OBITUARY
A. C. AITKEN, D.Sc., F.R.S.

Alec Aitken was much more than an outstanding mathematician; his versatile
genius ranged far beyond his chosen specialism, and no notice by an individual
could do justice to his achievements in the many fields in which he excelled.
In the following pages several contributors have written independently on differ-
ent aspects of his activity; it is hoped that by this illumination of different
facets of a personality unique in our time a truer picture may emerge than could
be achieved by an artificially edited memoir.

The notice begins with a section containing biographical and personal
details prepared by Dr R. Schlapp. These are supplemented by a note, quoted
from a letter to Professor Erdélyi from Professor E. T. Copson, who was closely
associated with Aitken in the early formative years in Edinburgh. There are
appreciations of Aitken’s work in Statistics by Professor D. G. Kendall, in
Numerical Analysis by Dr J .C. P. Miller, and in Pure Mathematics by Pro-
fessor W. Ledermann. Finally a list of publications is included, and a remark-
able (hitherto unpublished) letter from Professor Aitken to an Edinburgh
colleague. The Editors wish to express their thanks to all the contributors, to
Paul Shillabeer, F.R.P.S., for permission to use his photograph of Professor
Aitken, and especially to Mrs. Aitken who has made much valuable material
freely available to them.

Alexander Craig Aitken was born in Dunedin, New Zealand, on 1st April,
1895, the eldest son of the seven children of William and Elizabeth Aitken. On
his father’s side he was descended from Lanarkshire farming families, his grand-
father having emigrated to Otago about 1868. From primary school he went on
in 1908 with a scholarship to the Otago Boys’ High School in Dunedin, leaving
with a Junior University Scholarship to Otago University in 1913. He had origin-
ally intended studying languages and mathematics with a view to becoming a
teacher, but his University course was interrupted at the end of his second year
by the outbreak of war. In April 1915 he enlisted as a private in the New
Zealand Expeditionary Force and saw service in Gallipoli, Egypt and France,
where he gained a commission in the field in August 1916. In the following
month he was wounded in the battle of the Somme, and after three months in
hospital was invalided home to New Zealand, returning there in March 1917.

Aitken took up the broken threads of his career as a student of languages
and mathematics in 1918, in which year he gained First Class Honours in Latin
and French. His mathematical studies, however, were carried on under con-
siderable difficulties. There was at that time no Professor of Mathematics at
Otago, and the lectures to first-year students were given by the Professor of
French. For an advanced course, (Aitken being the only entrant), it was
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arranged that the Mathematics master at Otago Boys’ High School should tutor
him, and later on he got some help by correspondence with Professor D. M. Y.
Sommerville of Victoria College. The Final Honours examination in 1919 was
an unsatisfactory affair; the questions bore little relation to the instruction given,
and the examiners in Britain knew nothing about the candidates. The upshot
was that Aitken got II Class Honours. It is idle to speculate whether a more
conventional mathematical training would have fostered or stifled his mathe-
matical genius; the fact remains that Aitken was a creative mathematician whose
profound insight was innate; his inspiration was not derived from any teacher,
but from the study of the original sources.

He graduated in 1920, in which year he married Mary Winifred Betts,
daughter of Alfred and Ada Betts of Nelson, New Zealand. From then until
1923 Aitken taught languages at Otago Boys’ High School. He used to recall
how he was once discovered by his Headmaster rendering the week’s football
report in the local newspaper into Ciceronian Latin with a senior class. The
Headmaster advised him to stick to more conventional methods. During this
time his mathematical interests were kept alive by the opportunity of working
as a part-time tutor under Professor R. J. T. Bell, who had lately been appointed
to the Chair of Mathematics at Otago, and who immediately recognised Aitken’s
mathematical gifts.

In 1923, with Bell’s encouragement, Aitken took the step, decisive for his
subsequent career, of coming to Edinburgh, aided by a post-graduate scholar-
ship of the University of New Zealand, to study under Professor E. T. (later
Sir Edmund) Whittaker. He had originally entered for the degree of Ph.D.,
but his thesis, on the graduation of observational data, which he presented two
years later, was immediately recognised as of superior merit, and he was awarded
the higher degree of D.Sc. In October, 1925 there began a succession of appoint-
ments on the staff of the University of Edinburgh, to the service of which he was
to devote the the rest of his life. From lectureships in Actuarial Mathematics
and in Statistics and Mathematical Economics he went on to a Readership in
Statistics in 1936, and ten years later he succeeded Professor Sir Edmund
Whittaker in the Chair of Mathematics, holding this position wuntil his retire-
ment in September, 1965 with the title of Emeritus Professor.

In the Chair, Aitken regarded it as his duty to follow the admirable Scottish
tradition of lecturing to undergraduate classes at all levels. FHe was a most
inspiring teacher; his lecturing was superb, and his personality made an indelible
impression on his students. If in later life they might not remember the entire
mathematical content of his lectures, they never forgot their erudition, humanity
and wit. Every summer Mrs. Aitken and he would entertain the Honours
students, with their teachers, in their beautiful and historic house and garden.
On these occasions he would reveal unsuspected virtuosity in such arts as throw-
ing the javelin: in his youth he had been a notable athlete, and until his health
began to fail continued to be capable of strenuous physical exertion. To his
research students he was most generous in providing ideas and encouragement,
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and had usually himself worked out beforehand the results he was leading the
unsuspecting student to ** discover > for himself.

On University Committees he could enliven a heavy piece of business
with some arresting and individual turn of thought concisely expressed, for he
was a master of extempore speaking. In everything he favoured the direct
approach, and was as incapable of the manceuvrings of University politics as
he was of hurting anyone’s feelings.

Aitken’s name has become known to a wider circle through his phenomenal
memory. Some instances of this have already passed into popular legend, such
as his reconstruction of his platoon roll, lost in battle, complete with full names,
regimental numbers and addresses of next-of-kin. Probably not unconnected
with this faculty of remembering was the rare gift of rapid mental calculation
which he possessed, to a degree possibly exceeding that of any of the lightning
calculators for whom authenticated records exist. In his case the faculty was
partly hereditary, but he had developed it, along with his phenomenal memory,
by constant practice from his boyhood. These extraordinary gifts, of which he
would sometimes give striking demonstrations before an audience, enabled him
to perform well-nigh incredible feats. Details need not be given here, as for-
tunately a record of one such occasion, together with his own fascinating account
of the mental processes involved, is to be found in a published lecture (67) to the
Society of Engineers (November, 1954), and an objective study has been under-
taken by Professor I. M. L. Hunter in Brit. J. Psychol. (1962). None who wit-
nessed them can forget such spectacular demonstrations as his almost instant-
aneous multiplication, division and extraction of square and even cube roots
of numbers proposed to him; or the “ reprehensibly useless feat * as he called
it, of writing up on the blackboard, from memory, the 707 digits of Shanks’s
calculation of 7, with a speed and regularity reminiscent of a teleprinter. When
Shanks was shown by D. F. Ferguson in 1945 to have gone wrong at the
528th place, Aitken easily memorised the corrected value.t The conclusion
of this tour de force would be followed by a complete silence while the audience
were breathlessly checking the figures against the printed sheets which had been
handed round, the lecturer meanwhile remaining in a semi-trance, until finally
brought back to earth by tumultuous applause. Aitken sometimes belittled his
unusual powers as being unconnected with his real mathematical bent. But
it seems certain that he was led to many important analytical results by first
going through what ordinary mortals would have regarded as very heavy

-arithmetical work. As he himself once put it, “ Familiarity with numbers
acquired by innate faculty sharpened by assiduous practice does give insight into
the profounder theorems of algebra and analysis ”.

Aitken possessed an exceptional knowledge of the theory and practice of
music, and for long stretches would appear to be possessed by music to the

t Dr J. C. P. Miller believes that Aitken eventually learnt 2000 places of the value produced
on an electronic computer and published in 1949. He may not however have gone beyond

1000 places in giving public demonstrations. Aitken once remarked to Dr Miller that this
process of recall was “largely rhythmic .

EM.S.—L
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exclusion of all else. Although largely self-taught, he was an accomplished
violinist and viola player. He composed many pieces—songs, pianoforte pre-
ludes and some pieces for orchestra—* mostly rigorously suppressed ”*, as he
tells us. He prepared, in his singularly beautiful musical calligraphy, his own
critical version of J. S. Bach’s suites for solo violin, an unnecessary task, one
might think, since he knew them all by heart!

An instance which illustrates Aitken’s musical knowledge and historical
sense is his research into the recital given by the composer and pianist Frederic
Chopin during his visit to Edinburgh in 1848. Aitken made his own identifica-
tion of the items, which were inadequately described in the original programme,
and contributed a note to the printed programme of the anniversary recital at
the Edinburgh Festival in 1948. His own account (from a letter to Professor
J. Stewart Deas) shows how other things than mathematics would at times wholly
engross him. ““ Over a long space of years * he tells us, * I endeavoured to catch
the spirit of place and time by even visiting the West end of Queen Street (where
Chopin’s recital was given) by night, with coat collar turned up, and recalling
every detail of the recital, with every collateral circumstance—the stay at Calder
House, at the Lyszczynski’s house in Warriston Crescent, Chopin’s letters en-
shrining his opinion of musical appreciation in these islands, the state of his
health, the programmes of his earlier recitals in June and July in London, in
August in Manchester, etc., etc. You may say that this effort of mine 4 la
recherche du temps perdu bore rather meagre fruit. Well, what of it? I enjoyed
doing it; I caught something of Edinburgh’s extremely varied past—and I
learnt a lot about other matters in the process ™.

In humane letters too he was well versed. The effects of his early classical
and literary training remained with him all hislife—he could repeat from memory
long passages from Virgil or Milton; he had a wide knowledge of world litera-
ture, and himself wrote several poems, mostly sonnets, as well as humorous
verse; but these only a few friends were privileged to see.

Aitken published upwards of 80 papers, mostly in the fields of statistics,
numerical analysis and algebra. He collaborated with the late Professor H. W.
Turnbull in a book, The Theory of Canonical Matrices (Blackie & Son, 1932).
He was joint editor, with the late Professor D. E. Rutherford, of the valuable
series of University Mathematical Texts published by Oliver & Boyd, himself
contributing the first two, and perhaps the most successful volumes of the series,
Determinants and Matrices, and Statistical Mathematics.

Many honours and distinctions came to him. He was elected a Fellow of the
Royal Society of London in 1936, and was an Honorary Fellow of the Royal
Society of New Zealand; he served the Royal Society of Edinburgh for a period
as Secretary to the Ordinary meetings, and for three different terms as a Vice-
President. He held the Society’s highest award, the Gunning Victoria Jubilee
Prize, and also the Makdougall-Brisbane Prize. He was an Honorary member
of our own Society, of which he had twice been President. The Facuity of
Actuaries, the Society of Engineers and the Royal Society of Literature inscribed
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his name in their rolls; he was an Honorary Doctor of Science of the University
of New Zealand, and an Honorary LL.D. of Glasgow University.

In spite of his transcendent gifts, which might have set him apart from and
above his fellows, he was the most approachable of men, for he possessed sim-
plicity of heart and true humility. He took pride in his Scottish ancestry, and
loved the Scottish countryside and its literary and historical associations. He
knew intimately East Lothian, the Borders and Galloway, from long days spent
walking on their hills and coasts. On such walks he was the most delightful of
companions; his wide erudition, carried so lightly, made him a fascinating talker,
and his penetrating and witty commentary on men and affairs never held a trace
of malice. He was beloved by all who knew him.

Aitken’s last publication, though non-mathematical, deserves more than a
passing mention. Endowed as he was with an exceptionally sensitive and per-
ceptive nature, he had not been granted the healing gift of oblivion. At certain
seasons he was oppressed by the memory of the atrocious fighting of the cam-
paigns in Gallipoli and on the Somme in which he had taken part (the adjective,
with its classical overtones, is his own). It is a testimony to the stature of his
mind and personality that nearly 50 years after the events he could come to
terms with that experience, the more terrible because constantly re-lived, and
set down in his book Gallipoli to the Somme—Recollections of a New Zealand
Infantryman a narrative of his war service, compassionate, restrained, yet
vivid and intensely moving. For this superb piece of writing Aitken was elected
to the Fellowship of the Royal Society of Literature. To those who knew him
best it stands as a testament and a memorial.

He died in Edinburgh on 3rd November, 1967, after some years of indifferent
health, and is survived by his widow, a son and a daughter.

THE EARLY YEARS IN EDINBURGH

(From a letter from Professor E. T. Copson to Professor Erdélyi, dated Sth
November, 1965)

. . . At the time when he taught languages at Otago Boys’ High School he was
more interested in mathematics, though he knew very little about modern
mathematics. He never met a real mathematician until he was 28 and came to
work with Whittaker. He brought with him some unpublished work on the
Theory of Numbers which appeared later in the *“ Edinburgh Mathematical
Notes ”. The work of people like Fermat fascinated him. With his gift of
computation he could guess results in the Theory of Numbers from a considera-
tion of particular cases. Like Ramanujan, the integers were his personal friends.
His first piece of serious work was the solution of a sixth order difference equation
which arose in Whittaker’s theory of graduation. Eddy Whittaker and Richard
Gwilt had tried to use E. T. Whittaker’s original version of the theory. Ihad tried
to solve the difference equation by analytical methods and got nowhere. But
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Alec got a solution as an infinite series expressing the inverse of a difference
operator as a Laurent series in the operator E. It did not look at all promising;
but Alec with his great arithmetical skill was able to calculate the numerical
values of the coefficients. Actually the method was not very good for a reason
which is explained on p. 310 of “ The Calculus of Observations >’. But Alec got
over that trouble too. . . It was an exceptional effort to do this work and gain his
D.Sc. two years after he came to Edinburgh. The problem was one which fas-
cinated him; it made use of his great gifts in classical algebra and his skill in
computation.

Even then he knew very little about modern mathematics; but Edinburgh
suited him. E. T. W.’s lectures on determinants and matrices were unique;
nowhere else in Britain was matrix theory taught at that time, and Aitken took
to it at once. It was fascinating to see how he was able to apply techniques of
that sort of algebra to numerical analysis. He was not long a research student—
he joined the Edinburgh staff in 1925 and never left. It was not from lack of
offers. They tried on more than one occasion to persuade him to go to the
London School of Economics. But it was no use. Edinburgh had everything
he wanted—concerts, musical friends, the hills to walk on, a congenial job. . . .
He must have been a very rapid worker; he once told my wife that for 75 per
cent of his time he was thinking of music. He must have employed the other
25 per cent to very great purpose. Of course by staying in Edinburgh he avoided
all the administrative burdens which beset many of us and which he found
rather uncongenial when he was elected Professor. . .

A. C. AITKEN’S CONTRIBUTIONS TO STATISTICS

Perhaps Aitken’s chief service to the science of statistics was his writing of
Statistical Mathematics, which appeared in 1939. This beautifully written little
book, containing in its 150 pages an astonishing amount of information, became
the practical bible of many thrown willy-nilly into statistical work by the chances
of war. Until the first volume of Maurice Kendall’s encyclopaedic work
appeared in 1943 it was in fact almost the only source of reference to the mathe-
matics of current statistical theories and explained what it set out to cover with
admirable lucidity. These were the days, as J. L. Doob has recently recalled,
when it was not impossible to find texts on statistics containing disproofs of
what are now regarded as results basic to the whole theory . Still, the limitations
of the age may be discerned in Aitken’s book too, which relegated the concept
of statistical independence to an appendix, althoughin the derivation of Student’s
distribution the lacuna in the proof given (concerning the independence of X
and s?) is carefully pointed out.

Of Aitken’s statistical papers the one best known to me and I suppose the
most influential was * The estimation of statistical parameters >, a joint work
with H. Silverstone; this was published in 1942. It concerned one-parameter
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estimation problems admitting, among the unbiassed estimates of the para-
meter, one distinguished by the property of minimum variance. The argument
is difficult to follow, although the authors say that they have to do with ““ a
minimal problem in the Calculus of Variations, of positive definite type and
formally simple . As those who wrestled with the paper eventually found, and
as others found independently, what lies at the root of the matter is what is now
most commonly called the Cramér-Rao inequality. It is the fashion nowadays
to decry this inequality somewhat, either by pointing to the numerous independ-
ent discoveries of it, or by saying that it is just Schwarz plus a gimmick, but the
significant fact is I think that a result at once so neat and so central to the matter
should have escaped the attention of many who made their reputations during
the great days of maximum likelihood. The work of Aitken and Silverstone
was continued by Aitken and Solomon, and Aitken in 1948 published a continua-
tion of the earlier paper, correcting an error in it and exploring the many-
parameter situation.

Around 1950 Aitken became interested in Markov chains, but he appears
never to have published his work in this field. In the Statistical Laboratory at
Cambridge there is a bundle of letters to the late John Wishart which indicate
the general lines of Aitken’s thought. He started with a two-state Markov chain
with constant transition probabilities, and supposed that a score Sy, S;, S,,. - .
was built up by taking S, = 0 and letting S increase by an amount x or y accord-
ing to the identity of the next state visited. He then showed how to write down in
elegant matrix form the Fourier characteristic function for the score after n
steps, and studied the asymptotic behaviour of this for large n, deriving central
limit theorems and so on. Generalisations were made in three directions:
(i) to k-state Markov chains, (ii) to Markov chains over a compact interval
[a, b] of states, when the transition function has a probability density, and (iii) to
the discussion of the joint distribution of m consecutive scores, and thus to the
multiple auto-correlations, etc. Doubtless the manuscript notes on these in-
vestigations still exist in Edinburgh, and some reader may like to pursue the
matter.

Others have given an account of Aitken’s extraordinary powers of mental
computing. He appears to have considered that these were due to a skilful
subliminal combination of algorithmic tricks and the memory of previous
computations. The idea that one could make use of previous many-digit
multiplications in performing a desired one sounds odd at first, but curiously
this last month Professor Donald Michie and Dr. R. J. Popplestone of the
University of Edinburgh’s Department of Machine Intelligence and Perception
have suggested * that function-evaluation in automatic computing may best
be performed by exactly such a combination of algorithm and memory, so much
so that in reading their reports while writing these notes I was very struck by the
impression that Michie and Popplestone were in fact designing an auto-Aitken,
1 hardly think he can have known of their work. How enchanted he would have

* To be submitted to the L.F.I.P.S. Congress, 1968.
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been! (As regards the possibility of the “ total recall ”’ necessary for memory
to play the desired role, mention should be made of the suggestion put forward
recently * by another member of the same Department, that a temporal anal-
ogue of optical holography may explain much that is puzzling about global
memories.)

In case it is overlooked by others, I should like to mention another less
publicised feat of Aitken’s; he could throw a pebble an improbable distance,
and make it describe an even less probable trajectory, which one would swear
was bimodal. He would then state the exact range of the throw, though when he
demonstrated this to me at St. Andrews the pebbles always fell in the sea and
verification was not possible.

Aitken dismissed his athletic feats as “ what all New Zealand boys learnt
in their childhood . Of his New Zealand days he once told me the following
charming tale; I hope I record it with reasonable accuracy.

As a boy Aitken often stayed with an uncle in a fairly remote part of the
Dominion, and would make private excursions of many days through the wilder-
ness, just to have a look around. On one of these occasions he discovered a
penguin colony, but when he told his uncle, he was disbelieved and punished, I
think beaten. Years later he revisited that part of New Zealand and found, to
his great satisfaction, not only that the penguin colony had become a nature
reserve, but also that his uncle had been appointed the warden of it.

One ought to mention that Aitken became an F.R.S. in the days when this
was a very unusual occurrence for a statistician or numerical analyst, and thus
he was in a position to direct a warm wind of encouragement from the estab-
lishment fire on many chilled young men, and did so frequently, thus earning
their permanent affection. There were many other reasons, however, for feeling
affectionate towards Aitken, perhaps the chief being the fact that he was one of
the few mathematicians who knew that there were more interesting things in
life than mathematics.

Aitken never seems to have contributed to probabilistic model-building,
but he did come near it. He once described to me how he and McKendrick had
stood for some time in Princes Street watching with fascination a queue of
trams extending into the far distance. ‘¢ Aitken,” said McKendrick, * there is
a probability problem here. We ought to do a Fourier analysis!” Apparently
they never carried out McKendrick’s threat, or the explosion of queueing theory
would have occurred even earlier. In that event it seems likely that Aitken would
have prediscovered much current work on the combinatorial identities which
have grown out of the ballot theorem.

Davip KENDALL

A. C. AITKEN’S WORK IN NUMERICAL ANALYSIS

I have never lived close enough to Edinburgh to have discussion with A. C.
Aitken as frequently as I should have liked, and our meetings were all too rare,

* H. C. LoNGUET-HIGGINS, Nature, 217 (1968), 104.
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and so my familiarity with his work and methods is less than I should have liked
itto be. Iam therefore confining these remarks to some personal reminiscences,
and to comments on some of the ideas that Aitken has injected into numerical
analysis, which have had substantial effect on the work of myself and others.
This applies most particularly to his liking for a simple, repetitive, algorithmic
approach, and his profound studies on determinants and matrices.

One cannot think of Aitken without remembering his phenomenal power
of mental calculation, perhaps based largely on his remarkable memory. He
once told me that he had to be careful what he read for entertainment, it was so
hard to forget it afterwards. His calculating powers were not, however, based
on conscious memory alone, he was a mathematician as well—an unusual com-
bination—and interested in analysing his powers and in the way his mind worked.
He has told me that results “ came up from the murk *°, and I have heard him
say of a number, that it ** feels prime ”, as indeed it was. But he also helped out
with conscious use of short cuts. This is in contrast with another lightning
calculator, Wim Klein, a Dutchman with whom Aitken had a radio ““ contest
and discussion, and who relies on a good memory and quick but deliberate
mental calculation with a relatively limited supply of mathematical formulae.

Aitken was one to whom integers were personal friends—Ramanujan was
another—and I can appreciate this well, for I am one myself. I have heard him
quote Hardy’s tale of Ramanujan; when 1729 was suggested to him as uninte-
resting, he replied that it was the smallest number expressible as the sum of two
cubes in two ways. Aitken introduced me, in correspondence, to 163, which
is such that exp(r/163) differs from an integer by less than 10™'2, and suggested
997 might have a related property. Aitken once suggested 823 to me as of
little interest, though he knew of the property that marks it out for myself—it
is one of a prime-four, a set of four consecutive primes ending in 1, 3, 7, 9 and
sharing the same leading digits.

It was perhaps Aitken’s facility with calculation, which extended to duo-
decimal as well as to decimal arithmetic, that led him to advocate an extension
of duodecimal currency, rather than conversion to decimal currency. In fact,
I consider he was largely right; both he and I met G. S. Terry, an American
advocate of Duodecimals who produced a fairly extensive book of tables
Duodecimal Arithmetic. 1 worked on this myself for a time and there is no
doubt that, other things being equal, duodecimal arithmetic is in many ways
simpler and easier to learn than decimal arithmetic—but other things are not
equal, the decimal system is too entrenched. But Aitken thought it a pity to
give up the duodecimals we have and are familiar with. Maybe, if one day deci-
mals and duodecimals meet on equal terms, we shall find Aitken justified.

I will now comment on some specific instances of the impact of Aitken’s
work on computation. His most effective and widespread ideas are simple ones
—simple to express, but clearly the distilled essence of wide experience, and often
profound knowledge and thought. Most of these ideas rest on Aitken’s liking
for an algorithmic approach, based on repetition of a simple process, yielding
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regularly related results which could then be further analysed and improved on
by combining them suitably. Many rest on one basic process, widely used by
Aitken. This is the evaluation of a /inear cross-mean or weighted cross-product
of the form

a b

¢c d

This is often used iteratively, almost to the exclusion of any other kind of pro-
cess in the calculation. This, as it turns out, is ideal for automatic computation,
though Aitken was advocating its use well before these computers appeared.

The best-known of these ideas introduced by Aitken is for the acceleration
of convergence. This applies to a set of three numerical estimates of one quantity,
a, of which the major part is of the form

u, = a+br"
available for three values of n in arithmetic progression. Then br" may be
eliminated by using :

B

* Up-y U,

a = = 52u,,.

Uy Upr1
This has very widespread application, and is the subject of a large and growing
literature of applications and extensions. Aitken himself invented it in connect-
ion with Bernoulli’s recurrence method for solving algebraic equations for the
largest root, and used it a great deal in his numerical studies and work on the
solution of linear algebraic equations by iteration, and in similar work on the
evaluation of latent roots and latent vectors of matrices.

This process gives weight to his arguments and liking for systematic methods.
In correspondence with an Edinburgh colleague, which I have been privileged
to read, he argues against Southwell’s * relaxation > approach of “ swatting the
largest residual ”” by pointing out that a systematic iteration may take longer in
the first place, but that the regularity, besides making satisfactory theoretical
discussion of convergence possible (or at least much easier), also allows use of
accelerative methods, which give the required result more easily in the long run
than the unsystematic work.

The second major use of the linear cross-mean is in Aitken’s method of
progressive linear interpolation. This depends on repeated use of a basic step:

If f(x; a, b, ¢, ..., j, k) is the Lagrange polynomial that agrees with f(x) at
the n points with abscissae x = q, b, ¢, ... k, then the Lagrange polynomial
through n+1 points is obtained from two Lagrange polynomials through »
points (n—1 in common) by the formula

f(x; a,b,c, ..., J, k) x—k + (k—1).
f(x; a, b’ c, "'3j9 l) x—1

Then, starting from the constant approximations f(x; a) =f(a), etc., we
obtain from this formula, repeatedly applied, the unique Lagrange polynomial

fx; a,b,¢, ..., 5, k, D)=
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through the stated points at each stage. This is an effective method of inter-
polation, particularly on automatic computers, where the recording of inter-
mediate results (rather a nuisance with desk computation) is essential and auto-
matic at each stage.

This basic idea has been very slow in gaining ground over the nearly 40 years
since its inception. It needs a small variation due to E. H. Neville (the idea
of using successive overlapping sets @, b, ¢, ... k; b, ¢, ...k, I; ¢, ... k, I, m;
etc., rather than a “pivotal set” a, b, ¢, ..., j and one further extra k, I or m),
an idea due to L. F. Richardson (the deferred approach to the limit), one due
to W. Romberg (repeated Richardson error elimination in integration, applied
by Neville’s variation of Aitken’s process) and one to L. Fox (allowing elimina-
tion of error terms that are not just successive powers of one variable, and using
Romberg’s incidental but important choice of arguments a, b, ¢ ..., here inte-
gration intervals, in geometric progression), and a few more ideas to bring the
method to full flower, as I hope I have shown in an expository paper to appear
shortly in Phil. Trans. Roy. Soc. Itis Aitken’s basic linear cross-mean that makes
the whole thing neat and workable.

The linear cross-mean also appears in Aitken’s methods for repetitive re-
duction of determinants and solution of linear equations, here based on the
formula for an nx n determinant

|4]= | A(n, n)| [A(n—1, n)| - ‘ A(n—l, n——l)”
[A(n, n—=1)| [A(n—1, n—1)| n, n

in which the arguments in () show which rows and columns are missing in the
minors.

Used like this in pivotal reduction of determinants, all minors of any order
are integers if the original elements are integers. When used for the reduction
of a system of linear equations this is almost equivalent to Gaussian eliminations,
but with the divisions delayed one stage, so that we always have exact finite
working (in integers). This is a useful checking feature, and aesthetically satis-
fying to some. Aitken himself stated, however, that this is rather more laborious
than some methods in which division is performed earlier, at the cost of having
to approximate, and in any case with large determinants the integers tend to
grow inordinately.

Nevertheless, these last remarks do not apply in simple cases, and the divis-
ion delay can be useful, for example, in simple linear programming problems,
which the introduction of Stiefel’s * exchange step * converts to obvious matrix
reduction problems.

Another application of this determinant evaluation appears in Aitken’s
papers in Proc. Roy. Soc. Edin., 46 (1925-26) 289-305 and 51 (1930-31) 80-90 to
the extension of Bernoulli’s process using Hankel or persymmetric matrices.
Almost all the ideas used in Rutishauser’s QD-algorithm are contained in these
papers, including the downward recurrence, starting from the coefficients in the
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equation, that is so much more stable than therecurrence starting from a sequence
generated by the Bernoulli recurrence.

Aitken had a great belief in the virtue of a sound mathematical explanation
and analysis of the methods he advocated, and did not like to work in the dark,
by experience alone. His theoretical background, particularly with determinants
and matrices, was so extensive and his computational experience so great, that
he could afford to indulge this liking more than most, and record his work for
others to use. This, and the regularity of the regular algorithmic arrangements
of calculations that he preferred, pay dividends in actual computational use of
error analysis to provide error elimination, as we have seen above.

In a short article, it is not possible to do full justice to Aitken’s work; one
can only suggest that one must go to his written works and read and re-read
with great care. He had a great ability to write in a concise, clear and stimulating
style, with interesting choice of material. I myself have received great stimulus,
for instance, from his two little books in the series of University Mathematical
Texts, Determinants and Matrices and Statistical Mathematics and still find
interesting new points in papers I thought I knew well.

J. C. P. MILLER

A. C. AITKEN’S WORK IN PURE MATHEMATICS

Aitken’s contributions to pure mathematics were almost entirely concerned with
algebra. His numerous publications in this field range from short notes to
elaborate papers and, taken as a whole, strongly reflect his personality, his special
talents and his attitude to mathematics.

As has been remarked elsewhere, Aitken’s development as a mathematician
came about largely through his own efforts. Asa young man he was not, in the
traditional manner, initiated into research by an experienced supervisor, but
instead derived his inspiration from the works of the great masters of the past.
This accounts for his remarkable knowledge of historical details with which he
often enlivened his mathematical writings; he was particularly fond of stressing
the claims of lesser known mathematicians of former times for discoveries
erroneously attributed to their more famous contemporaries. Many of his
historical references were gleaned from Sir Thomas Muir’s monumental work
on determinants, for which Aitken had a profound admiration.

To assert that, as a mathematician, Aitken was a formalist is perhaps an
over-simplification, but it describes a dominant quality of his work; that is, he
sought progress in mathematics mainly through the discovery of hitherto con-
cealed algebraic identities and relations of a formal nature rather than by abstract
reasoning. By his superb skill in computation and through his mastery of
classical algebra he was particularly endowed to succeed in his quest, and it is
not surprising that he found himself in closest affinity with the algebraists of the
preceding generation, to whose genius we owe the enormous wealth and power
of formal algebra. To gather new fruits from this well-harvested field was surely

https://doi.org/10.1017/50013091500012530 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500012530

OBITUARY 163

no mean feat. This is not to say that Aitken lacked interest in the more recent
developments of algebra. Indeed, his work on the representation theory of the
symmetric and general linear groups, which he undertook during his most
creative period, yielded important results. But he was apparently not in sym-
pathy with the ever-increasing trend towards abstraction which, since the third
decade of this century, has turned algebra into an almost exclusively conceptual
discipline. One can only speculate whether this is the reason why, in later years,
he concentrated his efforts more on statistics and numerical analysis which by
that time had become more congenial to him.

Aitken was a highly intuitive mathematician. Presumably, like most creative
mathematicians, he conjectured general results after a close scrutiny of special
cases. But the certainty he derived in his own mind from this inductive proced-
ure was so great that he frequently refrained from working out the details of a
proof and instead invited his readers to accept the description of a “ typical
case > in place of a rigorous and complete argument. Whilst his mathematical
style is thus occasionally somewhat sketchy, his English prose is always lucid
and pleasing. Each paper bears witness to Aitken’s enthusiasm and love for
mathematical beauty. Those who shared with him the joys of amateur music-
making will recognize the kinship between his mathematical and musical
activities. Both displayed a refreshing spontaneity and directness, unfettered
by ponderous professionalism, but executed with an individual technique that
had been evolved by genuine insight and personal involvement.

Aitken’s publications began in 1923 with notes on topics in analysis, geometry
and number theory ((1) to (4)), which were not quite typical of his mathematical
style. Later on (18) he used his knowledge of number theory to establish some
remarkable formulae for the computation of 7. All his other papers on pure
mathematics are devoted to algebraic problems. His virtuosity in evaluating
special determinants was unsurpassed, but there was one type of determinant
which played a central role in his researches: let ho(= 1), Ay, h,, ... be the com-
plete symmetric functions of the indeterminates x,, x,, ..., X, thus

hy = XX}, Xp,0 0 Xg s
where the summation is extended over all sets of integers satisfying
1§k1§k2§ “ee éksém’

with the convention that 2_;, = O whens>0. Jacobi had studied the ‘“ isobaric >
determinant or * bialternant

hp hq+1 hr+2
h h h
H(p, q,r,..)=1{ °P~t "4 r+l R 1
(p, q ) bz hyr By ¢))

in which p<g<r< ... are non-negative integers which may be thought of as a
partition of p+g+r+ ... or else as describing a tableau consisting of p dots
in the first row, ¢ dots in the second row, r dots in the third row, etc. A classical
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result on symmetric functions is the celebrated duality theorem which states
that
H(p,g,r,..) = AP, q, 7', ..),

where A(p’, ¢, r’, ...) is a determinant analogous to (1), in which each A, is
replaced by the elementary symmetric function

ag = XX, Xp,--- X, (1 Sky<ky...<k;<m)

and (p’, 4/, r’, ...) is the partition conjugate to (p, g, r, ...), that is the tableau
obtained by interchanging rows and columns. Aitken generalized (10) this law
to determinants of the type

ha+a’ ha+ﬁ' ha+7‘
hgvar Mpsg Hpay

hvfa’ hrjrﬁ' hva'

where a>f>y ..., a’'<f'<y .... Sixteen years later (55) he returned to the
subject and developed the relation between bialternants and the theory of
partitions.

The bialternant functions constitute the link with the other major problem
in algebra that attracted Aitken’s attention. I. Schur had classified all algebraic
representations of the general linear groups, that is matrix functions 7(A)
satisfying

T(AB) = T(A)T(B), ®

where the elements of the matrix T(4) are polynomials in the elements of 4.
It turned out that if T(A) is irreducible then its trace is one of the bialternants
(1) and that T(A) is characterized by its trace. Special cases of (2) had been
known before Schur, notably the Schliflian (or induced) matrix A"), which is
the matrix of the linear transformation induced on the individual terms of #,,
other examples being the compound matrices and the Kronecker powers of A.
Aitken computed the latent roots and elementary divisors of these special
representations over the complex field (11, 12, 42, 57). In what, I think, is his
most profound mathematical paper (48) he studies the sequence of induced
matrices A¥)s = 1, 2, ...) when A runs through the natural representation of
a symmetric group. Although some of his results had been anticipated by D. E.
Littlewood and A. R. Richardson, Aitken’s exposition is nevertheless of con-
siderable interest.

With his flair for elegant formalism Aitken was quick to realize the useful-
ness of matrix algebra as a powerful tool in many branches of mathematics.
At a time when matrix techniques were not yet widely known he applied matrix
algebra with striking success to certain statistical problems.

His interest in matrices was shared by H. W, Turnbull. Their joint book
Canonical Matrices (31) soon became a standard work on the subject and has
recently been reprinted in the Dover series on Advanced Mathematics. To this
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day it is one of the most accessible sources for the less familar parts of matrix
theory, and it contains a number of original contributions not previously pub-
lished. Aitken’s collaboration with Turnbull went far beyond a congenial
mathematical partnership. It developed into a warm and life-long friendship
between two men whose temperaments and background were quite different
(although music was a strong bond), and the exchange of mathematical ideas
continued throughout the years.

_Aitken and D. E. Rutherford were the originators and first joint editors of
the University Mathematical Texts, published by Oliver & Boyd. The success
of these text-books is well known and need not be elaborated here. Amongst
the initial volumes in the series was Aitken’s Determinants and Matrices (50),
which has gone through nine editions since its appearance in 1939. Charmingly
written, it is typical of Aitken’s style, and the choice of topics is characteristic
of his personal taste and his attitude to algebra. It is quite unlike any of the
numerous treatises on linear algebra, which have appeared since the 1930’s,
Although linear equations are treated in some detail, there is no explicit mention
of vector spaces or linear mappings and only a few brief paragraphs are devoted
to latent roots and vectors. Instead the reader is told, as he should be, about
Laplace’s expansion of the Cauchy-Binet formula, and he is fully informed of
the classical results due to Jacobi, Cauchy, Franke, Sylvester and others con-
cerning compound matrices and their minors. He meets the expansion of the
quotient of determinants given by Schweins in 1825, and, not surprisingly, he
is introduced to the theory of bialternants mentioned earlier. To be sure, some
of this material is now regarded as old-fashioned, yet it includes some beautiful
mathematics that is still worth recording, if only for the few but significant
occasions when it impinges on modern research. Such occasions do exist and
may well continue to occur; for, despite the vast power that abstraction and
generality of approach has placed in the hands of algebraists, it happens time
and again that the very core of an important advance rests upon an intricate
formal relationship that was discovered by our mathematical ancestors. We
are grateful to Aitken for preserving these historical gems for the younger
generation.

He would have been ideally suited to achieve a synthesis between the old and
the new algebra. In a remarkable letter to an Edinburgh colleague in 1944,
which is appended to these notes, he described his plans and ideas for moderniz-
ing and unifying invariant theory and other branches of classical algebra. Alas
for various reasons to which he alludes, his intentions were never carried out,
and we are left with the feeling that Aitken’s potentiality as an algebraist had
not been fully deployed when he decided to apply his versatile talent to other
branches of mathematics.

May our science be blessed with many a man like him: an individualist of
exquisite taste, intellectual power and originality.

W. LEDERMANN
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A LETTER FROM A. C. AITKEN TO AN EDINBURGH COLLEAGUE

23 Stirling Road,
Edinburgh, 5.
23rd December 1944.

My Dear — — —,

Let me essay to write, currente calamo, a discourse on invariant theory,
Schur matrices, the symmetric group, etc.

The various explorers of this fascinating country are apt to become affected
by a kind of mountain-blindness, rendering them incapable of seeing that the
features they believe themselves to be discovering are already charted fairly
accurately, though under other names and on a different scale, on some other
man’s map. Indeed the classical invariantists from Sylvester on, the group
theorists from Frobenius on, the substitutional analysts from Alfred Young on,
the tensorists, and finally topologists like Hodge (with his ““ k-connexes *’) are
all engaged on one and the same topic, and it falls, at its widest, under the domain
of group theory.

One might begin, arbitrarily, anywhere in this country, and ramify at large
until the chart is fairly complete. I shall begin with types of coordinates. From
a vector or set of coordinates x = {x,, x,, X3, ..., X,}, and from cogredient vectors
¥, z, ... undergoing all the vicissitudes that x does, we have various derived sets,
e.g. the powers and products sets,

2 2 2 3 2 3
{x%, X1X25 X1X35 «oes X35 oy X5}, {x3, X1X5, ..., X1}, €tC.

The ‘“ quantics * or ground forms from which invariant theory begins are linear
in these *“ power and product ” coordinates. The laws of transformation of
such vectors are easily derived and studied: thus, if

o 2L e
a, b,]lx, Y2

you find easily
ai  2a;b, bt [*t i
aya, apbytazby biby |l xx, | =|y1y2 |,
a;  2ayb, b3 1x3 Y3

which I write A4123x12) = yI2) and similarly for any degree of powers I define
A™ by Y1 = [Ax]F1 = A¥Ix¥) and name A" the kth Schliflian matrix of A.
The set of coordinates or elements of the vector x*! is sometimes called a ** trans-
formable set ”°, since, as here, it carries over into an exactly similar y™*1,

A fundamental property at once emerges. We have, say,

BAx = By = z.
Then
(BAYPIx1) = BIIU _ k]
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But
Byt — Bk fTkL (k]

But x is an arbitrary vector. Hence
(BA)["] = B[k]A[k]’

a multiplicative property which can be extended to any product of however
many matrices.

A second type of transformable set is determinantal, familiar in geometry as
tangential coordinates, or line coordinates, etc., etc. From three cogredient
vectors X, y, z we might construct a vector of determinants

{l xy2z3 | | 19224 | .o | X29324 ] ...}
Suppose I call the vector, so formed from k vectors x, ..., the kth compound
vector, x®. The so-called * multiplication theorem of determinantal arrays *’
(which is nothing more than the theorem for the determinant of a product of
two rectangular matrices) then has as its consequence

(BA)® = BWIA®,

Yet again, look at the contragredient transformation itself. Suppose the
inner product ux is kept invariant. Then when x suffers Ax, u suffers (4) ™ 'u.
Now

{BA} ' =('B) " = (B) A

Schur, in his Dissertation completed in 1901 (Berlin), working under his
master Frobenius, set himself the task of discovering all the matrices T(4),
having elements of given degree, say k, in the elements a;; of 4, and satisfying
the multiplicative law,

T(BA) = T(B)T(A);

satisfying also a condition of irreducibility, namely that

T,(4)

T,(4)

T(A) = H H-!

T(4)

be impossible, where the T,(4) are in isolated blocks down the diagonal, and
H isindependent of 4. (If this were not so, the separate T;(A4) would themselves
possess the property T,(BA) = T;(B)T(4), and T(A4) would be * reducible ).

Let me interpolate a meaning for this. 7(A) will transform a vector T(x),
and we shall have Ax = y and T(4)T(x) = T(y). The elements of T(x) will thus
form a * transformable set , a derived set of coordinates sharing, as I said
above, in the vicissitudes of x, genuflecting in their own way whenever x genu-
flects, and so on. (To anticipate, Hodge’s “ k-connexes > are simply complete
sets of polynomials made out of T(x) and all its polarized forms.)

What Schur found was very remarkable. There were as many irreducible
T(A4) “ of class k> as there were partitions of the integer k. Thus if k = 4,
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there are five types of T(A), corresponding to partitions (4), (31), (22), (211),
(1111). The (4) type is our friend the 4th Schliflian, A'*1; the (1111) type, say
AU or U1 g the determinantal transformation, the 4tk compound of A,
A™, (In homogeneous coordinates of a 4-dimensional Cartesian space, these
x transformed by A would be hyperplane coordinates). The intermediate
types (31), (22), (211) were not known before—except in so far as a case of the
(22), symmetric in two indices and skew in two, is the transformation of the
Riemann-Christoffel tensor. Anyhow, for k¥ = 3 we have

AL 4r211 4017
for k = 4,
A[4], A1 A[22]’ A[lel’ A4

and so on.

(It was in regard to the orders of two of these, when the original 4 is 3 x 3,
that I threw in an interjection in Turnbull’s lecture)t.

The spurs or traces of the T'(A4) have remarkable properties. The spur of
A" is the complete symmetric function of degree k in the latent roots a;, a5,
..., o, of A4, namely

he = ok +ok o, a2+ ok T 20, 4 ok
The spur of A1) or A® is the elementary symmetric function,
ak = alaz cos ak + az .se ak+1 + csse

These, and the spurs of the intermediate types, are all examples of the bialternant
symmetric functions studied by Jacobi in 1841; e.g. for n = 3 we have

1o 6| 1o of
hy=|1a,a3|+ (1 a,a;|, spurof Al
1aga| 1 a;dd
h, b, 1 a? af 10, of
heayy = [ 1af o3|+ |1a, a2], spur of A1?!],
0 2 1 2 4 2
o3 o3 1 o3 o3
hy hy hy a; of of 1o, of
— — 2 3|, 2
h(13) = a3 = ho hl h2 = a2 a2 dz - 1 a2 az s (ho = 1)’
ho hy o3 o o3 1 o3 03

spur of A™°Y or A®?;—in this simple case merely a,0,0.

A is of order 10x 10, A1) of order 8 x 8, A!'* of order 1x 1, merely
| @11 a3z a3z |-

Schur found that the trace of each T(A4), reducible or not, is a symmetric
function of the latent roots o, a,, ..., a, of A; and that if we express this trace
linearly in terms of bialternants we discover, in so doing, the irreducible *“ com-
ponents > T (A) to which such a T(4) may be reduced by H T(4) H™'. There is

+ This remark evidently refers to a lecture entitled “ The Gordan-Capelli theorem > given

by Professor H. W. Turnbull at the meeting of the Edinburgh Mathematical Society on 2nd
December 1944,
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what I dared to call a *“ paramorphism ” between the behaviour of the traces,
tr 7(A4), and the matrix, T(4). Thus the sum of bialternants in tr 7(4) corres-
ponds to the direct sum

T,(4)
[ Ty(4) ] = T,(A) + Ty(4) +...

of the irreducible components T'(4) possessing those bialternants as their own
traces. Product of traces, on the other hand, corresponds to * direct product
of the T;(4), say T(A4)x Tj(A4); or, for that matter, to the direct product of the
vectors, vector fields, vector spaces, transformed by the T;(4). Thus the calculus
of symmetric functions, analysing the trace of a T(4) linearly into its bialternant
components, arbitrates like a boundary commission upon a composite vector
or transformable set, and resolves it into its autonomous independent parts,
subsets which transform independently of other subsets.

An example is the direct product of k cogredient vectors. When x~A4x,
y~Ay, z~Az, ... the direct product

XXYXZX...~Axx Ayx Azx ... = AW (xxyxzx..)), say,

where 4™ may be called the kth direct (or Kronecker) power of 4. One easily
shows that (B4A)*® = B® 4" 5o that 4™ is a T(4). Further, it is always reduc-
ible, and contains as components every T;(A) of class k, usually more than once.

For example,
A= [al b‘], say:
a, b,

al a;b, bja; bi
A2 = aa, aib, bya, byb, )
aa; ab; bya; byb,
a®  ayb, bya, b3

Since tr A2 = (o, +a,)? = (@ +a 0, +a3)+o,a, = h,+a, (a different a,,
symm. fn.), we have HAZYH ™! = 4121} 41'1) by the paramorphism to which
I referred earlier. To show you this in action, I shall make H orthogonal,
producing a “ prepared * or “ normalized > version of 4'%), suitable for work
with quadratic or Hermitian forms. Thus:

1 1 .

V2 2| | - UV2 - =142
. .1 . .. 1 .
L =12 .12 TN TN )
a? J2aby b} .
_|J2aia; aiby+azb, J2b,b, .
| a2 J2ab, b3
| ayb, |

= (prepared) A1?1 4 A1,
EM.S.—M
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Now, for the purpose of invariant theory, a ground form should be regarded
not as the * quantic ”* rather particularly envisaged by the earlier invariantists,
but as a linear combination of the variables in an irreducible transformable set
x4 where [A] is the partition characterizing the set and its T(4), in fact 4™,
Thus in fact the ground form is the inner product

ax™,

where a is a row vector of coefficients. Thus the vector a will transform contra-
grediently to x'*, by {(4)"1}~'. It is easy to show (and was shown by D. E.
Littlewood) that if

bx[“]

is any concomitant of ax'*), the elements of b being, say, of degree s in those of
a, then b transforms under a T(A) law: and indeed, to find all linearly independent
concomitants of class s, one merely dissects (41)1) into its irreducible com-
ponents by symmetric function theory. To each component corresponds an
“ autonomous ” part of b, and a suitable x*), and we have our concomitant

bx[“].

Thus a census of concomitants can be made, of higher and higher class: and
this is what D.E.L. is engaged in doing. He finds some difficulty with the trace
of (AN which is that rather unhandy thing, the sth complete symmetric
function in arguments which are the single terms in the expansion of Jacobi’s
bialternant of type [A1]. It is rather intractable, and his methods are tentative.

(I myself would take (4™}, the sth “direct power : its trace is (hy,)",
specific at once.)

Thus you see that invariant theory, the T(A4), the transformable sets, are all
fused in one whole. I myself, again, would make the fusion more complete,
as follows. Just as the invariantists, Aronhold, Clebsch, Gordan, write a
quantic as a symbolic power of an inner product, e.g.

2 2 _ 2
ay1X1+2a,15%, X, +85,x5 = (0%, +a,x,)

where a,, a, are symbolic variables contragredient to x,, x,, so I would write all
the equivalent and polarized symbolic representations of a general ground form
ax'*1 as elements of a matrix

(Ax)™,

where 4 is symbolic, and X is comprised of as many columns as may be necessary
of cogredient variables. Then all concomitants of class s are components of

faxyo,

Resolve this into its irreducibles (4 X)), (4X)[", ...; we have then the symbolic
representations of all * autonomous ” concomitants of class s. The Gordan-
Hilbert theorem of the finiteness of the census of concomitants of a ground
form is probably then a simple consequence of the fact that the set of bialternant
symmetric functions is itself finite, all those above a certain degree, being
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functionally, polynomially, dependent on those of lower degree. I have had
these ideas in mind for many years, but various circumstances of anxiety, or
duty, or bad health, have prevented me from following them up, and I have
observed . . . my talented younger contemporary, D. E. Littlewood, assault
and capture most of this terrain. Good luck to him! Latterly he is doing it
by tensors: because of course the theory is that of the resolution of compound
or derived tensors into component tensors with special clusters of symmetric
or antisymmetric indices.
And, lastly, a word about the connexion with group theory.

a b, ¢
a, b, c,
a; by c;
Embedded in 4™ is its most typical element

AP 41211 gnd 411 \where A s , will serve to illustrate.

abycs+a bse, +abies+abie +azh ey +ashyey,

from which all other elements a3, 3ala,, ..., 6a,a,a, etc., can be regarded
as derived by coalescence of indices. This element is in fact the permanent
+ +

|aibyes |, and if we write it as

abycs. 14+a1byc, 14 ... +ashbycy . 1,

we may see that 1, 1, 1, 1, 1, 1 is the scalar representation of the symmetric
group on 3 objects. In the same way, A1*) or 4® is | a;b,c; |, or

a1b2(:3.1—a1b3C2.1+.--—a3bzcl . 1,

corresponding to 1, —1, 1, ..., —1, the alternating representation of the above
symmetric group. A2'1is of order 8 x 8, and can be characterized by its central
core, a submatrix of order 2 x 2, which can be written

1. .1 1 .
a1b2c3[. 1]+a1b3c2[1 .:|+...+a3bzcl [_1 _1],
where we recognize
1. .1 1 .
S O o I O e IS S |

as the irreducible representation of the 2nd order.

In fact if we construct from a matrix representation of the symmetric group
a ““ group matrix > (for that is what it is) of this kind as central core, and then
build outwards other such group matrices by allowing all possible coalescences
of indices, the construct is one of Schur’s T(4); so that, in the final resort,
the explicit determination of concomitants depends on suitable representations
of the symmetric group. Among these the so-called ““ natural * representation,
the ‘seminormal’, and the orthogonal representation are the dominant
ones: and they are not yet fully explored. Young’s substitutional analysis is
at bottom a method of constructing a group algebra of the symmetric group by
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a system of units containing symmetric and antisymmetric operations: the
operations symbolized by his * tableaux > are in fact these units, but they need
modifying and normalizing before they become thoroughly tractable. What
H. W. T. is trying to do is to make the Gordan-Capelli polarizing technique do
the work either of symmetric function theory on traces of 7(A) or, equivalently,
of substitutional analysis on the sub-algebras of the symmetric group and their
various representations. In my opinion the tools are antiquated; if they had
not been, Alfred Young would not have deserted them in order to forge a new
calculus. Understand : c’est mon opinion a moi.

And now, mathematics has too long delayed my expression of sincerest
wishes, from us all, of happiness in your home for 1945,

As for a walk, a circuit from Rachan Mill, a mile beyond Broughton, via
Drumelzier Law and round to the starting point may commend itself, or from
Peebles via the Gipsy Glen up and round by Glenrath Heights and Hundleshope
and back, or from Lochurd, beyond Blyth Bridge, over the Broughton Heights
towards Stobo. Much would depend on the weather, not only of the day, but
of the few days preceding.

Yours ever,
Alec.
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