
µManager: Open Source Software for Light
Microscope Imaging

Nico Stuurman, Nenad Amdodaj and Ron Vale
University of California, San Francisco, CA

nico@cmpmail.ucsf.edu
Introduction. No longer are biologists content to peer through the

oculars of a microscope. Eyes have been replaced by digital cameras.
Instead of manual control of microscope stages, filters and light sources,
modern microscopes have become fully robotic. Image acquisition and
robotic movements require computer control. With such equipment it is
possible to automatically record images at multiple wavelengths, carry out
time-lapse recordings of living cells using very short exposure times and
low light doses, and even to record images at multiple positions (e.g. from a
multi-well plate) without operator intervention. Clearly, computer control
of light microscope image acquisition is making many new experimental
imaging strategies possible in the biological sciences.

A very important part of this technological advancement is the
software that controls the equipment. There are currently about 15 com-
mercial software packages available for light microscope image acquisition.
However, each package usually controls a limited number of hardware
components. Thus, in a lab with equipment from different vendors, it is
often necessary to buy and master the use of multiple software packages for
controlling multiple microscopes. Many of the software packages available
cram a large number of features into the package, making it hard to figure
out how to operate the software. Moreover, the software is expensive,
perhaps not a problem for well-funded laboratories, but an impediment
for smaller labs and teaching environments. Lastly and most importantly,
it is not possible for end-users to modify or adapt the software (other than
through nonstandard and often ineffective ‘macro’ solutions). Cutting
edge research will always demand novel imaging strategies — which can-
not possibly have been forseen during the creation of a software package
— thus full adaptability of the software is extremely important for many
current and future experiments.

To remedy this situation, our lab has started a project to develop
an Open Source microscope image acquisition software package that we
have named ‘µManager’. µManager is available, free of charge, along with
its source code at http://micro-manager.org. The software was designed
in a highly modular way, making it easy to add support for new hardware

or to otherwise adapt the software (discussed below). µManager runs as a
plugin to ImageJ (http://rsb.info.nih.gov/ij/), which is a widely used, freely
available, image analysis package written in Java by Wayne Rasband at the
NIH. Like ImageJ, µManager works on Windows, Mac OS X, and Linux
(however, not all hardware is supported on each platform due to a scarcity
of device drivers for platforms other than Windows). µManager already
works with many hardware components (microscopes from Zeiss and
Nikon, cameras from Hamamatsu, Andor, Roper/Photometrics, QImaging
and DVC, and peripherals from Ludl, Prior, ASI and Sutter; for a current
list see: http://micro-manager.org/support.php). Through a simple to use
interface, microscopists can take individual snap-shots, perform time-
lapse imaging, take z-series and multi-channel images as well as use any
combination of these acquisition strategies.

An Open Standard for microscope device control through modular
design. The µManager software was designed in a modular fashion with
three distinct layers (Fig. 1). At the bottom there is a layer of ‘Device
adapters’ that interfaces to the actual device drivers or talks to the hard-
ware through serial, USB, or other ports. Next, there is the central ‘Core’
that integrates all basic functionality. The Core exports its capabilities to
higher levels through an interface that is computer language independent.
Therefore, it is possible to use the µManager functionality from many
different environments. For instance, one can interface with µManager
from Matlab, a popular development environment (for a project aiming
to develop µManager in a complete Matlab toolbox, see http://www.mcb.
ucdavis.edu/faculty-labs/scholey/Roy/Roboscope.html). Both the Core
and the device adapters were written in C++, and can be compiled on
many different platforms. We developed the user interface in Java, which
also runs on multiple platforms. Because of the modular structure of the
µManager software, it is straight-forward to add support for new hardware
devices. Once a new device adapter is written, it can be directly used by the
existing µManager software (i.e., no changes to the rest of the software are
required). To assist users and instrumentation companies in writing these
device adapters, we have written a device developer’s kit (http://www.micro-
manager.org/downloads.php?object=devkit). A programmer with some
experience writing C++ code can use this kit to develop device adapters,
independent from the µManager development team, most likely in about a
week’s time. Several companies have already contributed (DVC, Qimaging)
or are working (Scion) on µManager adapters for their hardware. We also
have received device adapters from µManager users and hope that more will
be contributed in the near future. Through these community efforts, the list
of hardware supported by µManager will continue to grow, and the modular
design of µManager guarantees that the user can add support for hardware
(which is not the case with closed source, commercial software).

Another interesting consequence of the modular architecture of the
µManager software is that third party software can also interface with the
µManager Core and therewith automatically gains control of all hardware
that works with µManager. Due to the liberal licensing terms, even com-
mercial software packages can use this approach. Thus, the µManager
device interface can grow into an open-access industry standard, enabling
commercial companies and researchers to extend its functionality without
restrictions. Writing a µManager device adapter is all that is required to
make a device work with multiple software packages under multiple com-
puter Operating Systems. Clearly, adaptation of such a standard (as opposed
to the current industry-wide trend of providing Windows-only software
development kits for microscope hardware) will reduce development cost,
guarantee inter-operability of all hardware and software adapting to the
standard, and therefore be beneficial to microscopists and instrumenta-
tion companies alike.

Using the µManager software. Upon startup, the user is first asked
to specify a configuration file. This configuration file tells the software
what hardware is connected to the computer and also lists a number of
configuration presets (shortcuts to set multiple parts of the microscope
system to a specific state). The configuration file is a human readable text
file and can be edited directly, although the built-in configuration wizard Fig. 1: μManager software was designed in a modular fashion with

three distinct layers.

42 n MICROSCOPY TODAY May 2007

https://doi.org/10.1017/S1551929500055541 Published online by Cam
bridge U

niversity Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1551929500055541&domain=pdf
https://doi.org/10.1017/S1551929500055541

Page 2

and preset editors make it easier to alter this file (see below). A ‘demo’
configuration file, which defines ‘virtual’ (emulated) cameras and other
equipment is included, making it possible to test the software without us-
ing real hardware. To instruct µManager about the hardware attached to
the computer, the user can run the hardware configuration wizard (found
under the ‘Tools’ menu). This wizard goes through a number of steps to
figure out the hardware setup and will eventually save the information in
a configuration file.

Once the configuration file is loaded, the main µManager window
will become active (Fig. 2). This window lets the user take images (‘Snap’),
get continuous data from the camera (‘Live’), set the exposure time, change
binning and gain of the camera, and set (and delete) regions of interest.
A histogram of the last acquired image is shown in the bottom part of the
application window. The images acquired with the ‘Snap’ and ‘Live’ buttons
are displayed in ImageJ windows and ImageJ can operate on these images
as well. Setting a region of interest (ROI) is as straight forward as drawing
a box in an acquired image and pressing the ROI button (the subsequent
acquisitions will only use this ROI). µManager is not continuously querying
all attached hardware to find out whether changes have taken place, but
the ‘Refresh’ button will instruct µManager to query the attached hardware
about its current state.

All components of the system can be controlled individually. To do so,
select Tools -> Device/property browser. A window will open showing all
components, which can be set to a different state simply by entering a new
value and pressing the ‘Enter’ button. In most systems, there are a large
number of properties that can be set. Checkboxes in the top of the window
allow the user to restrict the number of properties to only those of use to
the investigator. Nevertheless, changing components through the device/
property browser is cumbersome; therefore µManager uses configuration
presets to make it faster to operate and automate the microscope.

The right top part of the window harbors configuration presets. These
are shortcuts allowing one to set multiple components of the system to a
desired state. For instance, one could define a configuration preset that
moves the excitation filter wheel, the dichroic mirror and the emission filter
wheel all simultaneously into pre-defined positions. An obviously useful
configuration preset would be called ‘FITC’ (in the group ‘Channel’) that
moves filters needed for FITC imaging in place. Testing out the demo-
configurations (see Fig. 2) will provide an idea of what can be accomplished;
however, it is most insightful to create a new configuration. To do so, Press
the ‘+’ button towards the center of the window. After naming the new
configuration group, the user is presented with a window listing all the
properties in the system (Fig. 3). Check the boxes in the ‘Use’ column for
those components that should be set in this preset. Name the preset in top
of the window. Set the selected properties to the desired state and press
OK to create the preset. Multiple configuration presets can be made in each
group. By placing the mouse on top of the name of a configuration preset,
a ‘tooltip’ will appear showing which equipment will be affected (and how)
by the preset. Pressing the ‘Save’ button next to the configuration presets
will save the presets to the configuration file.

The Acquisition button in the main windows opens up the ‘Multi-di-
mensional Acquisition’ window, which lets one setup time-lapses, z-series
and multi-channel imaging. Channels are actually the configuration presets
defined above, so that creative configuration presets enable interesting
acquisition strategies. Acquired images open up in a multi-dimensional
image window (Fig. 4, based on the ImageJ Image5D plugin by Joachim
Walter).

The future. Our aim in starting the µManager project was to develop a
useful tool for microscopists. We hope that µManager will gather even more
support as a growing community of users, developers, and instrumentation
companies all contribute to this increasingly potent tool for microscopy.
Such a community effort appears to be the best way to create an affordable,
yet powerful and adaptable software for microscope control. Be a part
of this project by downloading the software and giving it a try (it can be
installed side by side with existing software). Your feedback (preferably to
the µManager mailing list: https://lists.sourceforge.net/lists/listinfo/micro-
manager-general) is important for the future of µManager.

µManager development was supported by a grant from the Sandler
Foundation. 

Fig. 2: main μManager window will become active

Fig. 3

Fig. 4: Multi-dimensional image window, based on the ImageJ Image5D
plugin by Joachim Walter.

MICROSCOPY TODAY May 2007 n 43

https://doi.org/10.1017/S1551929500055541 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1551929500055541

