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ABSTRACT 
Polygon meshes and particularly triangulated meshes can be used to describe the shape of different 
types of geometry such as bicycles, bridges, or runways. In engineering, such polygon meshes can be 
supplied as finite element meshes, resulting from topology optimization or from laser scanning. 
Especially from topology optimization, frame-like polygon meshes with slender parts are typical and 
often have to be converted into a CAD (Computer-Aided Design) format, e.g., for further geometrical 
detailing or performing additional shape optimization. Especially for such frame-like geometries, 
CAD designs are constructed as beams with cross-sections and beam-lines, whereby the cross-section 
is extruded along the beam-lines or beam skeleton. One major task in the recognition of beams is the 
classification of the cross-section type such as I, U, or T, which is addressed in this article. Therefore, 
a dataset consisting of different cross-sections represented as binary images is created. Noisy 
dilatation, the distance transformation, and main axis rotation are applied to these images to increase 
the robustness and reduce the necessary amount of samples. The resulting images are applied to a 
convolutional neuronal network. 
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1 INTRODUCTION 

Various applications such as animation design, topology optimization, or 3D laser scanning apply 

discrete triangulated meshes to represent the surface of a 3D geometry. Triangulated surfaces describe 

the shape of the object by separating the boundary surface into discrete triangles. Engineering 

applications for manufacturing, optimization, or design modification require a parametric 

representation such as constructive solid geometry (CSG), free form surfaces of the geometry (Bénière 

et al., 2013; Vidal et al., 2014), or skeleton-based representations (Denk et al., 2020a). The shape of an 

object can be reconstructed with primitive surface types (Bénière et al., 2013; Vidal et al., 2014) or 

free form surfaces (Louhichi et al., 2015; Yoely et al., 2018), which can be a representation as a 

connected boundary representation  (Brep) or the Boolean of different bodies as CSG-Objects. 

Primitive bodies such as cylinders are typically used for (CSG) (Bénière et al., 2013; Gauthier et al., 

2017; Vidal et al., 2014), whereas free form surfaces are used for the reconstruction of organic 

geometries as boundary representations  (Louhichi et al., 2015; Yoely et al., 2018). The following 

figure shows a skeleton-based, boundary-based, and CSG-based shape description. 

 

Figure 1: Different shape descriptors 

The manual parametrization of these polygon meshes can be time-consuming and can lead to 

inaccurate approximations or altering the topology. Geometric reverse engineering attempts to 

redesign a parametric shape and topology of representations such as polygon meshes (Bénière et al., 

2013; Gauthier et al., 2017; Vidal et al., 2014), or volumetric geometries (Bremicker et al., 1991). 

Most of the approaches perform a so-known mesh segmentation (Agathos et al., 2007), where the 

boundary of the geometry is split into several patches (Bénière et al., 2013; Gauthier et al., 2017; 

Vidal et al., 2014). Afterward, the surface of the geometry can be parametrized in surface types like 

primitive patches (Bénière et al., 2013; Gauthier et al., 2017; Vidal et al., 2014), or nonuniform 

rational B-spline (NURBS) surfaces (Ben Makhlouf et al., 2019; Louhichi et al., 2015). This 

segmentation only results in surface parametrization (Bénière et al., 2013; Gauthier et al., 2017; Vidal 

et al., 2014) so that the topology itself is not covered quite well. Therefore so-called curve (middle 

line) or surface skeleton (middle surface) can be used for part segmentation (Agathos et al., 2007; 

Feng et al., 2015; Reniers and Telea, 2008), which can lead to a more beamline representation 

(Bremicker et al., 1991; Nana et al., 2017; Stangl and Wartzack, 2015). These curve skeletons serve as 

a reasonable shape descriptor for tube-like organic geometries (Tagliasacchi et al., 2016). Such 

geometries can be derived in topology optimization for linear elastic static, heat transfer, or 

considering both (Denk et al., 2020b). These skeletonization methods in reverse engineering are often 

applied to organic and tube-like shapes leading to circular cross-sections (Denk et al., 2020a; Kresslein 

et al., 2018; Nana et al., 2017). Such skeletonization method can also be applied for non-circular 

shapes, which can result in various of different types of cross-sections. The following figure shows the 

concept of generating skeletons using (Lee et al., 1994), which can be used to cut along a polygon 

model or a 3D binary image. The cross-section of the binary image shows a sample of a cap-profile, 

while the polygon cross-sections can be expressed as a circular section. Such skeleton-based reverse 

engineering can be applied for deformed FE-meshes represented in (Louhichi et al., 2015), point cloud 

reconstruction (Kresslein et al., 2018), the determination of center lines in CT-Data (Computer 

Tomography) to reconstruct blood vessels (Hua Li and Yezzi, 2006) or vascular skeletons (Lidayová 

et al., 2016) or topology optimization results (Nana et al., 2017; Yin et al., 2020).  

 

Figure 2: Cross-section in reverse engineering of polygon meshes and binary images 
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Additional to the reverse engineering task, such classification can also be used for object retrieval 

tasks (Yang et al., 2014) to find for example, specific parts in 2D technical drawings of various 

amount of data sets. For reverse engineering, the parametrization of that cross-section, such as the 

radius or the size parameter of the cap and the type of cross-section particular for junctions, is 

required. Based on that parametrization, the cross-section can be swept along the curve skeleton, and a 

smooth transition of different cross-section types at the junction can be ensured. Additionally, the 

skeleton and the cross-section can also be applied to perform a topology optimization using a finite 

element model based on beams (Changizi and Warn, 2020) or applying flexible shape adjustment 

(Denk et al., 2020a). To find an automatically cross-section parametrization, a classification task can 

be first applied so that afterward a regression of the shape parameters can be applied. This article 

addresses the automated classification of such cross-sections using geometric deep learning, which 

will be extended in further work applying a regression task. We apply that classification task on “Z”, 

“I”, “U”, “L”, “Cap”, “T”, “Rectangle” and “B-Spline” cross-sections. These classes are a subset of 

common cross-section types on which, in our case, organic or circular shapes are referred to as the 

class “B-Spline”, which can be extended by generating different classes and data samples.  

Geometry deep learning is one of the recent challenges, especially for 3D objects (Ahmed et al., 2019; 

Bronstein et al., 2017; Cao et al., 2020). Due to the rapid development in deep learning, these models can 

perform classification and shape recognition tasks for different kinds of 3D geometries (Ahmed et al., 

2019; Bronstein et al., 2017; Cao et al., 2020; Denk et al., 2019). Especially the use of convolutional 

neuronal networks (CNN) allows a high degree of parallelization. CNN layers are typically used for 

Euclidean data structures such as a 2D pixel or 3D voxel. While deep learning methods applied on 

Euclidean data structures such as 3D images (voxels) or 2D images (pixels) are largely established, 

current research fields summarized in (Ahmed et al., 2019; Bronstein et al., 2017; Cao et al., 2020) use 

CNN for non-Euclidean data such as graphs, polygonized surfaces, and point clouds. Properties such as 

shift-invariance and a global parametrization in the image can miss in non-Euclidian shapes (Bronstein et 

al., 2017), so that processing on non-Euclidian data is quite challenging (Bronstein et al., 2017; Denk et 

al., 2019). In our contribution, we address the topic of geometric learning for polygon cross-section. To 

avoid non-Euclidian shapes, the cross-sections are rasterized to enable global parametrization and shift-

invariance. Instead of using common data argumentation to increase the number of data samples by 

rotating the images or scaling the image (Mikołajczyk and Grochowski, 2018), feature engineering is 

applied. The Euclidian distance transformation is used as preprocessing feature engineering due to its 

connection to skeletonization (Arcelli et al., 2011), part segmentation (Reniers and Telea, 2008), and 

object classification (Shen et al., 2014). Furthermore, the cross-sections are rotated into the main axis 

and scaled to its bounding box. These steps should reduce the necessary amount of data. 

2 STATE OF THE ART 

State of the art addresses mostly the rule-based estimation of cross-sections, the classification of 

objects in 2D binary images, and the data set for binary images. In most of the skeletonization 

methods, a skeleton is computed, which serves as a guideline for the cross-section cuts or 

segmentation. If a beamline representation is established, the corresponding cross-section can be 

determined. The authors of (Stangl and Wartzack, 2015) manually define elliptical and spherical cross-

sections in topology optimization. In contrast to the manual selection, the authors of (Cuillière et al., 

2018; Mayer and Wartzack, 2020; Nana et al., 2017; Yin et al., 2020) automatically use shape 

properties such as the radius of circular cross-sections (Cuillière et al., 2018; Nana et al., 2017) or the 

local radius (Mayer and Wartzack, 2020). The authors of (Lidayová et al., 2016) determine the cross-

section of vascular bloodlines to remove nodes of a skeleton that does not suit the anatomy. In a recent 

publication, the authors of (Lidayová et al., 2017) use CNN based on the cross-sections on greyscale 

images to remove unnecessary nodes. In contrast to the primitive cross-section of (Lidayová et al., 

2017; Nana et al., 2017; Stangl and Wartzack, 2015; Yin et al., 2020), the authors of (Tang and Chang, 

2001) manually determine surface skinning with B-spline cross-sections to cover the shape of the 

topology optimization. Therefore, the whole smooth geometry is directly defined by the control grid. 

In our approach, we use similar to (Lidayová et al., 2017) a convolutional neuronal network to classify 

the type of cross-sections instead of the classification of node points. Additionally, we focus on the 

classification of several different kinds of cross-sections such as B-Spline and elliptical cross-sections, 

thin-walled cross-sections, and rectangle cross-sections as 2D binary images. 
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Several datasets for 2D binary images such as Kimia-216, Kimia-99, and MPEG-7 classification are 

available (Shekar and Pilar, 2014). These datasets address a huge variety of different objects such as 

birds, elephants, or bones. In our classification task, we build up a new dataset, especially for common 

cross-section shapes in mechanical engineering. For the binary image classification, the authors of 

(Shekar and Pilar, 2014) use local morphological and binary patterns for the classification of objects. 

The authors of (Shen et al., 2014) use the contours associated with the skeleton of a binary image and 

the authors of (Yang et al., 2014) uses a contour segment matching to measure the similarity of shapes 

for object retrieval, which are segmented by a skeletonization method. Due to the rapid development 

in machine learning, object retrieval tasks for 2D images can be solved using for example, neuronal 

networks, support vector machines, or random forest (Bansal et al., 2020).  

 

The classification of images with deep learning is well known for 3D images (Gomez-Donoso et al., 

2017; Maturana and Scherer, 2015; Qi et al., 2016; Sedaghat et al., 2017; Su et al., 2015) and 2D 

images (Gomez-Donoso et al., 2017; Lidayová et al., 2017). The authors of  (Maturana and Scherer, 

2015) determine a greyscale 3D image by the underlying point cloud, whereas the authors of 

(Lidayová et al., 2017) use the greyscale of computer tomography (CT) for 2D images. The authors of 

(Su et al., 2015) rotate the 3D geometry into multiple views to classify the 3D object with a 2D 

convolutional neuronal network. The authors of (Agh Atabay, 2016) use CNNs directly on binary 

images as a classification task of the MPEG-7 dataset. In contrast, we use the distance transformation 

of the binary image for the fore and background as greyscale values, which also can be used for the 

skeletonization and segmentation of 3D images (Arcelli et al., 2011). Additionally, these binary cross-

sections are rotated into the main axis based on the second moment of area to limit the number of 

rotations to four.  For further object retrieval tasks and techniques for 2D images, we refer to the 

recent state of the art of (Bansal et al., 2020). 

Deep Learning for image classification tasks uses a huge amount of 2D images of different resolutions 

and deep architectures with a huge number of learning parameters. Processing on 3D images is quite 

more challenging due the additional dimension, so that the amount of necessary data increases, and the 

resolution of the image itself is often restricted to the GPU memory size (Cao et al., 2020). Alternative 

representations provided with feature engineering presented in this work can reduce data variance and 

increase robustness without increasing the data samples. 

3 SYNTHETIC DATA SET GENERATION 

A synthetic data set is created for the classification with a CNN. There are several use-cases where 

polygon cross-section or cross-section inform of binary images needs to be classified. Therefore, we 

present a workflow covering both cases by rasterizing all polygon cross-sections. To reduce the 

number of configurations of the training and test samples, we a) reduce the number of image rotations, 

b) apply the distance transformation, and c) use a Euclidian data structure. The following figure covers 

the different steps in data generation.  

 

Figure 3: Generation of the data set 

First, a set of random parameters are calculated. Second, the parameter combination has to be 

restricted so that only valid profiles are possible (See Table 1). Third, the parameters are normalized to 

reduce the design space. Forth, this parametric cross-section is converted to a polygon cross-section. 

Fifth, the cross-section is rasterized. Sixth, the image is rotated into the main axis. As our result, 

binary images and the corresponding label are stored for training. 
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3.1 Restriction of the cross-section parameter 

For each class (8 classes), 500 samples are generated. The following table covers the restriction and 

the parameters of common cross-sections. The limits are defined, so that the main shape is preserved.  

Table 1: Restrictions for the selected cross-sections  
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3.2 Image rotation using the moment of areas 

The rotation of the image into the main axis can be applied by calculating the moment of area of the 

binary image or the polygon cross-section. So the rotation can be applied to the polygon cross-section 

before rasterization by calculating the moment of areas using the pixel representation. The following 

figure covers the main shape parameter and coordinate systems calculating the moment of areas. 

 

Figure 4: Moment of area calculation for binary images 

The area A  can be calculated by summing up all black pixels i B . The first moment of area yS  and 

zS  can be calculated using the distance of the coordinate system y  and z  to each pixel in B  with 
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where sy  and sz  represents the center of the area according to the coordinate system y , z . The second 

moment of area can be calculated in the shifted reference coordinate system sz  and sy  with 
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where pA , ,y pI , ,  z pI  represents the moment of area for a local pixel and  , ,, s i s iz y  the distance of the 

center of mass to the corresponding pixel i . Based on these moments of areas, the image can be 

rotated into the main axis by calculating the angle   with 
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3.3 Feature-Engineering: Distance Transformation CNN 

Feature-Engineering can be used to reduce the number of necessary training samples. Therefore, based 

on the concept of distance transformation supported skeletonization, we perform a distance 

transformation on the background and the foreground. First, the binary image is padded so that no 

black pixel touches the image boundary. Based on that, a distance transformation is performed on the 

cross-section and the background. The distance field serves as the input for the convolutional neuronal 

network. The distance values of the background are multiplied with minus one so that the foreground 

is represented with positive distance values and the background with negative distance values. 

 

Figure 5: Distance transformation and noise 

Additionally, as an optional criterion, noise on the boundary of the cross-section can be added using 

randomly applied dilatation. The following figure shows two different results of the rasterization. 

 

Figure 6: Rasterization using different grid overlays and noisy dilatation. 

To increase the robustness of different rasterization or cuts through a volumetric model presented in 

Figure 2, noisy dilatation is applied. The image is randomly dilatated using a 1x1 structure element.   

4 CROSS-SECTION CLASSIFICATION AND REGRESSION 

Two common (from scratch), not specialized convolutional neuronal networks are selected as the 

architectures. The following figure shows the architecture for the classification and the corresponding 

activation functions.   

 

Figure 7: Architecture for the classification 

To increase the robustness, we use bias, activity and kernel regularization, dropout, and batch 

normalization.  For the classification, the categorical cross-entropy for the M  cross-section categories 

for n  samples are selected with the loss-function  
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where ,i jc  is the predicted probability and ,î jc  the true probability for class j  for the sample i .   

5 EXPERIMENT 

The proposed method is applied to several different use cases with different cross-section shapes. For 

classification accuracy, we use the median value of ten runs. The following figure shows the accuracy 

and the loss function during the training for a test and train case. As first architecture, a 3x3 kernel size 

and the three convolutional layers with 32, 64, 64 filters followed by two fully connected layers with 

the size of 64 and 8 is selected. A mean accuracy of 98% for the original and 97% for the noise images 

by applying ten pieces of training was achieved.  

 

Figure 8: Training of the classification of cross-sections of one sample run 

The following table covers different samples (noise and no noise), on which the first three cases are 

falsely predicted, and the last three are correctly predicted. 

Table 2: Classification samples 
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The first two examples visually do not match with the cross-section, but the predicted class matches 

visually (false positive). Such cases need to be corrected in the dataset. The third sample shows an 

example where the noise image matches the target I, and the clean image misclassifies the image as a 

Z. All misclassifications are covered in the following confusing matrix (No noise). 

Table 3: Confusion matrix using distance transformation and rotation into the main axis 

 ˆ \ y y  Rec  L CAP I U T Z B-Spline 

Rec 122 0 0 0 0 0 0 0 

L 0 119 0 0 0 1 0 2 

CAP 0 0 116 0 0 0 2 0 

I 1 0 0 128 0 1 1 0 

U 0 7** 0 0 111 0 0 0 

T 3* 0 0 0 0 114 0 0 

Z 0 0 0 0 1 0 126 0 

B-Spline 0 0 0 0 0 0 0 147 

Precision 97 94 100 100 99 98 98 99 

Recall 100 98 98 98 94 97 99 100 

 

To compare different feature engineering strategies, we lower the number of learnable parameters by 

using an architecture with a 3x3 kernel size, three convolutional layers with 2, 4, 4 filters two fully 

connected layers with the size of 4 and 8. This also should lead visually to higher impacts changing 

the feature engineering strategy. For each strategy, ten samples are generated, which are represented in 
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the following figure as boxplots. Each strategy is marked with a color, and the best strategy (median) 

for the different resolution are marked with **. 

 

Figure 9: Comparison of feature engineering strategies  

6 DISCUSSION  

The provided classification leads to reasonable results. The accuracy of 98% shows a robust 

classification of the chosen categories so that directly applying the regression after classification can 

be achieved. By adding dilation noise, the accuracy is still 97%, so that unclear cross-section can also 

be covered. The misclassification is often bounded to a too-small resolution. The following figure 

shows misleading samples, whereas the polygon section itself hardly represents a U or an I. Due to the 

rasterization (32x32), too small parts of the U and the I vanish, which can be corrected for these cases 

using a higher resolution (128x128). 

 

Figure 10: Sample of misleading cross-sections 

For further research purposes, the noise and the rasterization resolution should be considered in Table 1 

so that the main shape of the cross-section is preserved. Therefore, the selected restriction of reasonable 

parameters for cross-sections should also contain the noise. Additionally to the classification itself, the 

impact of misclassification using the confusion matrix shows that certain types of cross-sections can be 

recognized quite robust while cross-sections such as L or U profiles are sometimes classed as each other. 

This can occur if the parameter h  or a  of U are to small, so that U is shaped similar to L. Wrong 

classification of cross-sections can lead to inaccurate reverse engineering. So, in this case, at least L-

Profiles can be checked manually to the local precision of 94% in Table 3. Furthermore, the mechanical 

cross-section properties such as the stiffness can be altered, which impacts the magnitude of stresses and 

strains. In further research, miss-classification should be evaluated by using rule-based assumptions such 

as moments of areas comparison of the image and the regressed cross-section. 

Applying feature engineering strategies can increase the accuracy compared in Figure 9. The most 

impact in increasing the accuracy can be achieved by choosing the rotation in the main axis of the 

images. Smaller impacts occur by choosing the distance transformation, particularly if noise is applied. 

The distance transformation leads to a more robust representation if noise is applied.  

7 SUMMARY 

The classification of cross-section types is required in reverse engineering of the beam-like shapes. In 

this article, a convolutional neuronal network for the classification of different cross-sections is 

shown, which can be downloaded at (Denk, 2021). A data set using polygon and image cross-section 

is created for eight common cross-section types such as I, U, or T sections. The robustness is increased 

by applying randomized dilatation and feature engineering such as the rotation into the main axis and 

applying the Euclidian distance transformation to the image cross-sections. The Euclidian distance 

transformation is applied at the background and the foreground of the image so that the decision of the 

cross-section type is determined by a local feature size and not by a sharp black-white pattern on the 

cross-section boundary. The categorical cross-entropy is chosen as the loss-function. The neuronal 
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network architecture consists of common layers such as convolutional layers or dense layers. The 

proposed method shows a median accuracy of 98% of ten training steps for the classification.  
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