Fourth Meeting, February 9th, 1894.

Dr J. M'Cowan, Vice-President, in the Chair.

On the Geometrical Interpretation of $\boldsymbol{i}^{\boldsymbol{i}}$.
By T. B. Sprague, M.A., LL.D., F.R.S.E., etc.
If we put $\theta=\pi / 2$ in the well known equation

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

we get $e^{i \pi / 2}=i$; and raising both sides to the power i,

$$
i^{i}=\left(e^{i \pi / 2}\right)^{i}=e^{i^{2} \pi / 2}=e^{-\pi / 2}
$$

Before proceeding further it will be useful to consider the former of these results. Putting for $e^{i \pi / 2}$ the equivalent series, we have

$$
\begin{aligned}
& i=1-\frac{1}{2!}\left(\frac{\pi}{2}\right)^{2}+\frac{1}{4}\left(\frac{\pi}{2}\right)^{4}-\ldots \\
&+i\left\{\frac{\pi}{2}-\frac{1}{3!}\left(\frac{\pi}{2}\right)^{3}+\frac{1}{5!}\left(\frac{\pi}{2}\right)^{5}-\ldots\right\}
\end{aligned}
$$

It is obvious that each of the infinite series here involved is convergent, and a very little numerical calculation is sufficient to show that their limits are 0 and 1 respectively. In fact, taking $\pi=3 \cdot 1416$, or $\pi / 2=1 \cdot 5708$, the two series become

$$
1-1 \cdot 2337+\cdot 2537-\cdot 0208+\cdot 0009=\cdot 0001
$$

and $\quad 1 \cdot 5708-6459+\cdot 0797-\cdot 0047+\cdot 0001=1 \cdot 0000$.
Returning now to the equation $i^{i}=e^{-\pi / 2}$, and substituting for e and π their numerical values, we get

$$
i^{i}=\cdot 20788 ;
$$

and the question I propose to consider is how this result is to be understood or interpreted. It will be convenient first to consider the more general expression a^{i}, where a is a complex number. We first observe that

$$
\left(a^{i}\right)^{i}=a^{i^{2}}=a^{-1} ;
$$

so that the effect of the operation ($)^{i}$, if performed twice upon a, is to give us the reciprocal of a; or the operation is one which goes half way towards the reciprocal. Next, writing $r e^{i \theta}$ for a, we have

$$
\left(r e^{i \theta}\right)^{i}=r^{i} e^{-\theta}=e^{-\theta} e^{i \log r}=e^{-\theta}(\cos \log r+i \sin \log r)
$$

This shows us that the operation ($)^{i}$, when performed on a complex with modulus r and amplitude θ, gives us a new complex, of which the modulus is $e^{-\theta}$, and the amplitude $\log r$. Performing the same operation on this new complex, we have

$$
\left(r^{i} e^{-\theta}\right)^{i}=r^{-1} e^{-i \theta}
$$

the result being the reciprocal of our original complex. Proceeding in the same way, we get

$$
\begin{gathered}
\left(r^{-1} e^{-i \theta}\right)^{i}=r^{-i} e^{-i^{2} \theta}=r^{-i} e^{\theta} \\
\left(r^{-i} e^{\theta}\right)^{i}=r^{-i} e^{i \theta}=r e^{i \theta}
\end{gathered}
$$

We have thus produced the original complex, and we see that the moduli of the four complexes are $\ldots \quad \ldots \quad r, e^{-\theta}, r^{-1}, e^{\theta}$; and the amplitudes $\theta, \log r,-\theta,-\log r$.

If OP_{1} in Figure 13 represents $r e^{i \theta}$, so that $\mathrm{OP}_{1}=r, \mathrm{P}_{1} \mathrm{OA}=\theta$, then the other three complexes will be represented by $\mathrm{OP}_{2}, \mathrm{OP}_{3}, \mathrm{OP}_{4}$; where $\mathrm{AOP}_{1}=\mathrm{AOP}_{3}, \mathrm{AOP}_{2}=\mathrm{AOP}_{4}$, and $\mathrm{OP}_{1} . \mathrm{OP}_{3}=O P_{2} . O P_{4}=1$. The figure is drawn for the case where $r=\frac{3}{4}, e^{-\theta}=\frac{1}{2}$; so that
the moduli are $\ldots \quad . . . \quad . \quad \frac{3}{4}, \frac{1}{2}, \frac{4}{3}, 2$; and the amplitudes $\ldots \quad \ldots\left\{\begin{array}{r}\cdot 693,-\cdot 288,-693, \cdot 288, \\ \text { or } 39^{\circ} \cdot 7,-16^{\circ} \cdot 6,-39^{\circ} \cdot 7,16^{\circ} \cdot 6 .\end{array}\right.$

If the complex $\left(r e^{i \theta}\right)^{i}$ is a real number, the point P_{2} lies in OA or in AO produced; and the condition for this is that the amplitude shall be 0 or π. If now we suppose r to approach 1 , the angles AOP_{2} and AOP_{4} gradually diminish, and ultimately vanish when $r=1$. In this case

$$
\begin{array}{llll}
\text { the moduli become } & \ldots & \ldots & 1, e^{-\theta}, 1, e^{\theta} ; \\
\text { and the amplitudes } & \ldots & \ldots & \theta, 0,-\theta, 0 \text {; }
\end{array}
$$

so that the points, P_{2}, P_{4}, lie in $O A$, and the equation $\left(r e^{i \theta}\right)^{i}=r^{i} e^{-\theta}$ becomes $\left(e^{i \theta}\right)^{i}=e^{-\theta}$. If we now suppose θ to approach $\pi / 2$, or the line OP_{1} to approach the perpendicular OB ,

$$
\begin{array}{lllllll}
\text { the moduli become } \ldots & \ldots & 1, & e^{-\pi / 2}, & 1, & e^{\pi / 2} ; \\
\text { and the amplitudes } \ldots & \ldots & \pi / 2, & 0, & -\pi / 2, & 0
\end{array}
$$

In this case $e^{i \theta}$, which $=\cos \theta+i \sin \theta$, becomes $=i$, and we have $i^{i}=e^{-\pi / 2}=20788$. We thus see that this apparently anomalous result admits of a simple geometrical interpretation.

Another special case deserving of notice is when $\mathrm{AOP}_{1}=\mathrm{AOP}_{4}$. This will happen when $\theta=-\log r$ or $r=e^{-\theta}$; and then

(See Figure 14.)
In the foregoing investigation I have not taken into account the possibility that a^{i} may have a multiplicity of values, and I will now consider that point. If l is any integer, we have

Hence

$$
\begin{gathered}
e^{2 i l \pi}=\cos 2 l \pi+i \sin 2 l \pi=1 . \\
r e^{i \theta}=r e^{i(\theta+2 l \pi)}
\end{gathered}
$$

and

$$
\left(r e^{i \theta}\right)^{i}=\left\{r e^{i(\theta+2 l \pi)}\right\}^{i}=r^{i} e^{-\theta-2 l \pi}=e^{-\theta-2 l \pi} e^{i \log r}
$$

We thus see that, instead of the first member having a single value, as we have hitherto assumed, it has an infinite number of values, all
of which have the same amplitude, $\log r$; while the moduli are $e^{-\theta}, e^{-\theta \pm 2 \pi}, e^{-\theta \pm 4 \pi}$, etc., and form a geometric series of which the ratio is $e^{ \pm 2 \pi}$.

Repeating the operation ()i, since $e^{2 i m \pi}=1$, where m is any integer,

$$
\begin{aligned}
\left(r^{i} e^{-\theta-2 l \pi}\right)^{i} & =\left(r^{i} e^{2 i m \pi} \cdot e^{-\theta-2 l \pi}\right)^{i} \\
& =r^{-1} e^{-2 m \pi} \cdot e^{-i \theta} \cdot e^{-2 i l \pi} \\
& =r^{-1} e^{-2 m \pi} \cdot e^{-i \theta}
\end{aligned}
$$

so that, instead of the reciprocal $r^{-1} e^{-i \theta}$, we have an infinite number of complexes, all of which have the same amplitude, $-\theta$; while the moduli are $r^{-1}, r^{-1} e^{ \pm 2 \pi}, r^{-1} e^{ \pm 4 \pi}$, etc., and form a geometric series, of which the ratio is $e^{ \pm 2 \pi}$. Since l and m each denote any integer, and they do not occur in the same formula, we may say that by successive repetitions of ($)^{i}$ we get a series of complexes, of which
the moduli are $\quad . . \quad \ldots r, e^{-\theta+2 l \pi}, r^{-1} e^{2 l \pi}, e^{\theta+2 l \pi}, r e^{2 l \pi}, \ldots$
and the amplitudes $\quad \ldots \theta, \log r,-\theta,-\log r, \theta, \ldots$
It thus appears that we are not entitled to reason, as we did above, that $\left(a^{i}\right)^{i}=a^{i i}=a^{i z}=a^{-1}$. This is analogous to what occurs with fractional indices; for instance, $\left(a^{3}\right)^{2}=a$; while $\left(a^{2}\right)^{4}$ is not a, but $\pm a$.

We have seen that ($)^{i}$ is a periodic operation with a period 4, subject to the remark that the original complex is only one of a series that are produced by performing the operation four times. Subject to a similar remark, we may say that ($)^{2}$ is a periodic operation, the period of which is n, if z is a primary $n^{\boldsymbol{\pi}}$ root of unity. Suppose that $z=x+i y=\cos 2 \pi / n+i \sin 2 \pi / n$; then

$$
\begin{aligned}
\left(r e^{i \theta}\right)^{z} & =\left(r e^{i \theta} \cdot e^{2 i f \pi}\right)^{z}, \quad \text { where } f \text { is any integer } \\
& =r^{z} e^{i z \theta} \cdot e^{2 i f z \pi} \\
& =r^{z} e^{i z \theta} \cdot e^{2 i f z \pi} \cdot e^{2 i g \pi}, \quad \text { where } g \text { is any integer. }
\end{aligned}
$$

Performing the operation ($)^{2}$ again,

$$
\left(r e^{i \theta}\right)^{z^{2}}=r^{z^{2}} e^{i z^{2} \theta} \cdot e^{2 i f z^{2} \pi} \cdot e^{2 i g z \pi} \cdot e^{2 i h \pi}, \quad \text { where } h \text { is any integer. }
$$

Proceeding in this way, we get

$$
\begin{aligned}
\left(r e^{i \theta}\right)^{z^{n}} & =r^{z^{n}} e^{i z^{n} \theta} \cdot e^{2 i f z^{n} \pi} \cdot e^{2 i g z^{n-1} \pi} \ldots e^{2 i s z \pi} \\
& =r e^{i \theta} \cdot e^{2 i \pi\left(g z^{n-1}+h z^{n-2}+\ldots+s z\right)}
\end{aligned}
$$

The index of e in the last factor becomes

$$
\begin{array}{r}
2 i \pi\{g \cos 2(n-1) \pi / n+h \cos 2(n-2) \pi / n+\ldots+s \cos 2 \pi / n\} \\
-2 \pi\{g \sin 2(n-1) \pi / n+h \sin 2(n-2) \pi / n+\ldots+s \sin 2 \pi / n\}
\end{array}
$$

where $g h \ldots s$ are any integers.
The preceding investigation was suggested to me by a perusal of Hayward's Vector Algebra and Trigonometry. In chap. 5 Mr Hayward gives the result (p.115), $(4 \cdot 810475 \ldots)^{i}=i$; and this at once leads to $i^{i}=(4.810475 \ldots)^{-1}=20788$. He then discusses the interpretation of A^{B}, where A and B are complex numbers; and shows that it has an infinite number of values, forming a series with a constant ratio; and he explains how these may be geometrically represented as derived from a "fundamental vector". He also considers several "particular cases"; but not specially the case where $\mathrm{B}=i$, which is the one I have mostly had in view.

