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CONDITIONS FOR THE SOLVABILITY OF SINGULAR
BOUNDARY VALUE PROBLEMS

XIYU Liu

Consider the singular boundary value problem (r(x'))' + f(t, x) = 0, 0 < t < 1.
We give necessary and sufficient conditions for this problem to have solutions. In
addition, a uniqueness result is obtained.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we study the solvability of the following singular boundary value

problem of the second order differential equation:

(1.1) -(r(x'(t)))'= f{t, « (*)) , i € ( 0 , l )

with x satisfying the so-called Dirichlet boundary condition

(i) x (0 )=«( l ) = 0

or the mixed boundary condition (see [1]):

(ii) a;(0) = 6 z(l) + x'(l) = 0, 6^0.

Equations of the above form occur in many mathematical models such as fluid theory
and turbulent flow of gas. Equation (1.1) is singular at t = 0, 1 and x = 0, for example:

(1.2) f(t,x) = t-a(l-ty(i(x-i + xe), a,/3,7>0.

We call a , /3, 7 the order of the singularities at t = 0, 1 and x — 0.

When r(x) = x, it has been shown that for a < l , / ? < l , 7 > 0 , problem (1.1)
and (i) has solutions, see [2]. Recently O'Regan [3] proved that when a, /? < 1, 7 = 0,
problem (1.1") with (i) or (ii) has solutions. So a natural question is what it is the
greatest order of the singularities for equation (1.1) to be solvable? In this paper, we
give an answer to this question. Our results show that this greatest order is a = 2,
0 = 2 (r{x) = x). In addition, a uniqueness result is given.

In the following, we call x a solution to (1.1) with (i) if x € C[0, 1] H C2(0, 1)

with x(t) > 0 for t £ (0, 1) and satisfies (1.1) and (i), while for (1.1) and (ii) we need

x e C[0, 1] n C1 (0, 1] n C2(0, 1) and x{t) > 0 for t € (0, 1).

We always assume r(x) is odd, strictly increasing and r G C1 (R1) with r(oo) = co.

In addition, / : (0, 1) x (0, oo) —• (0, oo) is continuous. Our main results are the next

four theorems.
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THEOREM 1 . 1 . Suppose the following conditions are satisfied:

(N) f(t, x) > a(t)g(x), t G (0,1), x £ (0, oo), with a: (0, 1) -» (0, oo) and
g: (0, oo) —> (0, oo) continuous while inf{^(a;): x G (0, 1)} > 0.

(Ho ) r(xy) ^ mr(x)r(j/) for x, y ̂  M, where M, m are positive constants.

Then the necessary condition for problem (1.1) and (i) to have solutions is

f1 f*
(1.3) / r~ 1 ( | i l ( t ) | )A<oo, where A(t) = I a(s)ds

Jo Ji/2

and for problem (1.1) and (ii) the necessary conditions are

,i ,i ,i
(1.4) / a(s)ds < oo, / r~1(A1(t))dt<oo, where A!(t)= a(

Jl/2 J0 Jt

THEOREM 1 . 2 . Suppose f(t, x) is decreasing with respect to x, then problem

(1.1) with (i) or (ii) has at most one solution.

THEOREM 1 . 3 . Suppose (JJoXtfiX-^X.ffsX-fi^X.ffs) are satisfied. Then prob-
lem (1.1) with (i) has solutions, where the conditions are:

(JJi) /(*, x) < b(t)h(x), t € (0, 1), x G (0, oo) where b: (0, 1) -» (0, oo),
h: (0, oo) —* (0, oo) are continuous,

l t

(H2) fr-WB^Ddt < oo, where B(t) = J b(s)ds.
0 1/2

(Hi) }(dx)/(r-1(h(x)))<OO.
o

(H5 ) For any H > 0 there exists i/>(t) G C[0, 1] such that f(t, x) ^ V(<) > 0,
t € (0, 1), z G (0, H), and

re rl
0 < / ij}(s)ds < oo, 0 < / ip(s)ds < oo

for EG (0, 1).

THEOREM 1 . 4 . Suppose ( JToXf i iX^X^sX^X^s) are satisfied. Then prob-
lem (1-1) with (ii) has solutions, where (H'2) is:

, 1 /-I /•!

/ b(s)ds < oo, and / r " 1 ^ (<))«/< < oo, where 5i(t) == / ,
J\/2 Jo Jt

COROLLARY 1 . 5 . Consider the equation

(1-5) - ( ' (* ' ) ) ' =
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where (Ho)(H3)(H4) are satisfied, b and h are positive and continuous and in{{h(x): x £

(0, 1)} > 0. Tien (1.5) is solvable if and only if:

/
r~1 I / b(s)ds I dt < oo, for boundary condition (i);

yJi/2 1/

/ b(s)ds < oo, / r~x I / b(s)ds \dt < oo, for boundary condition (ii).
Ji/2 Jo \Jt )

EXAMPLE 1 .6 . Equation (1.6)

(1.6) (ix'f^x'y + b(t)x-' = 0, x(0) = x{l) = 0

wiere (3 > 0, 7 > 0 has a unique solution if and only if

b(s)ds <£t<oo.
/1/2 /

REMARK. If 6(t) = t~Q(l - t)~a and ^ = 1, then the above condition becomes a < 2.

P R O O F OF THEOREM 1.1 AND THEOREM 1.2

We shall prove Theorem 1.1 in two steps. First we consider problem (1.1) and
(i). Choose t0 £ (0, 1) so that x(t0) = max{a;(t): t € (0, 1)}, hence x'(f0) = 0, and
x'(t) < 0, for t £ (t0, 1) whereas x'(t) > 0 as t £ (0, t 0 ) . From condition (N) we have
c > 0 with cg(x(t)) ^ 1, t £ (0, 1). Then integration yields

We can assume without loss of generality that x'(t) —» —00 as t —> 1.

Hence r(x'(t)) —> —00 as t —• 1 and for some t\ > to

A(t) ^ 2cr( -z ' ( t ) ) , t € (i i , 1).

By [Ho) we get
A(t)^r(-r-1(2c/m)x'(t)).

Hence

f1r-1(\(A(t))\)dt^r-1(2c/m)x(t0).
Jtx

The estimate on (0, to) is just the same, and hence (1.3) is true.
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Next we consider (1.1) with the boundary condition (ii). Let x G C[0, lJfiC1 (0, l]f~l
C 2 (0 , 1) satisfies (1.1) and (ii). Similarly to the first step we get c > 0 with

!•(*'(«!)) - r(x'(t2)) > (1/c) / a(s) ds.

So by letting t2 —> 1 we get

/ a(s)da < o c , ( jG (0, 1).

And

Ax(t) < cr(x'(*)) + cr(6x(l)).

Assume x'[t) —> +oo as t —> 0 without loss of generality, then we get t$ G (0, 1) with
A\{t) ^ 2c(r(x'(t))). The same reasoning as in step one will yield (1.4). So the proof
is complete. D

Next we turn to prove Theorem 1.2. Let x and y be solutions to (1.1) and (i)
with maxz(f) > 0, where z(t) = x(t) — y(t). Thus we can choose to G (0, 1) such that
z(t0) = max{z(i): t G (0, 1)} and t0 G (*i, t2) with z(t) > 0 for t G (<i, t2). Evidently
z'(<0) = 0 and so we have for t G (*i, t0) that r(x'(t)) < r(y'(t)), hence z'(<) ^ 0. As
a result we can let <i = 0, in contradiction to the boundary condition (i).

Finally we consider boundary condition (ii). In this case <o G (0, 1]. If S = 0 we
have z'{to) = 0. Thus we can get the desired contradiction. If 6 > 0 and to — 1, then
z'(l) ^ 0 in contradiction to z'(l) = -6z(l) = -Sz(t0) < 0. Thus t0 e (0, 1). The
rest of the proof is similar to the case of boundary condition (i). D

3. APPROXIMATE PROBLEMS

In order to prove Theorem 1.2 and 1.3, we need to consider the following approxi-
mate problems:

(3.1) (rx1 (t))' + Xfn(t, x(t)) = 0, 0 < t < 1, X G [0, 1]

where fn{t, x) — f(t, max{«, 1/n}). Define the functional H(e, X, x) by:

H(e,X,x)= f r-^e-XF^s,
Jo

where e G R1, x G C[0, 1] and

• Fn(s,x)= f fn(t,x(t))dt.
Jl/2
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We shall work in t he space C[0, 1] . Let P = {z £ C[0, 1): x(t) ^0,t£ [0, 1]} . Then

from ( f f o ) ( # i ) ( # 2 ) we have:

(3.2) \Fn{s,x)\<C\B(s)\

where C = max{/i(z): x £ [1/w, x]}. From (-ffo) we have

where M\, mi are positive constants. Hence,

(3.3)
r-1(xy)^C(l+r-1(x)+r-1(y)+r-1(x)r-1(y)), x,y^0,C= constant .

(3.4) r-1(x+y)^C(l+r-1(x)+r-1 (y)), x, y > 0, C = constang.

And from (3.2) we know

^ ( e -XFn(s, x))\ < r^flel + C \B(s)\)

where C is dependent only on n and the bound of ||z||, and may vary when it appears
at different places. Hence H is well defined.

LEMMA 3 . 1 . H{e, A, x) is continuous in all its variables and strictly increasing

with respect to e for A 6 (0, 1].

PROOF: Suppose e —> eo, A —» Ao, x —» xo • T h e n we have

/•i
H{e, A, x) - H(e0, Ao, x0) = I ( r ^ e - A Fn(s, x)) - r ^ e o - Aofn(3, xQ))) da

And from (3.5) we can deduce

I f <2C l\l +r-\\e\) +r-i{\e0\ + r-1(\B(a)\)))ds.
\Jo Jo

Hence from ( 2?2 ) we know

I -» 0, / -» 0, as e -» 0.
Jo Jl-e
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But on the interval [e, 1 — e] Fn is continuous so we get

—» 0, as e —» eo, A —* Ap, z —> ZQ

and the results follows. D

LEMMA 3 . 2 . i?(e, A, z) = 0 .has a unique root e = e(A, x).

PROOF: It is obvious that Fn(a, x) is strictly increasing with respect to s, hence
H(e, A, z) —» +oo as e —» +oo provided XFn is bounded from above. Otherwise
AiJ1

n(s, x) —* +oo as s —* 1. Choose e = A.Fn(<, z ) . Hence e —> +oo as t —> 1 and we
can assume t > 1/2. Se we have

./o
,1/2

But since e > 0 we also have

= / r - '
Jt

So we get 27(e, A, z) > 0 for e large. Similarly Jf (e, A, x) < 0 for —e large enough,
and the proof is complete. u

LEMMA 3.3 . Suppose (#o)(-ffi)(-ffi) are satisfied. Then the functional H^e, A, x)
is continuous in (e, A, x), strictly increasing in e, and H\(e, A, x) — 0 has a unique
root e = ei(A, x), where

H1(e,X,x)=r-1(e) + 6Jo r^L + xj^ fn(t, x{t))dt)ds.

PROOF: We only list the following inequalities and omit the details.

«, x(t)) dt) ^ C{\ + r-\\e\) + r " 1 ^

-1(e) + 6 I r'1 (CXB^s))da, foi e
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REMARK 3.4. From the proof of Lemma 3.1 andLemma3.2 we know that the continuity

of H and H\ is uniform for A £ [0, 1], e and x in bounded sets.

LEMMA 3 . 5 . e: [0, 1] x C[0, 1] —» R1 is bounded and uniformly continuous for

A G [0, 1] and x in a bounded set.

PROOF: First we shall show that e is bounded. Otherwise we would have e m —

e(Am, xm) —> +oo while a;m is bounded. Since Fn is increasing with respect to s and

•i
/

Jo

there exists tm € (0, 1) such that em = XmFn(tm, xm) and ( B - » l . Let em > 0,

hence from (3.5)

f"'(em - AmFn(s, xm))ds = / r~1(AmFn(s, z m ) - e m ) d s

Am
/•i

< / »%~1(Ami;l
n(s, xm)) ds -> 0

But when tm > 1/2 we have

/ r~1{em-XmFn{s,xm))d3^ I r " 1 ( e m - AmFn(a, xm))da
Jo Jo

r-1{em-C\B(s)\)d3-++oo,

as m ^ oo.

/o

,1/2

Jl/i
Hence we get a contradiction. Next we shall show that e is uniformly continuous. First
let |e| ^ R, 0 ^ A ^ 1, e > 0, ||z|| ^ R, where R > 0 is a constant. Then

/
Ji

1/2
r-^e + e - XF^-T-^e- XFn))da.

1/4

But we have from (3.2)

\e- XFn\ £ R + C\B{s)\ ^d

where Ci is dependent only on n and R. Hence

(3.6) H(e + e,X,x)-H(e,X,x)>/3

where 4/3 = min{r~1(a + e) — r - 1 ( s ) : s £ [-Ci, Ci]} > 0 and depends only on R, e.

Let e > 0 and A G [0, 1], |z| ^ iZ. From the first part of the proof we have |e(A, x)\ ^
K — constant. Hence from (3.6)

(3.7) H{e{X, x)+e, x) > 0 > 0,
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where f3 = /3(R, e) . From Remark 3.4 we get 77 > 0 such that

H(e(\, x) + e, Ao, x0) > 0, |A — Ao| < 77, \\x — xo\\ < TJ.

Similarly we can obtain

.ff(e(A, x) - e, A0) x0) < 0, |A - Ao| < 77, ||a; - xo\\ < 77.

Hence |e(A, x) — e(A0, xo)\ < e. The proof is complete. D

Now we come back to (3.1) with boundary condition (i). We always suppose

are satisfied. Define the integral operator N by:

(3.8) N{\, x){t) = f r - ^ A , x) - A Fn(s, x)) ds.
Jo

Denote An(x) — N(l, x), where x £ P, e(A, x) is determined by Lemma 3.2. Obvi-
ously N(X, x)(0) = iV(A, a;)(l) = 0. Let A 6 (0, 1], then from the definition of e(A, x)

there exists to 6 (0, 1) such that

/1/2

And for t £ (i0, 1) we know

,x) = \f°fn(t,x(t))dt.
Jl/2

Hence

~1

fn{t,x(t))dt.
1/2

N(\, x)(l) = 0 < / r~1(e(A, x) -\Fn(s, x))da - N(\,
Jo

Similarly we can prove JV(A, x)(t) > 0 for t G (0, t0). Hence N: [0, 1] x P -» P and
for A £ (0, 1], t E (0, 1), N(\, x)(t) > 0. It is easy to show that N is continuous and
bounded. And if x belongs to some bounded set, then from (3.6) we have

\N(\, x)(t2) - N(X, x)(tl)\ < C / (1 + r-\\e{\, x)\) + r-^BM)) ds.
Jh

Hence from Arzela's theorem, N is compact.

LEMMA 3 . 6 . Suppose (-ffo)(-Hi)(tf2)(#3)(.ff4)(#5) are satisfied. Then the ap-
proximate problem (3.1) and (i) has solutions for any n G N.

PROOF: Let A e (0, 1] and x E P with x = JV(A, x). Then x satisfies (3.1) and
(i) while x(t) > 0 for x G (0, 1). Let x(t) assume its maximum at to G (0, 1). Then
for t G (0, to) we have from (3.1) by integration that

(3.9) r(x'(t))^ [°b(s)h(max{l/n,x{S)})ds.
Jt
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We can assume without loss of generality that t0 ^ 1/2. In the following we use C to
represent any constant independent of A, x and e. From (J?s) we have M > 0 such
that h(x) ̂  r(ex) for x ^ M. Hence there exists C(e) > 0 such that

(3.10) H(x) ^ C(e) + r{ex), for x ^ 1/n.

So from (3.9), (3.3), (3.4) we get:

K'){C(e) + r(e + e \\x\\)) ds

r(e + e ||*||))

By letting eC < 1 we have ||x|| ̂  K where K is a constant independent of x and A.
If we choose R> K and put BR = {x G C[0, 1]: ||z|| < R}, then x 7̂  N(X, x) for
Ae [0,1], ||z|| = R. Therefore

i{N(X, x), P D BR, P) = i(An, R n BR, P)

= i{N(0,x),PnBR,P) = l

where i denote the fixed point index on P. Hence An has fixed points. The proof is

now complete. U

In the following we turn to problem (3.1) with boundary condition (ii), that is,
z(0) = 0, *z(l) + z'(l) = 0. We shaU assume {Ho^H^H^Hs^H^iHs) are satisfied
throughout. Instead of the operator An and TV, we shall use the following:

(3.11) N1{X,x){t)=fr-1(el(\,x) + xJ Fn(a, x]\d».

Then Bnx = Ni(l, x), where ei is determined by Lemma 3.3. It is straight forward to
show that the integral is well defined in (3.10). Hence for x £ C[0, 1], Ni(X, x) £ C[0,1]
and satisfies the boundary condition (ii). Write y = TVi(A, x). Then for A G (0, 1] and
t £ (0, 1), (r(y')) < 0, and as a consequence y'(t) > 0 provided 6 = 0, and furthermore
y(t) > 0. When 6 > 0, the boundary condition yields j / ' ( l ) = -6y(l). Ii y(l) = 0, then
y'(t) > 0 for t € (0, 1). If y(l) > 0, then y'(l) < 0, but r(y') is strictly decreasing, so
we know y is concave and y(t) > 0 for t £ (0, 1). The next Lemma is just parallel to
Lemma 3.3.
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LEMMA 3 . 7 . The functional ei(A, a;) is continuous and bounded.

LEMMA 3 . 8 . Suppose (JJ0)(-ffi)(.ff2)(-ff3)(-ff4)(#s) a r e satisfied. Then problem
(3.1) with (ii) has solutions for any integer n.

PROOF: From Lemma 3.3 and Arzela's theorem, JVi is compact. Let A 6 (0, 1),
x G P and x = Ni(X, x), then x satisfies (3.1) and (ii). When 6 = 0, then integration
of (3.1) on [t, 1] and (3.10) will yield:

r{x'{t)) < / 6(a)/i(max{l/n, x})ds
Jt

^[C(e)+r(e + \\x\\)}B1(t)

(3.12) *'(*) < C (1 + r-^Biit)) + r-\C{e) + r(e + e \\x\\))

+ e + e\\x\\).

When 8 > 0, x(t) will assume its maximum at to € (0, 1). Integration on [t, to], then
on [0, to] will also yield (3.12). The remainder of the proof is just the same as in the
proof of Lemma 3.6. D

4. PROOF OF THEOREM 1.3 AND 1.4

In this section we shall complete the proof of Theorems 1.3 and 1.4.

LEMMA 4 . 1 . Let (JEr1)(^i)(jy2)(ir3) be satisfied. Then there exists a constant

R > 2 independent of n such that for any solution x to problem (3.1) and (i) the

following estimate holds:

PROOF: Let x be a solution which assumes its maximum at to G (0, 1). For
simplicity we assume x(<o) = 11*11 > 1- Choose ti G (0, to) such that *(<i) = 1 and
x(t) ^ 1 for t G [ti, to]- From (JIs) we have C(e) > 0 independent of n such that

(4.1) H{x) ^ C(e) + r{e, x), for x > 1.

Upon integration of equation (3.1) on [t, to] we have: (where C denotes some constant
independent of n and e and may vary at different appearances)

b(s)h(x(s)) ds
t

<B(s)(C(e)+r(e\\x\\))
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provided to ^ 1/2. If to ^ 1/2, we can integrate on [to, t] and obtain

-r(x'(t))^\B(s)\(C(e) + r(e\\x\\)).

In both cases we get

Choose eC < 1 and Lemma 4.1 is proved. D

Now let R > 2 be determined by Lemma 4.1. Replace /i(s) in (Hi) by /i(z) + 1
if necessary and we can assume h(x) ^ 1 for x £ (0, oo). Define

D(x) =

It is straight forward that D £ (0, R], h{x) ^ D(x) and D is decreasing. In addition
T £ C[0, iZ] by ( F 4 ) . Let ip be determined by (F 5 ) for H — R, and suppose x is a
solution to (3.1) and (i) with x(to) = \\x\\. Then we deduce

(4.2) x(t) ^ [ r-1 ( f ° i(,(s) daj du, for t £ (0, t0)

(4.3) x(t)^ I r^if if>(s)ds\du, for t £ (t0, 1).

LEMMA 4 . 2 . Suppose (F0)(Jfi)(F2)(-ff3)(^4)(-ff5) are satisfied, and let a; be a
soJution of (̂ 3.2j witi boundary condition (i), which assumes its maximum at t°x, that
is, x(t°) = \\x\\. Then there is a constant r\ independent of n such that r\ ^ t° ^ 1 — r\.

PROOF: Assume the contrary we would have a sequence of solutions xn with
corresponding maximum points t^ satisfying t° -+ 0 or 1. For convenience we suppose
t°n -> 0 and t°n < 1/2. Thus from (4.3) and (F 5 ) we know

f ( / ^() A d* > 0.
l/2 \Jl/2 )

But | | i n | | is bounded from Lemma 4.1 and as a result we can set

(4.4) ||a:n|| —• Co > 0, as n —» oo.
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Since xn increases as t £ (0, f° ) , we obtain for t £ (0, t^) that

/n, xn(a)}) ds

^ D(Xoo(t)) J b(x) ds ̂  D(xn(t)) \B(t)\

0 < x'n(t) < C (1 + r-l{D(xn(t))) + r-^flWI) + r-

Define zn(t) = r(sn(<)), then zn(0) = 0 and evidently D{xn{t)) > D{R) > 0. Hence
> 0 and

(4.5) 0<^(0

where C is independent of zn . Thus integration on (0, t^j yields

Jo
as n —* oo.

Hence T(co) = 0, a contradiction to (4.4). The proof of lemma is complete. D

PROOF OF THEOREM 1.3: We now complete the proof of theorem 1.3. Let xn be
an approximate solution to (3.1) and (i) and put zn(t) — T(xn(t)). Thus zn is bounded
in C[0, 1]. We again use t^ to denote the maximum point of xn. Hence for t £ (0, <̂ )

x'n{t) < C {1 + r-\xn{t)) + r~\l + \B{t)\) +r-i(xn(t))r-\l + \B(t)\)}

^ C {1+ r-'lx.W) + r-l{\B{i)\) + r - ^

As a result we have for t £ (0, t°) that

(4.6) 0 < K ( t ) | ^

(Note that the above C's may be different.) Similarly we can prove (4.6) is true for
t £ (i£, l) . Thus using the well known technique and Arzela's theorem, zn has C[0, 1]
convergent subsequences. For simplicity we set zn —> z and x = T~1(z). Therefore
xn -» x and s;(0) = x(l) = 0. From (4.2) and (4.3), for t £ (0, rj):
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But xn(t) ^ Xnii) f°r * 6 {Vi M- K we define x* by:

x*{t) = / r"1 (f\{s)da\du, for t G (0, r/)

x*(t)=min{ I"r-ifTiP(8)da\du, f r~l f
for t £ [rf, 1 — 77], and

(t) = J r^lf 1>(s)ds\du, forte[l-7,,l].

Then «„(<) ̂  s*(t) > 0; hence x(t) > 0 for < E (0, 1). Prom (4.6) 4(1/2) is bounded;
hence z^(l/2) is bounded and we can assume xJ,(l/2) —»/x. Then (3.1) yields:

tn(t)-xn(l/2)= f r-'[r{x>n{ll2))- f fn(a, xn)da}dt
Jl/2 Jl/2

x(t)-x(l/2)= f r-'Wv)- f f(s,x)ds}dt.
Jl/2 Jl/211/2 Jl/2

Thus (r(x'))' = -f{t, x) for t £ (0, 1). The proof is complete. D

Finally we turn to the proof of Theorem 1.4. Since it is essentially the same as the
above steps, we only list the following lemma and omit the details.

LEMMA 4 . 3 . Suppose {Ho^E^iH^Hs^Hi^Hs) are satisfied. Tien there ex-
ists a constant 77 S (0, 1) independent of n such that t°x ̂  77, where t° is tie maximum
point of x, the solution of (3.1) with (ii).
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