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ON THE MOBIUS FUNCTION OF Hom(P, Q)

T.P, Speebp

A formula is given for the Mobius function of the poset
Hom(P, @) of all order-preserving maps between two finite posets

P and @ . Two applications of the formula are presented.

1. Introduction

Let P and @ be arbitrary finite partially ordered sets (posets)

with zeta and Mobius functions CQ and Wp, UQ respectively. We give

P’
a formula for the Mobius function W of the poset Hom(P, @) of all
order-preserving maps ¢ : P > @ in terms of CP, CQ, up and uQ ; see
equation (1) below. An earlier result due to Rota ([6], p. 350) attacks

the same problem, but the formula obtained there seems less explicit.

Two applications of our formula are given. The first rederives the
well-known expression for the Mobius function of a finite distributive
lattice L by using the anti-isomorphism of L with Hom(P, 2) , where
P = P(L) is the poset of all join-irreducible elements of L and 2 is
the 2-element chain. In our second application of (1) we obtain

combinatorial generalisations on Hom(P, P(m)) of the familiar descending
povers (n)r = n(n-1) ... (n-r+l1) wvhich are related to ordinary powers nt

via the Mobius function of the lattices P(m) of all partitions of the set

m = {1, ey m} . These results are required for some applications to
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statistics in which the orbits on m-tuples of the action of a generalised

wreath product of symmetric groups play a prominent role; see Praeger et
al [5].

2. The formula

PROPOSITION 1. The Mobius function u of Hom(P, @) 1is given by

1) wow ») =TT {iylot2), o)) TT £,000), 027}
pep p'>p

where ¢, P € Hom(P, Q) .

Proof. We begin by recalling the zeta function ¢ of Hom(P, @)

which, since the ordering on Hom(P, Q) is componentwise, takes the form
(2) o, x) = T 1 gy(0p), x(p))
p€P e

Let us denote the right hand side of (1) by o(¢, ¥) ; our aim is to
take its product with (2) and sum over ¥ , and if we can obtain the result
S(p, X)) =1 if ¢ =X, 6(¢, X) =0 otherwise, the result will be
proved. If we regard the sum as being over WY(p) € @ subject to the
constraints ¢(p) = ¥(p) = x(p) and Y(p) < ¢(p') for all p' >p , as
well as those imposed by the motonicity requirement Y(p) = ¥(p') for all
p' > p , and then sum over P € P , the whole summation can be evaluated by

working down from the maximal elements of P .

More precisely, let us suppose that p is a maximal element of P .
Then we can sum over W(P) in the product 9(¢, ¥)T{¥, X) subject only to
the constraint o¢(p) = Y(p) = x(pP) , and by the definition of uQ we

obtain GQ(w(P), x(p)) , where 6Q is the (Kronecker) delta function on
Q : GQ(q, q') =1 if q=¢q' and GQ(q, q') = 0 otherwise. This
argument can be used for all maximal elements of P .

Now suppose that P is an arbitrary element of P and that we have
summed over Y(p') for all p' > P , respecting the constraints noted
above, and that in each case the result was 5(cp(p'), x(p')) . Then we may
sum over Y(pP) subject only to the constraint ¢(p) < ¥(p) =< x(p) , since
the remaining constraints Y(p) = ¢(p') and Y(p) < Y(p’') for all p' >p
are automatically satisfied when ¢(p') = x(p') for all p’ >p , and this
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is true by our inductive hypothesis. Thus we obtain the term

s(olp), ¥(p)) once more and our inductive proof is complete. O

It is well known, see for example Birkhoff [3], that every finite
distributive lattice [ is anti-isomorphic to the lattice Hom(P, 2)
where P = P(L) 1is the set of all join-irreducibles of L and 2 is the
2-element chain. Using this fact we can re-derive the following known

result.
COROLLARY. The Mobius fimetion W of a finite distributive lattice

L 1is given by

1 if a=b,
uL(a, b) = {(-1)" if b is the join of m elements ecovering a ,
0 otherwise.

Proof. We represent L as the dual of Hom(P, 2) where P = P(L)

is the poset of join-irreducibles of L via the map a -+ @, where
®g ¢ P »>2 is given by
0 if p<a,

0, (P) =

1 otherwise.
Clearly we must have uL(a, b) = u(¢b, wa} , where W is the Mobius
function of Hom(P, 2) and we use (1) to find the expression above for
UL .
Suppose that a < b . Then u@pb,.¢a) given by (1) is the product of

terms taking the form

(3) Hp (0, (P), @ (P)) TT (e, (), 0p(p") ., P €P.
p'>p

Define the sets P, = {p € P : ¢ (p) =0} , P,={p € P : . (p) = 1}

and P, = {p€P:op) =0, 0, (p) = 1} . Then it is clear that if
p € P, , the expression (3) takes the value 1 ; similarly if p € P, .

Finally, if p € P then (3) takes the value -1 as long as there is no

3 >
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p’' > p also belonging to P otherwise (3) takes the value O . Thus

3 >
u@pb, wa) = (-1)" ir |P3| = m and no pair of elements in P3 is
comparable, |P3l = 0 otherwise. In the former case b is the sup of

the m elements {a vp : p € P3} which cover a , and the corollary is

proved.

3. Hom(, P(m))

When @ = P(m) , the lattice of all partitions of the set
m = {l, ee.y m} , We can obtain natural extensions of some standard
formulae. These extensions are required for some statistical applications
which build upon the main result proved in Praeger et al [5] namely, that
the orbits of the action of a generalised wreath product group on m-tuples
of elements of the basic set are labelled by L = Hom(P, P(g)) . 'These
applications required not only the Mobius function uL of L but also

some natural generalisations of ascending and descending powers.

Let us review the results on P(m) (the case P a singleton) which
we wish to generalise. When O is a partition of m into b = b(0)

o . nb(o)

blocks, write 7 and (n) = n(n-1) ... (n-b(0)41) , n €N .

Then the following formulae are well known, see Aigner [1]:
(4a) n’ =¥ tlo, (),

T
(4b) (m), = Luo, mn*

T

where T and W are the zeta and Mobius functions of P(m) . A related

number is (n)(p,T) defined by
(5) (1) g,y = L ulo, mtm, D' .

The' number (n)0 can be viewed as the number of maps % : n > m whose
kernel equivalence ker h = 0 . The corresponding result for (n)(p 1) is
b

the following lemma.
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LEMMA. For arbitrary elements p, T € P(m) with p =T,
- m -
(6) (n)(pqy = 1 €2 ker ha =0} .
Proof.

T up, Mg(m, Tn" = L ulp, Me(n, 1) L &(w, 0)(n), by (ka)
Lt g

=) {Z u(p, mz(m, T A c)}(n)o
T

[+

= § 8(p, T A ) (n),

and the result follows from the remark preceding the lemma. a

p

single block partition of m . Partitions T such that T A T =0 and

It is clear that (n) , o) = nf (n) gy = (*), where m is the

hence (n)(0 1) also play a role in certain combinatorial matters, see
3

Doubilet [4]; here O denotes the partition 0 = 1|2|...|m of m into

singletons. There is no simple general expression for (rz)(p 1) °
k]
p, T € P(m) .

ag

Another view of the numbers (n)o, n  and (n)(p 1) follows from the
3

fact that the orbits of the symmetric group Sn acting on ordered

m-tuples g% of elements from n = {1, ..., n} are naturally labelled by
partitions O € P(g) . Indeed if we denote them by {00 : 0 € P(g)} , then

g
|00| = (n), » | U 0 | =n" and, more generally,
>0

u o
ont=p ©

=M -

Our desired extensions of these results concern group actions
LS , D ) s, P €P , labelled by a poset P , where Sn is the symmetric
p ¥ P
group on np elements and gp = {l, ey np} , and their generalised

wreath product (G, n ) where o, = | | This product is defined and

pr%"
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studied in Bailey et al [2], and further in Praeger et al [5] where it is

proved that the orbits of (¢ acting on g% take the form
0, = {h € ng o =tp} » @ € Hom(P, P(m))

where (ph : P+ P(m) is given by <ph(p) = /\{ker hp, : p' = p}

By analogy with P(m) we make the following definitions, noting that

our use of 7n is now symbolic, being an abbreviation for {np, p € P}

=TT,

pEP 12

e ;:z[ (%) (o0 ntolp) = p7 > p1)

(M) () = % w (e, VT (0, x)n¥

where ¢, x € L = Hom(P, P(g)) . With these definitions we have complete

analogues of the results for G = Sn acting on gg .
PROPOSITION 2. For every pair ¢, X € Hom(P, P(g)) we have

® _
(7a) n' = % C, (0, ‘P)(n)w s

(7o) (my = T uylo, ¥,

(8) (M (gqy = 11 €x® 6" Ay =gl

X)

Proof. It suffices to prove (7b) as (7a) follows by Mobius inversion
and (8) is proved in the same way as (6). Substituting the expression (1)

for into the right-hand side of (7b) we find that we must simplify

Hy,

ZT_T{u(‘p(p) ¥(p)) T_T z(w(p), o(p") (p(p)}

Y pep

The result then follows by summing over 1§ € Hom(P, P(g)) in the same way
as we did in the proof of (1), that is, by first summing over Y(p) for p
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maximal, and then only summing over Y(p) , p non maximal, after having

summed over all ¢(p’') , p' >p . o

As was the case in our earlier discussion these formulae also give the

number of elements in orbits; in particular

ho_
{h € D9 = w}

EXAMPLE. Suppose that P is the 2-element chain (with 2 < 1 ) and
m=2 . Then for ¢ = (1|2, 1]2) say,

1=

lq?l = = (n)(p , @ € Hom(P, P(g)) .

2
(m)y = () (1) (12 (o(2) (1)) = ™ ()5 -

Similarly if m =3 and ¢ = (1|23, 1]|2|3) , then
_ 2
(n)(p = nl(nl—l)ne[ng—l) . o

The preceding results enable a theory of functions which are symmetric
under the generalised wreath product groups to be developed in a manner
similar to that adopted by Doubilet [4] in his approach to the classical
symmetric functions. These ideas, and their applications to statistics,

will be reported elsewhere.
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