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1. Introduction

A formally self-adjoint differential operator L is said to be of limit circle type at
infinity if its highest order coefficient is zero-free and all solutions x of L(x) = 0 are
square-integrable on [a, °°). (We will drop reference to "at infinity" in what follows.)

For the second-order case

(1.1)

Dunford and Schwartz (3) p. 1409 prove that given

(1.2)

then L is of limit circle type if and only if

)~1/2dt< oo. , (1.3)("W
This generalised a number of previously known results. Knowles (8) showed that this is
one of a family of similar conditions obtained by making different unitary transforma-
tions of variable in (1.1).

Few explicit general criteria are known for higher-order equations. Zettl (13)
constructs limit circle operators of arbitrary order by taking powers of limit circle
operators of type (1.1). Eastham (4) and Hadid (6) obtain explicit criteria (see
Examples 3 and 4 of Section 3 below) using a non-asymptotic method of Kuptsov.
Eastham (4) p. 257-258 observes that for two special cases a necessary and sufficient
condition of type (1.3) holds, given certain other integrability conditions. Using

n

asymptotic-type methods Read (11) has derived conditions for L(x) = Y. (pm(0x(m))(m)

m=0

with all the pm eventually positive, to be limit circle. "We will refer to such results where
the only restrictions are that the pm be positive and that certain order conditions hold
as positive-coefficient results. The results of Eastham and Hadid referred to above
require further restrictions and we will refer to them as restricted-coefficient results.

For operators with polynomial coefficients

L(x) = (rV2))(2) + a{tax')' + btex (1.4)
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Walker (12) shows that (1.4) is limit circle if a, b>0 and

a - 2 < 0 < 2 a - 7 ( .
a+/3>2.

Devinatz (2) (and also Eastham (5)) discusses the case 7 = 0, 0 = 2a, showing that if
a2>4b then (1.5) implies L is limit circle (a restricted-coefficient result). Eastham (5)
and Kogan and Rofe-Beketov (9) discuss the case a — 2 = fS which is also restricted-
coefficient. (See the remarks at the end of Example 6 Section 3 below). Read (11) uses
his results mentioned above to generalise (1.5) to the 2nth order case (again a
positive-coefficient result).

In this paper we will establish a criterion similar to (1.2) and (1.3) for 2nth order
formally self-adjoint operators (Theorem 2 of Section 1). The results allow two of the
coefficients of L to be arbitrary and the rest are then determined. Further, the results
are of restricted coefficient type. They are obtained by using a shearing transformation
due to Hinton (7) after a standard substitution, and applying Levinson's theorem (see
Theorem 1) to obtain asymptotic expansions of the solutions. In the examples of
Section 3, we show that this result includes those of Eastham and Hadid (Examples 3
and 4), the restricted coefficient result of Devinatz (Example 6) extended to include the
case 7 ^ 0 , and a generalisation of the latter to the 2nth order case (Example 7). The
restricted-coefficient results for a — 2 = |3 (referred to above) and positive-coefficient
results of Walker, Devinatz and Read are not included.

Applications of asymptotic theory to obtain limit circle criteria for higher order
equations with oscillatory coefficients are not discussed here, and will be treated
elsewhere.

2. Main theorems

We will assume familiarity with Naimark (10) §§15, 16 which deals with quasideriva-
tives and their application to formally self-adjoint differential operators. We consider

r V"-2 + fc^ V"~ V) '

- I (Pn-mx™)™ (say) (2.1)
m=0

where

pm = (omr2mq2("-m) + fcmr2-+1q2('-m)-1) (m = 1 , . . . , 2n)

We assume

Po=r2n.

r(t), q(t)eC2[a, oo) are real-valued and positive

Lia,™) (i = 0 , . . . , n - l ) (2.3)

are real constants (i = 0 , . . . , n - 1 ) .
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The (2n +1) quasiderivatives relative to L(x) are defined by

xC0] _ x

xCn] = pox(n)

Then L(x) = x[2tl].
Let x be a solution of L(x) = 0, and let y = ( x [ 0 ] , . . . , xC2"~1])T. Then y is a solution of

dy/dt = Ay where

0 1

1

0

- P n - l

0

1

Po

0 1

0

1

0

(unfilled entries 0).

(2.4)

Conversely, a solution of dy/dt = Ay has a first component x which is a solution of
Lx = 0.

We now make a shearing transformation following Hinton (7). Let

Q = ( rq 2 - 1 ) 1 ' 2 diag (1, r/q,..., (r/q)""1, r - 2 " ( r /q)» , . . . . r2n(rlq)2n-1)

= diag (su ..., s2n) (say) (2.5)

= diag(qa'r&\ ...,qa*'r**>).

Then

sms2n-m+i = 1 (m = 1 , . . . , n)

so that

Let z = Qy. Then

where

(2.6)

(2.7)
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so that
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- 0 s )

0. 1.

•
. 1

0
- f l n - l

1
0.

d

I

•

.0

. i
0

-k\

(say).

Also

where

i = diag ( f t , . . . , /32n) and D2 = diag(a1 ; . . . , a2n).

Finally, we make the transformation of independent variable

= «dt.

Then

We will also use the notation

A0*) = i

and we will denote by

lti + a0

the roots A of A(A.2) = 0.

Theorem 1. Let (2.3) hold and let q/r£L[a, <»). Suppose that

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Let the zeros of A(/u.) = 0 be real and distinct and let a0 f 0.
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Then there are independent solutions X; (i = 1 , . . . , 2n) of L(x) = 0 satisfying

' ^ ds}(l

63

exp

Proof. We apply Levinson's theorem (Coddington and Levinson (1), Theorem 8.1
of Chapter 3) to the system (2.12). The hypotheses (2.3) on the fcj imply

J T(<0

Let

Then

and similarly,

-K(T)

rr' rq'
q r q q

[" d A f— a dr =
JT(a) dT la

r
JT(a)

— a
dt

dt<«>

So the integrability conditions of Levinson's theorem are satisfied.

It is clear that there exist functions 7,(7) such that lim YJ(T) = 0 and such that the
functions T~*°°

are the distinct eigenvalues of A 1 + a D 1 + j3D2. We will show that 7 J ( T ) £ L(dr ) , and
this will imply that the remaining "dichotomy" condition of Levinson's theorem is
satisfied. We will need the fact that

r («2
JT(a)

2(r))dT<oo (2.15)

which follows from the integrability hypotheses of the theorem.
Let
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Then by (2.6) we have

det -fj.T) = det

= oo + (81-/i.)(52B-ji)det

(2.16)

•
1

1

(a.+1-/t)

i

i

1

• . 1

(2.17)

Then it follows by induction using (2.17) (setting an = l) that

n m
-^.). (2.18)

We may regard 3>(/x) as a polynomial in the S(. The constant term is A(/x2) and the
linear term vanishes by (2.16). Hence

i)
2)+{polynomial in the Sj of degree ^2} (2.19)

Using Taylor's theorem

+ 7i)
2) = A1

Since A((x) has distinct zeros by hypothesis and a0 ± 0, it follows that A^/x) has distinct
zeros, so Ax(A;) = 0 and Ai(Aj)^O. Substituting for A((Aj + 7i)2) in (2.19) and using the
fact that the 5f are square integrable by (2.15), we see that 7feL(dT).
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We now apply Levinson's theorem to obtain independent solutions zf (« = 1 , . . . , 2n)
of (2.12) satisfying

= const.(exp A;T)(1 + oQ))^ (2.20)

where C; is an eigenvector of At corresponding to A.;. It is then easily seen that if
(At —Aj/)e = 0 and the first component of e is zero, then e = 0. Thus each et has
non-zero first component. Finally,

z = Qy = Q(x, x',.. .)T

so from (2.20) we have the existence of Xj as in the statement of this theorem.

Theorem 2. Let (2.5) hold and let qlr<£L[a,<*>). Suppose that

Let the zeros of A(fi) be real, distinct and negative. Then L of (2.1) is of limit circle type
at infinity if and only if

C /it

(2.21)

Proof. Since the Oj are real, the A.f occur in conjugate pairs and since the zeros of A
are negative, the Af are pure imaginary. Hence if we order the A; suitably, there are n
pairs of solutions of L(x) = 0, zm and zm (m = 1 , . . . , n) satisfying

and these solutions are independent. Hence (2.21) implies that L of (2.1) is of limit
circle type. Conversely, if (2.1) is limit circle, then it follows from the relations

zf+ ff = (rq2n-1)-1(l + o ( l ) )g | ( rq 2 n -T 1 (all t sufficiently large)

that (2.21) holds.

Remarks. (1) If the conditions of the statement of Theorem 2 (or Theorem 1) hold
then we may take

for example, since the fcj are then integrable,
(2) If r= 1, the conditions of Theorem 2 become
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(3) If we write rt = r2", qt = q2n then since qVqi= <j'Al> ana< similarly for rx and r, we
may rewrite the integrability conditions as

If r = 1 these become

(4) It can be shown that

and ^ E L ^ O O ) implies ^

(see Hinton (7), Corollary).

3. Applications

Example 1. We consider the second-order case, n = 1. In this case a t = —a2

—/32 = | and

The integrability conditions of Theorem 1 or 2 can be weakened to

LtHM and Ll^i
\ q I\ q \r

Taking a t = 1 we get A(/x) = /x +1 which has a negative zero. Hence if (3.1) holds and
q/reL[a, °°) then the equation

(rV) ' + q2x = 0 (3.2)

is limit circle if and only if

P (3.3)J« rq

This is close to the result of Dunford and Schwartz (see (1.2) above) which states that if

L M ( 3 . 4 )

then (3.2) is limit circle if and only if (3.3) holds. (The equivalence of (3.4) with the
Dunford and Schwartz condition follows readily.)

For r = l, the condition q"lq2 s L[a, °°) and q£L[a, °o) imply (3.1) (see Remark 4
above).

We can also conclude that given (3.1) and q/r£L[a,<x>) then the equation

(r2x')' + (q2+fcrq)x=O (3.5)

is limit circle for any fc e L\_a, °°) if and only if (3.3) holds.
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Example 2. We consider the fourth-order case n = 2 i.e.

x = 0. (3.6)

and this has distinct negative zeros if and only if

a,b>0 and a2>4b. (3.7)

The integrability conditions are

Hence if (3.7) and (3.8) hold and k0, fcj € L[a, oo) then (3.6) is limit circle if and only if

(3.9)

If r = l then (3.8) can be simplified (Remark 4) to

qiL[a, oo) and %eL[a,°°). (3.8)'

If <h = q4 then

-2 = 4i- <31°)
We will now show that Example 2 contains a number of results obtained in the

literature by other means.

Example 3. Using a non-asymptotic method, Hadid (6) Example 1 (a) (generalising
a result of Eastham (4)) considers

}x = O (3.11)

where a, b and c are positive and satisfy

0<b<c(a-c/y)/y; (3.12)

q1eC2,q1>O,q'1gO;q'1
2

<?r
(v2)-2 and q f a r ^ ^ e L f o o o ) . (3.13)

He shows that all solutions x of (3.11) then satisfy

x = 0((Tfc) (3.14)

where k =l[2y~{(c3/b-3cy2 + ay3)/(ay-y2b/c-c)1/2~\. In the notation we have been
using,

Then
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and

Hence (3.13) implies (3.8)'.
Let c/y = S. Then (3.12) states that

Then if (3.12) holds,

a 2 -

so that a2-4fc>0. Further,

(q',)2

and

so that

i 'qr1 = koq3 where fcoeL[a,°°).

It follows from Example 2 above with fcj = 0 that all solutions of (3.11) are square
integrable if and only if

It also follows from Theorem 1 that all solutions of (3.11) satisfy

*4) (3.16)

whether or not (3.15) holds. (Compare this with (3.14)).
We will generalise this in Example 5 below where, in particular, the coefficients c

and C ( Y ~ 1 ) in the bracket of (3.11) can be chosen arbitrarily if a2>4b is assumed.

Example 4. Hadid (6) Example 4 proves the following:
Consider

qr2}x')x' + bq^x =0 (3.17)

subject to (3.13) and

0 < b < a - l . (3.18)

It is shown that all solutions x of (3.17) then satisfy

x = O(q-3y'% (3.19)

By (3.18) we see that

a 2 - 4 b ^ a 2 - 4 ( a - l ) = (a -2) 2 S0

so a 2 - 4 b > 0 .
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In our notation we have again q = q1n. Further,

(yq'iqT1 - 7(7 + Dqi2q72)/<? = y<\Wyn)~l - 7(7 + Dqfq?1™-2 e L[a, 00) by (3.13).

As before we can use Example 2 with fco = 0 to deduce that all solutions of (3.17)
satisfy

which is the same as (3.19). We now give an example generalising Examples 3 and 4.

Example 5. Using Remark 4 above and Example 2 with r = l we obtain the
following:

Let

a,b>0, a2>4b, qeL[a,°°), q"lq2eL[a,<x>) (3.20)

and let Cj (i = 1 , . . . , 4) be arbitrary constants. Consider

x(4> + ((oq2 + c1q'2/q2 + c2q7q)x')' + (bq4 + c3q'2 + c4q"q)x =0. (3.21)

Then all solutions of (3.21) satisfy

x = O{q~3n)

and (3.21) is limit circle if and only if

r dt
— <oo.

Example 6. We consider

(rx(2))(2) + fl(r<Vy + b f e x = 0 ( 3 22)

To apply our theorems we need

Then

Xo-B)/2]-2\

r j Lq q

Hence the integrability conditions are satisfied if

or

a-/3<2.

We have
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Hence

f -^<oo if and only if
J rq

>l
q 4

i.e.

Y + 30>4 or a + /3>2.

Thus we have the limit circle case if

a -2< /3 = 2a--y (3.23)

a+|3>2 (3.24)

and

a2>4b; a,b>0. (3.25)

This result in the case y = 0 is due to Devinatz (2). See also Eastham (4) p. 267. In fact,
our results imply that if (3.23) and (3.25) hold then (3.22) is limit circle if and only if
(3.24) holds. This also applies to the equation

+ v(t))x = 0

provided that

u(t) = O(t°Y+w/4-1-) and v{t) = Otf3*^*-1-') (somee>0).

It should be noted that results of Walker (12) show that (3.22) is limit circle if

a-2<p<2a-y

a+/3>2

irrespective of a and b. Also results of Eastham (5) show that if

a-&=2 and

then (3.22) is limit circle if

Finally, Kogan and Rofe-Beketov (9) show that (3.22) is limit circle if

a = y = / 3 + 2 and - > ^ + i
a

These results of Walker, Eastham and Rofe-Beketov do not seem to follow from our
analysis.

Example 7. We consider

(3.26)
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Suppose that

+ aQ (3.27)

has distinct negative zeros

l[ ( i-?"2"H6L[<i,») i.e. y-p<2n, (3.28)

and

where g = T ( ^ T ) + p f " ^ T ^ " 1 " e (somee>°)- (329)

Then (3.26) is limit circle if and only if

Note that (3.30) reduces to (3.24) if n = 2 and j3 = 2 a - y as in (3.23), and that (3.28)
reduces to a —13<2 in this case as in (3.23).

This result complements that of Read (11) Theorem 2. It follows from (3.26) and
(3.28) that (in Read's notation)

a n _ 1 -a n = an_2-an_1 = . . . = a 0 - a 1 > - 2 (3.31)

(compare with Read's equation (1.4)) and (3.30) is the same as his (1.5). (For n = 2,
(3.31) is equivalent to (3.23)). In Read's case his conditions (1.4) and (1.5) imply the
equation is limit circle irrespective of the nature of the positive coefficients Oj. See also
the remarks in Read (11) p. 109 first paragraph.
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