Fourth Meeting, February 9th, 1894.

Dr J. M'Cowan, Vice-President, in the Chair.

On the Geometrical Interpretation of i'.

By T. B. SPRAGUE, M.A., LL.D., F.R.S.E., etc.

If we put $\theta = \pi/2$ in the well known equation

 $e^{i\theta} = \cos\theta + i\sin\theta$

we get $e^{i\pi/2} = i$; and raising both sides to the power *i*,

$$i^{i} = (e^{i\pi/2})^{i} = e^{i^{2}\pi/2} = e^{-\pi/2}.$$

Before proceeding further it will be useful to consider the former of these results. Putting for $e^{i\pi/2}$ the equivalent series, we have

$$i = 1 - \frac{1}{2!} \left(\frac{\pi}{2}\right)^2 + \frac{1}{4!} \left(\frac{\pi}{2}\right)^4 - \dots + i \left\{\frac{\pi}{2} - \frac{1}{3!} \left(\frac{\pi}{2}\right)^3 + \frac{1}{5!} \left(\frac{\pi}{2}\right)^5 - \dots\right\}$$

It is obvious that each of the infinite series here involved is convergent, and a very little numerical calculation is sufficient to show that their limits are 0 and 1 respectively. In fact, taking $\pi = 3.1416$, or $\pi/2 = 1.5708$, the two series become

 $1 - 1 \cdot 2337 + \cdot 2537 - \cdot 0208 + \cdot 0009 = \cdot 0001$.

and 1.5708 - .6459 + .0797 - .0047 + .0001 = 1.0000.

Returning now to the equation $i^i = e^{-\pi/2}$, and substituting for e and π their numerical values, we get

$$i^i = .20788;$$

and the question I propose to consider is how this result is to be understood or interpreted. It will be convenient first to consider the more general expression a^i , where a is a complex number. We first observe that

$$(a^i)^i = a^{i^2} = a^{-1};$$

so that the effect of the operation $()^i$, if performed twice upon a, is to give us the reciprocal of a; or the operation is one which goes half way towards the reciprocal. Next, writing $re^{i\theta}$ for a, we have

$$(re^{i\theta})^i = r^i e^{-\theta} = e^{-\theta} e^{i\log r} = e^{-\theta} (\cos\log r + i\sin\log r).$$

This shows us that the operation $()^i$, when performed on a complex with modulus r and amplitude θ , gives us a new complex, of which the modulus is $e^{-\theta}$, and the amplitude log r. Performing the same operation on this new complex, we have

$$(r^{i}e^{-\theta})^{i} = r^{-1}e^{-i\theta};$$

the result being the reciprocal of our original complex. Proceeding in the same way, we get

$$(r^{-1}e^{-i\theta})^{i} = r^{-i}e^{-i^{2}\theta} = r^{-i}e^{\theta};$$
$$(r^{-i}e^{\theta})^{i} = r^{-i^{2}}e^{i\theta} = re^{i\theta};$$

We have thus produced the original complex, and we see that the moduli of the four complexes are $\dots \quad r, \ e^{-\theta}, r^{-1}, \ e^{\theta}$; and the amplitudes $\dots \quad \dots \quad \dots \quad \theta, \ \log r, \ -\theta, \ -\log r.$

If OP₁ in Figure 13 represents $re^{i\theta}$, so that OP₁ = r, P₁OA = θ , then the other three complexes will be represented by OP₂, OP₃, OP₄; where AOP₁ = AOP₃, AOP₂ = AOP₄, and OP₁.OP₃ = OP₂.OP₄ = 1. The figure is drawn for the case where $r = \frac{3}{4}$, $e^{-\theta} = \frac{1}{2}$; so that

the moduli are $\frac{3}{4}$, $\frac{1}{2}$, $\frac{4}{3}$, 2; and the amplitudes $\begin{cases} \cdot 693, -\cdot 288, -\cdot 693, \cdot 288, \\ \text{or } 39^{\circ} \cdot 7, -16^{\circ} \cdot 6, -39^{\circ} \cdot 7, 16^{\circ} \cdot 6. \end{cases}$ If the complex $(re^{i\theta})^i$ is a real number, the point P_2 lies in OA or in AO produced; and the condition for this is that the amplitude shall be 0 or π . If now we suppose r to approach 1, the angles AOP₂ and AOP₄ gradually diminish, and ultimately vanish when r=1. In this case

the moduli become	•••	• • •	1,	$e^{-\theta}$,	1,	e^{θ} ;
and the amplitudes		••••	θ,	0,	$-\theta$,	0;

so that the points, P_2 , P_4 , lie in OA, and the equation $(re^{i\theta})^i = r^i e^{-\theta}$ becomes $(e^{i\theta})^i = e^{-\theta}$. If we now suppose θ to approach $\pi/2$, or the line OP₁ to approach the perpendicular OB,

the moduli become ...
$$1$$
 , $e^{-\pi/2}$, 1 , $e^{\pi/2}$;
and the amplitudes ... $\pi/2$, 0 , $-\pi/2$, 0 .

In this case $e^{i\theta}$, which $=\cos\theta + i\sin\theta$, becomes = i, and we have $i^i = e^{-\pi/2} = \cdot 20788$. We thus see that this apparently anomalous result admits of a simple geometrical interpretation.

Another special case deserving of notice is when $AOP_1 = AOP_4$. This will happen when $\theta = -\log r$ or $r = e^{-\theta}$; and then

the moduli are	•••	•••	•••	$e^{-\theta}$,	$e^{-\theta}$,	e^{θ} ,	e^{θ} ;
and the amplitude	s	•••		θ,	$-\theta$,	-θ ,	θ.

(See Figure 14.)

In the foregoing investigation I have not taken into account the possibility that a^i may have a multiplicity of values, and I will now consider that point. If l is any integer, we have

 $e^{2il\pi} = \cos 2l\pi + i \sin 2l\pi = 1.$ $re^{i\theta} = re^{i(\theta + 2l\pi)}$

Hence

and $(re^{i\theta})^i = \{re^{i(\theta+2l\pi)}\}^i = r^i e^{-\theta-2l\pi} = e^{-\theta-2l\pi}e^{i\log r}.$

We thus see that, instead of the first member having a single value, as we have hitherto assumed, it has an infinite number of values, all of which have the same amplitude, $\log r$; while the moduli are $e^{-\theta}$, $e^{-\theta \pm 2\pi}$, $e^{-\theta \pm 4\pi}$, etc., and form a geometric series of which the ratio is $e^{\pm 2\pi}$.

Repeating the operation $()^i$, since $e^{2im\pi} = 1$, where *m* is any integer,

$$(r^{i}e^{-\theta-2l\pi})^{i} = (r^{i}e^{2im\pi} \cdot e^{-\theta-2l\pi})^{i}$$
$$= r^{-1}e^{-2m\pi} \cdot e^{-i\theta} \cdot e^{-2il\pi}$$
$$= r^{-1}e^{-2m\pi} \cdot e^{-i\theta}$$

so that, instead of the reciprocal $r^{-1}e^{-i\theta}$, we have an infinite number of complexes, all of which have the same amplitude, $-\theta$; while the moduli are r^{-1} , $r^{-1}e^{\pm 2\pi}$, $r^{-1}e^{\pm 4\pi}$, etc., and form a geometric series, of which the ratio is $e^{\pm 2\pi}$. Since l and m each denote any integer, and they do not occur in the same formula, we may say that by successive repetitions of ()ⁱ we get a series of complexes, of which

the moduli are ...
$$r$$
, $e^{-\theta + 2l\pi}$, $r^{-1}e^{2l\pi}$, $e^{\theta + 2l\pi}$, $re^{2l\pi}$,...
and the amplitudes ... θ , $\log r$, $-\theta$, $-\log r$, θ ,...

It thus appears that we are not entitled to reason, as we did above, that $(a^i)^i = a^{ii} = a^{i^2} = a^{-1}$. This is analogous to what occurs with fractional indices; for instance, $(a^i)^2 = a$; while $(a^2)^b$ is not a, but $\pm a$.

We have seen that $()^i$ is a periodic operation with a period 4, subject to the remark that the original complex is only one of a series that are produced by performing the operation four times. Subject to a similar remark, we may say that $()^i$ is a periodic operation, the period of which is n, if z is a primary n^{ch} root of unity. Suppose that $z = x + iy = \cos 2\pi/n + i \sin 2\pi/n$; then

$$(re^{i\theta})^z = (re^{i\theta} \cdot e^{2if\pi})^z$$
, where f is any integer
 $= r^z e^{iz\theta} \cdot e^{2ifz\pi}$
 $= r^z e^{iz\theta} \cdot e^{2ifz\pi} \cdot e^{2ig\pi}$, where g is any integer

Performing the operation $()^{z}$ again,

$$(re^{i\theta})^{z^2} = r^{z^2}e^{iz^2\theta} \cdot e^{2ifz^2\pi} \cdot e^{2igz\pi} \cdot e^{2ih\pi}$$
, where h is any integer.

Proceeding in this way, we get

$$(re^{i\theta})^{z^n} = r^{z^n}e^{iz^n\theta} \cdot e^{2ifz^n\pi} \cdot e^{2igz^{n-1}\pi} \cdots e^{2isz\pi}$$

= $re^{i\theta} \cdot e^{2i\pi(gz^{n-1} + hz^{n-2} + \dots + sz)}$.

The index of e in the last factor becomes

$$2i\pi \{g\cos 2(n-1)\pi/n + h\cos 2(n-2)\pi/n + ... + s\cos 2\pi/n\}$$

- $2\pi \{g\sin 2(n-1)\pi/n + h\sin 2(n-2)\pi/n + ... + s\sin 2\pi/n\}$

where gh...s are any integers.

The preceding investigation was suggested to me by a perusal of Hayward's Vector Algebra and Trigonometry. In chap. 5 Mr Hayward gives the result (p. 115), $(4\cdot810475...)^i = i$; and this at once leads to $i^i = (4\cdot810475...)^{-1} = \cdot20788$. He then discusses the interpretation of A^B , where A and B are complex numbers; and shows that it has an infinite number of values, forming a series with a constant ratio; and he explains how these may be geometrically represented as derived from a "fundamental vector". He also considers several "particular cases"; but not specially the case where B = i, which is the one I have mostly had in view.