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1. Introduction. Recently, Levin and Saxon [5], De Wilde and Houet [2] defined the
<T-barrelledness while Husain [3] defined the countable barrelledness and countable quasi-
barrelledness. It is well-known that barrelled spaces are countably barrelled, and countably
barrelled spaces are ex-barrelled. It is natural to ask whether there is some condition for
a-barrelled (resp. countably barrelled) spaces to be countably barrelled (resp. barrelled).
Using the concept of 5-absorbent sequences of sets, we are able to give such conditions in
Theorem 2.5 and Corollaries 2.6 and 2.7.

Valdivia [9], Saxon and Levin [8] have shown that every vector subspace with countable
codimension of a barrelled space is barrelled. Also Levin and Saxon showed in [5] that this
hereditary property is true for cr-barrelled spaces. In §3, we show that this hereditary property
is also true for countably barrelled spaces as well as for cr-barrelled (Di^-spaces, which is a
generalization of Valdivia [10, Theorem 3].

The final section is devoted to some properties of S-absorbent sequences of sets which
extend some results of Valdivia [9], De Wilde and Houet [2].

2. The relationship between various types of barrelledness. Let (E, T) be a Hausdorff
locally convex space whose topological dual is denoted by E'. If B is a subset of E (resp. E'),
then the polar of B, taken in £ ' (resp. E), is denoted by B°. By a topologizing family (t. family,
for short) for E' (resp. E) we mean a family S consisting of (convex circled) a(E, £')-bounded
subsets of E (resp. a{E', £>bounded subsets of £') such that u {B: B e S) = E (resp. £")• For
a t. family S for E' (resp. E), the topology on E' (resp. E) of uniform convergence on S is
denoted by Ts.

Let S be a t. family for £". We denote by 5* the family of all 7>bounded subsets of E'.
Clearly Sb is again a t. family for E. The topology on E of uniform convergence on 5* is
denoted by T%, therefore we have Tb

s = Tsb. Similarly we can define 5"* and 7*5*, where
S"b = Sbb-b and Tf = Tsb~b, the superscript b being repeated n times in each case;
consequently we have Tf = Tsnb for all n ^ 1.

If S is a t. family for £ ' , let us say temporarily that Sb (resp. Sbb) is the bounded-polar
(resp. bounded-bipolar) family of S, and that T$ (resp. Tj*) is the bounded-polar (resp. bounded-
bipolar) topology of Ts. It is clear that {S°:SeSb} forms a neighbourhood base at 0 for the
bounded-polar topology T%, and that {B°:BeSbb} forms a neighbourhood base at 0 for the
bounded-bipolar topology Tf. If Sx and S2 are two t. families for E' with Sx c S2, then
Sb

2 c S\.

LEMMA 2.1. For a t. family Sfor E', we have:

(a) ScSbb;
f This research was supported by an N.R.C. grant.
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VARIOUS TYPES OF BARRELLEDNESS 135

(b) Ts g if;
(c) 5" = S3b and T% = Tj6.

The proof is straightforward and will be omitted. We shall see that the inclusion in (a)
may be strict.

In the sequel we denote by /J(£, £') the strong topology on £, i.e., the topology of
uniform convergence on all <x(£', £)-bounded subsets of E', and by /?*(£, E') the topology of
uniform convergence on all /?(£', £)-bounded subsets of £'. As usual, T(£, E') denotes the
Mackey topology on E. Clearly,

T(£, £') g p*(E, £') g RE, E')
and

It is not hard to see that each a{E, £')-bounded subset of E is /?*(£, £')-bounded, and that
dually each <x(£", £)-bounded subset of E' is j3*(£', £)-bounded.

EXAMPLES. (1) If Sf is the family of all finite subsets of E, then we have that
TSf = a(E', E); T%f = /?(£, £'); Tff = /?*(£', E). Therefore we conclude that Sf / Sf and
Ts, * Tflt in general.

(2) If Sp is the family of all jS(£, £')-bounded subsets of E, then we have TSfi = /?*(£', £),
Ŝ  is the family of all a(E', £)-bounded subsets of £ ' and T%f = )S(£, £')• Therefore we
conclude that Sp = Sj* and Tŝ  = if.

(3) If Sff is the family of all o(E, £')-bounded subsets of £, then we have TSa = j?(£', £),
Tsa = )8*(£, £') and S*6 is the family of all CT(£, £')-bounded subsets of £.

(4) Let Sc be the family of all r-compact convex circled subsets of £ and let c(£', E) be
the topology on £ ' of uniform convergence on Sc. Then o(E', E) £ c{E', E) £ T(E', E);
furthermore we have TSc = c(E', £), r | c = fi(E, £') and J^* = /?*(£', £).

DEFINITION 2.2. Let (£, 71) be a locally convex space and Sa t . family for £'. Then £ is
said to be

(1) S-barrelled if each member in Sb is T-equicontinuous;
(2) countably S-barrelled if each member of Sb which is the countable union of T-

equicontinuous subsets of £ is T-equicontinuous;
(3) G-S-barrelled if each member in Sb which is a countable set is J-equicontinuous.

If Sis the family of all finite subsets of £, then £ is S-barrelled (resp. countably S-barrelled,
a-S-barrelled) if and only if it is barrelled (resp. countably barrelled, cr-barrelled) under the
usual terminology of [4] and [6] (resp. [3], [2]). ff-barrelled spaces are also called co-barrelled
by Levin and Saxon [5]. Clearly each /?(£', £)-bounded set is in Sb for any t. family for £'.
Hence £ is quasibarrelled (or countably quasibarrelled or a-evaluable) if £ is S-barrelled (or
countably S-barrelled or c-S-barrelled).

If S is the family of all tr(£, £')-bounded subsets of £, then £ is S-barrelled (resp.
countably S-barrelled, d-S-barrelled) if and only if £ is quasibarrelled (resp. countably
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136 T. HUSAIN AND YAU-CHUEN WONG

quasibarrelled, a-evaluable) under the usual terminology of [4] [6] (resp. [3], [2]). Here we
call c-evaluable spaces tr-infrabarrelled.

If (E, T) is a locally convex Riesz space and if S is the family of all order-bounded subsets
of E, then E is S-barrelled if and only if it is order-infrabarrelled under the usual definition
of [11].

As a consequence of Lemma 2.1, we have the following result.

LEMMA 2.3. Let S be a t. family for £ ' . £ is S-barrelled (resp. countably S-barrelled,
a-S-barrelled) if and only if E is Sbb-barrelled (resp. countably Sbb-barrelled, a-Sbb-barrelled).

In particular, (E, T) is barrelled if and only if each a(E, £')-closed convex circled subset
of £ which absorbs all /}(£, £')-bounded subsets of £ is a T-neighbourhood of 0.

Using a standard argument, for instance, see Schaefer [6] and Kothe [4, p. 396], it is
easily seen that £ is S-barrelled if and only if each closed convex circled subset of £ which
absorbs all members of S is a ^-neighbourhood of 0, and that £ is countably S-barrelled if and

00

only if for any sequence (Vn) of closed convex circled T-neighbourhoods of 0, if V = f] Vn
absorbs all members in S then Kis a ^-neighbourhood of 0. n=1

In order to give a dual characterization of the a-S-barrelledness, we require the following
terminology. Let S be a t. family for £' . By an S-absorbent sequence (of closed sets) in £
we mean a sequence {Vn: n ^ 1} of (closed) convex circled sets in £ for which the following
two conditions are satisfied:

(ii) each member in S is absorbed by some Vn.

If S is the family of all finite subsets of £, then {Vn:n ^ 1} is an S-absorbent sequence
if and only if it is an absorbent sequence in E in the sense of [2]; and if S is the family of all
a(E, £')-bounded subsets of E, then {Vn: n ^ 1} is a <r-absorbent sequence if and only if it is
a bounded-absorbent sequence in the sense of [2].

PROPOSITION 2.4. Let S be a t. family for £ ' . Then E is a-S-barrelled if and only if for any
S-absorbent sequence {Vn:n ^ 1} in E, the sequence {/„:» ^ 1} is equicontinuous, where/ne K°
for all n^ 1.

Proof. Necessity. For any SeS there exists X > 0 and «0 > 1 such that S c XV„ for all
n ^ n0. For each « ^ 1, let fne V°. Then \fn(x) | ^ X for all xeS and n 5; n0. Since S is
a(E, £')-bounded, there exists /i > 0 with \fn(x) | ^ fi for all xeS and n = 1,..., n0— 1. Thus
sup {|/n(x)|:xeS, n ^ 1} ^ max (A, n) < oo and so {/„:« ^ l}eS*. Hence by hypothesis
{/„: n ^ 1} is equicontinuous.

Sufficiency. Let {hn:n ^ 1} be a Js-bounded sequence in £ ' . For each k ^ 1, we define

Vk = {xeE: \ hn(x) | ^ 1 for all n ^ it}.

Then {Vn:n'^ 1} is an S-absorbent sequence in E. As hke Vk for all k ^ 1, we conclude from
the hypothesis that {hk:k ^ 1} is equicontinuous. This shows that £ is a-S-barrelled.
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VARIOUS TYPES OF BARRELLEDNESS 137

If S, and S2 are two t. families for E' such that 5, c S2, then the following implications
hold:

Sj-barrelledness => countably Sj-barrelledness => cr-5,-barrelledness

V V V
£2-barrelledness => countably >S2-barrelledness => ff-S2-barrelledness.

Therefore it is natural to ask under what conditions on E (or £") the corresponding converse
implications hold. We have the following result.

THEOREM 2.5. Let Sx and S2 be two t. families for E' such that Si <= S2. Then (E, T) is
a-S\-barrelled (resp. countably Si-barrelled, Sx-barrelled) if and only if the following two
conditions hold:

(i) E is a-S2-barrelled (resp. countably S2-barrelled, S2-barrelled);
(ii) each Si-absorbent sequence of closed sets in E is S2-absorbent.

Proof. Suppose that E is o-Si-barrelled and that { Vn: n ^ 1} is an Sj-absorbent sequence
of closed sets in E which is not ^-absorbent. Then there exists BeS2 such that B <= nVn is
false for all natural numbers n ^ 1. For each n ^ 1, let xn, in B, be such that xn$nVn. As
Vn is closed convex and circled, the bipolar theorem ensures that there exists/„ e F° such that

!/„(*„) I >«• (i)
As E is a-Si-barrelled and {Vn:n ^ 1} is an St-absorbent sequence of closed sets in E, it
follows from Proposition 2.4 that {/„: n ^ 1} is a T-equicontinuous sequence, and hence that
{/„:« 2; 1} is rS2-bounded; consequently {fn:n ^ 1} must be absorbed by B°, contrary to the
inequality (1). Therefore the conditions are necessary. We show that the conditions are also
sufficient.

Let {/„:« ^ 1} be a TSl-bounded sequence in £". For each k ^ 1, let

Vk = {xeE: \fn(x) \ g 1 for all n ^ k}.

The rSl-boundedness of {/„:« ^ 1} ensures that {Vn:n ^ 1} is an ^-absorbent sequence of
closed sets in E, and hence { Vn: n ^ 1} is 52-absorbent by the hypotheses. On the other hand,
since E is assumed to be <r-S2-barrelled and since fneV° for all « ^ 1, it follows from
Proposition 2.4 that {/„:« ^ 1} is T-equicontinuous, and hence that E is ff-S^barrelled.

The necessity part of the proof for countably Si-barrelled and S^-barrelled spaces is
similar and so is omitted. The sufficiency part for all cases can be handled as follows.
Observe that S\ => S|. To show that (ii) implies S\ = Si, let A e Sj and A $ Sb

2. Then there is
BeS2, a sequence {xn} c B and a sequence {/„} c: A such that |/n(xn)| > n for all « ^ 1.
Since Vn = {xeE: | /m(*)| ^ 1 for m ^ «} is an 5t-absorbent sequence of closed sets in E,
it follows by (ii) that it is also ^-absorbent. Hence there exist n and A such that B c: XVn,
a contradiction.

REMARK. E is a-barrelled (resp. countably barrelled, barrelled) if and only if it is
ff-infrabarrelled (resp. countably quasibarrelled, infrabarrelled) and each absorbent sequence
of closed sets in E is bounded-absorbent.
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COROLLARY 2.6. Let Sx and S2 be two t. families for £ ' such that St c S2. Then:

(a) E is countably Sx-barrelled if and only if it is countably Si-barrelled as well as
a-S ^barrelled;

(b) E is Si-barrelled if and only if it is a-S ^barrelled as well as S2-barrelled.

Proof. If E is countably ^-barrelled, then it is obvious that E is countably S2-barrelled
as well as a-S^-barrelled. Conversely, if E is countably S2-barrelled and if E is a-Sx-barrelled,
then by Theorem 2.5, each Si-absorbent sequence of closed sets in E is S2-absorbent. We
conclude from Theorem 2.5 again that E is countably S,-barrelled. This proves the
assertion (a). The proof of (b) is similar.

REMARK. E is countably barrelled if and only if it is a-barrelled and countably quasi-
barrelled • E is barrelled if and only if it is countably barrelled and quasibarrelled.

COROLLARY 2.7. Let St and S2 be two t. families for E' such that S] a S2. Then the
following assertions hold.

(a) Let E be countably S2-barrelled. Then E is countably Si-barrelled if and only if each
Si-absorbent sequence of closed sets in E is S2-absorbent.

(b) Let E be S2-barrelled. Then E is Si-barrelled if and only ifE is o-Sx-barrelled, and this
is the case if and only if each Si-absorbent sequence of closed sets in E is S2-absorbent.

Proof, (a) follows from Theorem 2.5 and Corollary 2.6 (a), while (b) follows from
Corollary 2.6 (b) and the assertion (a) of this corollary.

Let £ be a locally convex space. A convex circled o(E, £')-bounded subset B of E is said
to be infracomplete if the normed space E(B) = \J nB equipped with the norm | | . ||B defined by

n

||x||B = inf {X^O-.xeXB} (xeE(B))

is complete. It is clear that every convex circled a{E, £')-bounded and T(£, £')-sequentially
complete subset of £ is infracomplete. By the Banach-Mackey theorem, we see that every
infracomplete subset B of £ is j8(£, £')-bounded (see [4, §20, 11(3)]).

Levin and Saxon [5] say that a locally convex space £ has the property (C) (resp. the
property (S)) if every o(E', £)-bounded subset of £ ' is <r(£', £)-relatively countably compact
(resp. £ ' is <r(£', £)-sequentially complete). As a consequence of the result mentioned above
([4, §20,11(3)]), we obtain the following result which gives a connection between <r-barrelledness
and the property (5).

PROPOSITION 2.8. For a a-infrabarrelled locally convex space E, the following statements
are equivalent:

(a) £ is a-barrelled;
(b) £ has the property (C);
(c) E has the property (5);
(d) each o{E', E)-bounded, a{E', E)-closed subset of £ ' is a(E', E)-sequentially complete.
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VARIOUS TYPES OF BARRELLEDNESS 139

Proof. The implications (a) => (b) => (c) => (d) are obvious. Finally, if the statement (d)
holds, then by the Banach-Mackey theorem each <x(£", £>bounded subset of E' is /?(£", £)-
bounded, and thus the implication (d) => (a) follows.

Consider the vector space m of all bounded sequences with the Mackey topology i(m, /x).
Levin and Saxon have shown in [5, Proposition 6] that (m, i(m, /,)) is a Mackey space with the
property (S) but not property (C). According to this result and Proposition 2.8, we conclude
that Mackey spaces are, in general, not c-infrabarrelled spaces.

As another consequence of the Banach-Mackey theorem, we have the following result.

PROPOSITION 2.9. Let E be a locally convex space for which every a(E', E)-bounded closed
set is a(E', E)-sequentially complete (equivalently, E has the property (S)). Then the following
assertions hold.

(1) If E is infrabarrelled (in particular, bornological) then it is barrelled.
(2) If E is countably infrabarrelled then it is countably barrelled.

Proof. According to the Banach-Mackey theorem each a(E', £)-bounded subset of E' is
/?(£", £)-bounded, and the result follows.

Since metrizable locally convex spaces are infrabarrelled, part (1) of the preceding result
is a generalization of Saxon [7, Theorem 2.7]. The following corollary is now immediate.

COROLLARY 2.10. Let E be a locally convex space in which every a(E, E')-bounded closed
set is i(E, E')-sequentially complete (in particular, E is either %(E, E')-sequentially complete or
quasi-complete). Then the following assertions hold.

(1) If E is a-infrabarrelled then E is a-barrelled and a fortiori has the property (S).
(2) If E is countably infrabarrelled (resp. barrelled) then it is countably barrelled (resp.

barrelled).

3. The hereditary property. Saxon, Levin [8] and Valdivia [9] have shown independently
that a vector subspace with countable codimension of a barrelled space is barrelled. Also
Saxon and Levin [5] have shown that a vector subspace with countable codimension of a
cr-barrelled space is (7-barrelled. The same is true for countably barrelled spaces as shown by
Webb [12]. We give a different and direct proof of this fact.

THEOREM 3.1. Let M be a countable codimensional vector subspace of a countably barrelled
space E. Then M is countably barrelled when furnished with the relative topology.

Proof. In our proof we consider three cases.

(a) M is dense in E. In this case, the topological dual M' of M can be canonically
identified with E'. Let S be a a(M', Af)-bounded subset of M' and let {Sn:n^ 1} be a

00

sequence of equicontinuous subsets of M' for which S = [j Sn. Since M is dense in E, it
n = l

follows from [5, Lemma 2] that 5 is a(E', £)-bounded. Further we show that each Sn is an
equicontinuous subset of £".
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In fact, let S° denote the polar of Sn taken in E. Since Sn is an equicontinuous subset
of M', S° r\M is a 0-neighbourhood in M; then there exists an open O-neighbourhood Un in E
such that E / n n M c S°nM<=S°. The density of M ensures that Un<= UnnM(=S°, and
hence Sn is an equicontinuous subset of £ ' .

Now the countable barrelledness of E implies that 5 is an equicontinuous subset of £"
and surely an equicontinuous subset of M'. This shows that M is countably barrelled.

(b) M is closed in E. Let N be any algebraic complement to M in E. Since countably
barrelled spaces are <r-barrelled, it follows from [7, Theorem 1.1] that N is a topological
complement and has the strongest locally convex topology. Hence N is closed in E, M and
E/N are topologically isomorphic. Since E is countably barrelled, by [3, Corollary 14],
E/N is countably barrelled and therefore M must be countably barrelled.

(c) General case. Since M is a closed vector subspace of E with countable codimension,
it follows from (b) that M is countably barrelled. As M is dense in M, we conclude from (a)
that M is countably barrelled. This completes the proof of the theorem.

COROLLARY 3.2. Let E be a a-barrelled (DF)-space. Then any vector subspace M of E
with countable codimension is a countably barrelled {DF)-space.

Proof. By Corollary 2.6, £ is a countably barrelled (£>F)-space, and hence M is a
countably barrelled space by the preceding theorem. Since E has a countable fundamental
system of bounded sets, and since M is a subspace, it follows that M contains a countable
fundamental system of bounded subsets of M. Therefore M is a countably barrelled
(DF)-space.

The preceding result was proved by Valdivia [10, Theorem 3] in the special case when E
is barrelled.

4. Various types of absorbent sequences. Let £ be a vector space. By an increasing
sequence of sets in £ we mean a sequence {Vn:n 5: 1} of convex circled subsets of £ such that
Vn <= Vn+1 for all n ^ 1. Let {Vn:n ^ 1} be an increasing sequence of sets in £. It is clear
that {nVn:n ^ 1} is an increasing sequence of sets in £, and that if £ is a locally convex space
then {Vn:n ^ 1} is also an increasing sequence of sets in £, where Vn is the closure of Vn.
An increasing sequence {Vn:n ^ 1} of sets in £ i s called an increasing sequence of (P) sets in E
if each Vn has the property (P); for instance, {Vn:n ^ 1} is an increasing sequence of closed
(resp. complete, compact, metrizable etc.) sets in £ if each Vn is closed (resp. complete,
compact, metrizable etc.).

It is known from §2 that the concept of S-absorbent sequences is useful for studying the
relationship between various types of barrelledness. It is not hard to give an example of an
increasing sequence of sets in £ which is not 5-absorbent. Therefore it is interesting to find
some sufficient and necessary condition to ensure that increasing sequences are S-absorbent.

PROPOSITION 4.1. Let S be at. family for £ ' and suppose that {Vn: n §: 1} is an increasing
sequence of closed sets in E. Then it is an S-absorbent sequence if and only if for any
fneV° (« ^ 1), the sequence {fn:n ^ 1} is Ts-bounded.
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Proof. Suppose that {Vn:n ^ 1} is S-absorbent and that {/„:« ^ 1} is not rs-bounded
for some/ne V° (n £ 1). Then there exists BeS such that {/„:« ^ 1} c A:25° is false for all
natural numbers k^\. For each k ^ 1, there exists «fc such that/n((£A:2U0. On the other
hand, since {Vn:n ^ 1} is S-absorbent, there exists A > 0 and n0 ^ 1 such that

Fn° c Kn° c AB ° for all n £ n0)

it then follows that/n e XB° for all n ^ n0, which contradicts the fact that/nit £fc25°. Therefore
the condition is necessary.

Conversely, if { Vn: n g 1} is not an S-absorbent sequence, then there exists Be S such that
B c nVn is false for all natural numbers n ^ 1. For each «, let ^ n e5 \ («FJ and let/n, in V°,
be such that \fn(xn) \ > n. Then the sequence {/„:« ^ 1} is not rs-bounded. This completes
the proof.

In the sequel we always assume that £ is a locally convex space and that S is a topologizing
family for £ ' . If St is another topologizing family for E' such that SczSj , then each
Sj-absorbent sequence in E must be S-absorbent. The converse is true for Sx = Shb as the
following result shows.

COROLLARY 4.2. {Vn:n ^ 1} is an S-absorbent sequence of closed sets in E if and only if
it is an Sbb~absorbent sequence.

Proof. This follows from Proposition 4.1 and Lemma 2.1.
The preceding result was proved by De Wilde and Houet [2, Theorem 1] in the case when

S is the family of all finite subsets of E.

COROLLARY 4.3. Let St and S2 be two t. families for E' such that S t <= S2. Then the
following statements are equivalent:

(i) each Ts-bounded subset of E' is Ts-bounded;
(ii) each S-absorbent sequence of closed sets in E is S2-absorbent.

Proof. The implication (i) => (ii) follows from Proposition 4.1, while the implication
(ii) => (i) has been observed in Theorem 2.5.

When Sl is the family of all finite subsets of £ and S2 is the family of all a(E, £')-bounded
subsets of E, then the implication (i) => (ii) in the preceding result was proved by Valdivia
[9, Theorem 6] in the case when E is barrelled, and was proved by De Wilde and Houet
[2, Corollary 1] in the case when E is <r-barrelled.

By making use of Theorem 2.5, for a <r-barrelled space E, each a{E', £)-bounded subset
of £ ' is 0(£', £)-bounded.

COROLLARY 4.4. Let Sx and S2 be two t. families for £ ' such that S, c: S2, and let E satisfy
one of the equivalent conditions (i) and (ii) of Corollary 4.3. If S2 has a sequence {Bn:n ^ 1}
such that each member of Si is absorbed by some Bn, then the saturated hull ([6], p. 81) of S2

contains a countable fundamental subfamily.
n

Proof. For each n, let Vn be the closed convex circled hull of (J Bj. Then Vn is in the

saturated hull of S2, and {Vn:n ^ 1} is an Sj-absorbent sequence of closed sets in £, so by
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the hypothesis, {Vn:n^\} is 52-absorbent. Consequently {nVn:n^.l} is a countable
fundamental subfamily of the saturated hull of S2 because a member of the saturated hull of
S2 is either a subset, scalar multiple or an absolute convex hull of a finite number of elements
ofS2.

REMARK. If £ is a countably barrelled space with a sequence {Bn: n ^ 1} of bounded sets
00

such that \J Bn is absorbing, then £ is a (Df)-space.
n— 1

Corollary 4.4 was proved by Valdivia [9, Corollary 2.6] in the case when E is barrelled.
A trivial modification of De Wilde and Houet's argument in [2] yields the following more

general result, but for completeness we shall give the entire proof.

THEOREM 4.5. Let Ebea o-S-barrelledspace and { Vn: n ^ .1} 'an S-absorbent sequence in E.
Then

0 ^ = (l + 8)0 FM for all s>0.
m m

Proof. If x${\ + e) Q Vm for some e > 0, then x${\ +e)Vm for all m ^ 1, and thus, for
m

any m ^ l , there exists / m e F ° such that fm(x) > 1+6. Since E is (7-5-barrelled, by
Proposition 2.4, {fm:m ^ 1} has a a(E', £)-cluster point/, say, in E'; hence/(JC) ^ 1+e. On
the other hand, since Vn is increasing and / n eF° , it follows t h a t / e F ° for all n^. 1 or,

/ \o "S
equivalently / e f] V° = I \J Vn J . However the inequality/(x) ^ 1 +e shows that x$\JVm.

This completes the proof.

REMARKS. (1) As De Wilde in [1, p. 212] pointed out, the condition in Theorem 4.5 that
E be c7-S-barrelled can be replaced by the following condition: {Vn:n ^ 1} is an S-absorbent
sequence in E such that for each/ne F° (« ^ 1), the sequence {/„:« ^ 1} is equicontinuous.

(2) According to the preceding theorem, Corollaries 2.a-2.d in [2] hold for a
a-S-barrelled space.
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