1]
p (σ)(1− σ−1(q))(1− σ−1(`))ζp(σz)ζp(σ) if σ(−1) = 1.

Proof. Consider the usual classical modular form

Eord
k+2(z) = Ek+2(z)− pk+1Ek+2(z)

of level Γ0(p) for k > 0 an even integer, with Ek+2(z) the usual Eisenstein series of level one and
weight k + 2 (which is not a modular form for k + 2 = 2, even though Eord

2 is). To this form we
add three others

F∞k+2 = (1− V`)Eord
k+2 ∈Mk+2(Γ0(`p))

F 0
k+2 = (1− `k+2V`)E

ord
k+2 ∈Mk+2(Γ0(`p))

F qk+2 = (1− qk+2Vq)(1− V`)Eord
k+2 ∈Mk+2(Γ).

As is well known, Eord
k+2 is part of a family indexed by the weight space, and thus in particular

makes sense for any k ∈ Z, as do F∞k+2, F
0
k+2 and F qk+2. The crucial point for the proof is the

following ‘numerical coincidence’ that occurs at k = −2:

F∞0 = F 0
0 .

Therefore,

F q0 = (1− Vq)F 0
0 = (1− Vq)F∞0 . (53)

It is easy to see (see the comments above Definition 6.2) that F∞k+2 is C∞-cuspidal, F 0
k+2 is

C0-cuspidal, and F qk+2 is Cq-cuspidal. We can therefore attach classical partial modular symbols
to those three modular forms (cf. Definition 3.1), and lift them (since they are ordinary at p) to
partial overconvergent modular symbols
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Φ∞k+2 ∈ SymbΓ0(`p),C∞(D†k(Qp)),

Φ0
k+2 ∈ SymbΓ0(`p),C0

(D†k(Qp)),

Φq
k+2 ∈ SymbΓ,Cq(D

†
k(Qp)).

As k varies, each of these three symbols is part of a family of ordinary overconvergent modular
symbols (cf. [DD06]) over the weight space and thus makes sense for any k in Z. In particular
for k = −2 we get

Φ∞0 ∈ SymbΓ0(`p),C∞(D†−2(Qp)),

Φ0
0 ∈ SymbΓ0(`p),C0

(D†−2(Qp)),

Φq
0 ∈ SymbΓ,Cq(D

†
−2(Qp)).

Finally we define Φ∞, Φ0 and Φq appearing in the statement of the proposition as the image by
Θ0 (cf. (35)) of these modular symbols.

It is easy to compute by interpolation the Hecke eigenvalues of Φ∞0 and Φ0
0, and thus those

of Φ∞ and Φ0 which proves (i) and (ii).
A direct computation using the convergent series defining Ek+2 shows that w`F

0
k+2 =

−`−1F∞k+2 for k > 0. By interpolation, a similar relation holds for the attached modular symbols,
including for k = −2: w`Φ

0
0 = −`−1Φ∞0 . Applying Θ0 and taking into account w`Θ0 = `Θ0w`,

we get (iii).
The point (iv) is a translation of the numerical coincidence (53): one gets from (53) that

resCq ,Cq,0Φq
0 = resC0,Cq,0(1− Vq)Φ0

0

and similarly with zero replaced by∞. After applying Θ0 we get (iv), noting that Θ0Vq = qVqΘ0.
The point (v) follows by computing the p-adic L-function attached to the form F qk+2, as

in Proposition 6.3, interpolating this to k = −2 as in Theorem 6.6 and applying Θ0 as in
Corollary 6.7. 2

Proposition 7.2. Up to multiplying Φfβ by a non-zero scalar, we have

resC0Φfβ = Φ0 (54)

resC∞Φfβ = Φ∞. (55)

N.B. the multiplication by a single non-zero scalar is enough to imply (54) and (55)
simultaneously.

Proof. Since the eigencurve of full modular symbols and tame level ` is smooth (even étale over
the weight space) at the point Ecrit

2,` = fβ, as is the eigencurve of partial C0-modular symbols,
the eigenspaces

Symb+
Γ0(p`)(D

†
0(Qp))[fβ] and Symb+

Γ0(`p),C0
(D†0(Qp))[fβ]

have dimension one. Therefore resC0Φfβ = α0Φ0 for some α0 ∈ Qp. If α0 = 0, then Φfβ is a
boundary modular symbol by Lemma 2.3, which contradicts Remark 5.6 since Φfβ has sign +1.
So α0 6= 0.

Similarly, one proves that resC∞Φfβ = α∞Φ∞ with α∞ 6= 0. Finally, we recall that w`Φfβ =
−Φfβ while by (iv) of Proposition 7.1, w`Φ0 = −Φ∞. The compatibility between w` and the
restriction maps resC0 and resC∞ implies that α0 = α∞. 2
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By Proposition 7.2 and Proposition 7.1(iv) one has

resCq ,Cq,0(resCq(1− qVq)Φfβ ) = resCq ,Cq,0Φq (56)

resCq ,Cq,∞(resCq(1− qVq)Φfβ ) = resCq ,Cq,∞Φq. (57)

We are thus in situation to apply the following general lemma.

Lemma 7.3. Let W be a Γ-module such that WΓ = 0. Then the map

resCq ,Cq,0 × resCq ,Cq,∞ : SymbΓ,Cq(W ) → SymbΓ,Cq,0(W )× SymbΓ,Cq,∞(W )

is injective.

Proof. Let φ be in the kernel of the given map. We need to show that φ({a} − {b}) = 0 when
a ∈ Cq,0 and b ∈ Cq,∞. Since φ is in the kernel, φ({a} − {0}) = 0 and φ({∞} − {b}) = 0, and
φ({0} − {∞}) ∈WΓ = 0 by hypothesis. The result follows. 2

The hypothesis (D†0)Γ = 0 of the lemma is satisfied by [PS13, Proposition 3.1]. Therefore
by (56) and (57), we obtain:

resCq(1− qVq)Φfβ = Φq.

Evaluating these modular symbols at the divisor {0} − {∞}, which is in Cq, we get using
Proposition 7.1(v):

(1− σ−1(q))Lp(fβ, σ) = log[1]
p (σ)(1− σ−1(q))(1− σ−1(`))ζp(σz)ζp(σ)

for σ such that σ(−1) = 1. Hence, canceling the factor 1−σ−1(q), we obtain Theorem 1.1 in the
exceptional case.
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