ON THE MÖBIUS FUNCTION OF Hom(P, Q)

T.P. SPEED

A formula is given for the Möbius function of the poset $\operatorname{Hom}(P,\,Q)$ of all order-preserving maps between two finite posets P and Q. Two applications of the formula are presented.

1. Introduction

Let P and Q be arbitrary finite partially ordered sets (posets) with zeta and $N\ddot{o}bius$ functions ζ_P , ζ_Q and μ_P , μ_Q respectively. We give a formula for the Möbius function μ of the poset $\operatorname{Hom}(P,\,Q)$ of all order-preserving maps $\phi:P\to Q$ in terms of ζ_P , ζ_Q , μ_P and μ_Q ; see equation (1) below. An earlier result due to Rota ([6], p. 350) attacks the same problem, but the formula obtained there seems less explicit.

Two applications of our formula are given. The first rederives the well-known expression for the Möbius function of a finite distributive lattice L by using the anti-isomorphism of L with $\operatorname{Hom}(P,\,2)$, where P=P(L) is the poset of all join-irreducible elements of L and 2 is the 2-element chain. In our second application of (1) we obtain combinatorial generalisations on $\operatorname{Hom}(P,\,P(\underline{\underline{m}}))$ of the familiar descending powers n via the Möbius function of the lattices $P(\underline{\underline{m}})$ of all partitions of the set $\underline{\underline{m}}=\{1,\,\ldots,\,m\}$. These results are required for some applications to

Received 12 October 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 00049727/84 \$A2.00 + 0.00.

statistics in which the orbits on m-tuples of the action of a generalised wreath product of symmetric groups play a prominent role; see Praeger et al [5].

2. The formula

PROPOSITION 1. The Möbius function μ of Hom(P, Q) is given by

$$\mu(\varphi, \psi) = \prod_{p \in P} \left\{ \mu_Q(\varphi(p), \psi(p)) \prod_{p' > p} \zeta_Q(\psi(p), \varphi(p')) \right\}$$

where $\varphi, \psi \in \text{Hom}(P, Q)$.

Proof. We begin by recalling the zeta function ζ of Hom(P, Q) which, since the ordering on Hom(P, Q) is componentwise, takes the form

(2)
$$\zeta(\psi, \chi) = \prod_{p \in P} \zeta_Q(\psi(p), \chi(p)).$$

Let us denote the right hand side of (1) by $\vartheta(\varphi, \psi)$; our aim is to take its product with (2) and sum over ψ , and if we can obtain the result $\delta(\varphi, \chi) = 1$ if $\varphi = \chi$, $\delta(\varphi, \chi) = 0$ otherwise, the result will be proved. If we regard the sum as being over $\psi(p) \in Q$ subject to the constraints $\varphi(p) \leq \psi(p) \leq \chi(p)$ and $\psi(p) \leq \varphi(p')$ for all p' > p, as well as those imposed by the motonicity requirement $\psi(p) \leq \psi(p')$ for all p' > p, and then sum over $p \in P$, the whole summation can be evaluated by working down from the maximal elements of P.

More precisely, let us suppose that p is a maximal element of P. Then we can sum over $\psi(p)$ in the product $\vartheta(\varphi,\psi)\zeta(\psi,\chi)$ subject only to the constraint $\varphi(p) \leq \psi(p) \leq \chi(p)$, and by the definition of μ_Q we obtain $\delta_Q\big(\varphi(p),\chi(p)\big)$, where δ_Q is the (Kronecker) delta function on $Q:\delta_Q(q,q')=1$ if q=q' and $\delta_Q(q,q')=0$ otherwise. This argument can be used for all maximal elements of P.

Now suppose that p is an arbitrary element of P and that we have summed over $\psi(p')$ for all p'>p, respecting the constraints noted above, and that in each case the result was $\delta \left(\phi(p'), \chi(p') \right)$. Then we may sum over $\psi(p)$ subject only to the constraint $\phi(p) \leq \psi(p) \leq \chi(p)$, since the remaining constraints $\psi(p) \leq \phi(p')$ and $\psi(p) \leq \psi(p')$ for all p'>p are automatically satisfied when $\phi(p') = \chi(p')$ for all p'>p, and this

is true by our inductive hypothesis. Thus we obtain the term $\delta \big(\phi(p) \,,\, \psi(p) \big)$ once more and our inductive proof is complete. \square

It is well known, see for example Birkhoff [3], that every finite distributive lattice L is anti-isomorphic to the lattice $\operatorname{Hom}(P,\,2)$ where P=P(L) is the set of all join-irreducibles of L and 2 is the 2-element chain. Using this fact we can re-derive the following known result.

COROLLARY. The Möbius function $\,\mu_L^{}\,$ of a finite distributive lattice L is given by

$$u_L(a, b) = \begin{cases} 1 & \text{if } a = b \text{,} \\ (-1)^m & \text{if } b \text{ is the join of } m \text{ elements covering } a \text{,} \\ 0 & \text{otherwise.} \end{cases}$$

Proof. We represent L as the dual of $\operatorname{Hom}(P,\ 2)$ where P=P(L) is the poset of join-irreducibles of L via the map $a \to \varphi_a$ where $\varphi_a: P \to 2$ is given by

$$\varphi_a(p) = \begin{cases} 0 & \text{if } p \leq a \text{,} \\ \\ 1 & \text{otherwise.} \end{cases}$$

Clearly we must have $\mu_L(a,b)=\mu\{\phi_b,\phi_a\}$, where μ is the Möbius function of $\mathrm{Hom}(P,2)$ and we use (1) to find the expression above for μ_L .

Suppose that a < b . Then $\mu(\phi_b, \phi_a)$ given by (1) is the product of terms taking the form

(3)
$$\mu_2(\varphi_b(p), \varphi_a(p)) \prod_{p'>p} \zeta_2(\varphi_a(p), \varphi_b(p')), p \in P.$$

Define the sets $P_1=\{p\in P: \phi_a(p)=0\}$, $P_2=\{p\in P: \phi_b(p)=1\}$ and $P_3=\{p\in P: \phi_b(p)=0, \phi_a(p)=1\}$. Then it is clear that if $p\in P_1$, the expression (3) takes the value 1; similarly if $p\in P_2$. Finally, if $p\in P_3$, then (3) takes the value -1 as long as there is no

p'>p also belonging to P_3 ; otherwise (3) takes the value 0. Thus $\mu(\phi_b,\phi_a)=(-1)^m$ if $|P_3|=m$ and no pair of elements in P_3 is comparable, $|P_3|=0$ otherwise. In the former case b is the sup of the m elements $\{a\vee p:p\in P_3\}$ which cover a, and the corollary is proved.

3.
$$Hom(P, P(m))$$

When $Q = P(\underline{\underline{m}})$, the lattice of all partitions of the set $\underline{\underline{m}} = \{1, \ldots, m\}$, we can obtain natural extensions of some standard formulae. These extensions are required for some statistical applications which build upon the main result proved in Praeger et al [5] namely, that the orbits of the action of a generalised wreath product group on m-tuples of elements of the basic set are labelled by $L = \operatorname{Hom}(P, P(\underline{\underline{m}}))$. These applications required not only the Möbius function μ_L of L but also some natural generalisations of ascending and descending powers.

Let us review the results on $P(\underline{m})$ (the case P a singleton) which we wish to generalise. When σ is a partition of \underline{m} into $b = b(\sigma)$ blocks, write $n^{\sigma} := n^{b(\sigma)}$ and $(n)_{\sigma} = n(n-1) \dots (n-b(\sigma)+1)$, $n \in \mathbb{N}$. Then the following formulae are well known, see Aigner [1]:

(4a)
$$n^{\sigma} = \sum_{\tau} \zeta(\sigma, \tau)(n)_{\tau},$$

(4b)
$$(n)_{\sigma} = \sum_{\tau} \mu(\sigma, \tau) n^{\tau},$$

where ζ and μ are the zeta and Möbius functions of $P(\underline{m})$. A related number is $(n)_{(0,T)}$ defined by

(5)
$$(n)_{(\rho,\tau)} = \sum_{\pi} \mu(\rho, \pi) \zeta(\pi, \tau) n^{\pi}$$
.

The number $(n)_{\sigma}$ can be viewed as the number of maps $h: \underline{\underline{n}} \to \underline{\underline{m}}$ whose kernel equivalence $\ker h = \sigma$. The corresponding result for $(n)_{(\rho,\tau)}$ is the following lemma.

LEMMA. For arbitrary elements ρ , $\tau \in P(\underline{m})$ with $\rho \leq \tau$,

(6)
$$(n)_{(\rho,\tau)} = \left| \left\{ h \in \underline{\underline{\underline{m}}} : \ker h \wedge \tau = \rho \right\} \right| .$$

Proof.

$$\sum_{\pi} \mu(\rho, \pi) \zeta(\pi, \tau) n^{\pi} = \sum_{\pi} \mu(\rho, \pi) \zeta(\pi, \tau) \sum_{\sigma} \zeta(\pi, \sigma) (n)_{\sigma} \text{ by (4a)}$$

$$= \sum_{\sigma} \left\{ \sum_{\pi} \mu(\rho, \pi) \zeta(\pi, \tau \wedge \sigma) \right\} (n)_{\sigma}$$

$$= \sum_{\sigma} \delta(\rho, \tau \wedge \sigma) (n)_{\sigma}$$

and the result follows from the remark preceding the lemma.

It is clear that $(n)_{(\rho,\rho)} = n^{\rho}$, $(n)_{(\rho,\underline{m})} = (n)_{\rho}$ where \underline{m} is the single block partition of \underline{m} . Partitions π such that $\pi \wedge \tau = 0$ and hence $(n)_{(0,\tau)}$ also play a role in certain combinatorial matters, see Doubilet [4]; here 0 denotes the partition 0 = 1|2|...|m of \underline{m} into singletons. There is no simple general expression for $(n)_{(\rho,\tau)}$, $\rho, \tau \in P(\underline{m})$.

Another view of the numbers $(n)_{\sigma}$, n^{σ} and $(n)_{(\rho,\tau)}$ follows from the fact that the orbits of the symmetric group S_n acting on ordered m-tuples $\underline{\underline{n}}$ of elements from $\underline{\underline{n}}=\{1,\ldots,n\}$ are naturally labelled by partitions $\sigma\in P(\underline{\underline{m}})$. Indeed if we denote them by $\{0_{\sigma}:\sigma\in P(\underline{\underline{m}})\}$, then $|0_{\sigma}|=(n)_{\sigma}$, $|0_{\tau\geq\sigma}|=n^{\sigma}$ and, more generally,

$$\left| \bigcup_{\sigma \wedge \tau = \rho} O_{\sigma} \right| = (n)_{(\rho, \tau)}.$$

Our desired extensions of these results concern group actions $\left(S_{n_p}, \frac{\mathbf{n}}{p}\right)$, $p \in P$, labelled by a poset P, where S_{n_p} is the symmetric group on n_p elements and $\underline{\mathbf{n}}_P = \{1, \ldots, n_p\}$, and their generalised wreath product $\left(G, \underline{\mathbf{n}}_P\right)$ where $\underline{\mathbf{n}}_P = \overline{\prod_{p \in P}} \underline{\mathbf{n}}_p$. This product is defined and

studied in Bailey et al [2], and further in Praeger et al [5] where it is proved that the orbits of G acting on $\frac{m}{12}$ take the form

$$\mathcal{O}_{\sigma} = \left\{ h \in \underline{\underline{\underline{m}}} : \varphi^h = \varphi \right\}, \quad \varphi \in \operatorname{Hom}(P, P(\underline{\underline{m}})),$$

where $\phi^h: P \to P(\underline{\underline{m}})$ is given by $\phi^h(p) = \Lambda \{\ker h_p, : p' \ge p\}$.

By analogy with $P(\underline{m})$ we make the following definitions, noting that our use of n is now symbolic, being an abbreviation for $\{n_p, p \in P\}$,

$$n^{\varphi} = \prod_{p \in P} n_p^{\varphi(p)} ,$$

$$(n)_{\varphi} = \prod_{p \in P} (n_p) (\varphi(p), \Lambda \{ \varphi(p') : p' > p \}) ,$$

and

$$(n)_{(\varphi,\chi)} = \sum_{\psi} \mu_L(\varphi, \psi) \zeta_L(\psi, \chi) n^{\psi}$$
,

where φ , $\chi \in L = \operatorname{Hom}(P, P(\underline{\underline{m}}))$. With these definitions we have complete analogues of the results for $G = S_n$ acting on $\underline{\underline{m}}$.

PROPOSITION 2. For every pair φ , $\chi \in \text{Hom}(P, P(\underline{\underline{m}}))$ we have

(7a)
$$n^{\varphi} = \sum_{\psi} \zeta_L(\varphi, \psi)(n)_{\psi},$$

$$(7b) \qquad (n)_{\varphi} = \sum_{\psi} \mu_{L}(\varphi, \psi) n^{\psi},$$

(8)
$$(n)_{(\varphi,\chi)} = |\{h \in \underline{\underline{n}}^{\underline{m}} : \varphi^h \wedge \chi = \varphi\}|.$$

Proof. It suffices to prove (7b) as (7a) follows by Möbius inversion and (8) is proved in the same way as (6). Substituting the expression (1) for μ_L into the right-hand side of (7b) we find that we must simplify

$$\sum_{\substack{\psi \ p \in P}} \left\{ \mu \left(\varphi(p) \,, \, \psi(p) \right) \, \prod_{\substack{p' > p}} \, \zeta \left(\psi(p) \,, \, \varphi(p') \right) n_p^{\varphi(p)} \right\} \,.$$

The result then follows by summing over $\psi \in \operatorname{Hom}(P, P(\underline{\underline{m}}))$ in the same way as we did in the proof of (1), that is, by first summing over $\psi(p)$ for p

maximal, and then only summing over $\psi(p)$, p non maximal, after having summed over all $\psi(p')$, p'>p .

As was the case in our earlier discussion these formulae also give the number of elements in orbits; in particular

$$|O_{\varphi}| = \left| \left\{ h \in \underline{\underline{n}} : \varphi^h = \varphi \right\} \right| = (n)_{\varphi}, \quad \varphi \in \operatorname{Hom}(P, P(\underline{\underline{m}})).$$

EXAMPLE. Suppose that P is the 2-element chain (with 2 < 1) and m=2. Then for $\phi=(1|2,1|2)$ say,

$$(n)_{\varphi} = (n_1)_{\varphi(1)} (n_2)_{\varphi(2),\varphi(1)} = n_1 (n_1 - 1) n_2^2.$$

Similarly if m = 3 and $\varphi = (1|23, 1|2|3)$, then

$$(n)_{\varphi} = n_1(n_1-1)n_2(n_2-1)$$
.

The preceding results enable a theory of functions which are symmetric under the generalised wreath product groups to be developed in a manner similar to that adopted by Doubilet [4] in his approach to the classical symmetric functions. These ideas, and their applications to statistics, will be reported elsewhere.

References

- [1] Martin Aigner, Combinatorial theory (Die Grundlehren der mathematischen Wissenschaften, 234. Springer-Verlag, Berlin, Heidelberg, New York, 1979).
- [2] R.A. Bailey, Cheryl E. Praeger, C.A. Rowley and T.P. Speed, "Generalized wreath products of permutation groups", Proc. London Math. Soc. (3) 47 (1983), 69-82.
- [3] Garrett Birkhoff, Lattice theory, Third Edition (American Mathematical Society Colloquium Publications, 25. American Mathematical Society, Providence, Rhode Island, 1967).
- [4] Peter Doubilet, "On the foundations of combinatorial theory VII: symmetric functions through the theory of distribution and occupancy", Stud. Appl. Math. 51 (1972), 377-396.

- [5] Cheryl E. Praeger, C.A. Rowley and T.P. Speed, "A note on generalised wreath product groups", submitted.
- [6] Gian-Carlo Rota, "On the foundations of combinatorial theory I.

 Theory of Möbius functions", Z. Wahrsch. Verw. Gebiete 2

 (1963/64), 340-368.

Division of Mathematics and Statistics, CSIRO, GPO Box 1965, Canberra, ACT 2601, Australia.