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1. Introduction. In the first part of this paper we state and prove a theorem 
concerning the partition (j; Z, i) of an integer j into at most I integers kpj 

none of which exceed i; I and i being themselves integers, (j; I, i) is thus 
the number of distinct solutions of the equations 

(1.1) j = k! + ... + kh 

where the kp satisfy the inequalities 

(1.2) i > ki > k2 > . . . > kt > 0. 

In the second part a consequence of this theorem in the theory of repre

sentation of the Lie algebra of the unitary unimodular group, SU(n), is noted. 

2. Before stating the theorem, some well-known properties of (j ; /, i) are 
noted. 

(a) For fixed Z, i, it is clear that the maximum value that j may have is 
ily and that 
(2.1) {il; IJ) = 1. 

(b) One may trivially show that 

(2.2) (J; hi) = (U-J;l,i). 

(c) The following formula is given by Dickson (1): 

(2.3) (j; / + 1, i) - (j - 1; I + 1, i) = (j - 1; /, i) - (j - 1 - i; I, i). 

(d) One may also trivially show that 

(j'jyi) = U',h I). 

THEOREM, ( j ; /, i) — (J — 1 ; Z, i) > 0 for integers j < th where 

h = 1 + [hill 

Proof, We prove this theorem by induction on I. Now, clearly, 

hence for j < /i = 1 + [Ji], we have 
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(j;l,i) - (j- 1 , U ) = 1 - 1 = 0. 

Thus the theorem is true for 1=1. Suppose it to be true for some I > 1 ; 
we try to infer it for I + 1. Thus we need to prove that, for j < £(H-D, 

(j;l+ l,i) - (j- l;l+ l,i) > 0 

or, using equation (2.3), that 

(2.4) U-Uh i) - (j-1- i; h i) > 0. 

For j < ti + 1, i.e., for j — 1 < tu this follows immediately from the state
ment of the theorem for /, since we may write 

(j - 1; h i) ~ U - 1 - *; Z, i) = l(j - 1; /, i) - (j-2;l, i)] 

+ [ ( j - 2 ; / , i ) - ( j - 3 ; / , i ) ] + . . . 

+ l(j-i;l,i) - U - i - 1; U ) ] . 

All the bracketed terms are non-negative since if j — 1 < th then so are 
j — 2, j — 3, etc. Hence we have shown that for j < ti + 1, 

(j;l+ l,i) - (j-hl+ l,i) > 0 . 

For those cases where tt + 1 > £(H.i) the theorem for (/ + 1) is already 
proved. This occurs when i = 1, 2 and, for / an even integer, i = 3. In the 
following we therefore restrict ourselves to the cases where ti + 1 < l<n+i). I t 
therefore remains to prove equation (2.4) for ti+ 1 <jK hi+i) or> writing 
f = j — 1, that for ti < f < /(j+i), 

0V;U) - (j'-i;hi) >0 . 
Using equation (2.2) this becomes 

(2.5) (il-j';l,i) - (J' - » ; / , * ' ) > 0 . 

Equation (2.5) will follow from the statement of the theorem for / if 

(a) il — f > / — i and 

(b) il-j'<h. 

(a) («7 - / ) - (/' - t) = *(/ + 1) - 2 / . 

Now / < til+1) - 1 < §i(i + 1) or i(l + 1) - 2 / > 0 so that (?7 - f) 
- W - *) > 0, 

(b) */ - / < «/ - («, + i) < a, - («, + l) = t, - i 

and therefore condition (b) is also satisfied. Thus the inequality (2.5) follows 
from the statement of the theorem for / and therefore 

(j;l+ 1,*) - (J- l;l+ hi) > 0 
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for ti + 1 < j < /(z+i) a s w e ^ as for j < /i + 1. Therefore, truth of the theorem 
for / implies truth of the theorem for / + 1, so that, by induction, the theorem 
is true. 

3. Consider the Lie algebra, A(n — 1), of the unitary unimodular group in n 
dimensions, S U(n). This is an (n — 1)-rank algebra and therefore has (n — 1) 
inequivalent fundamental representations, which we denote* by II*, i = 1, 
. . . , n — 1. The j th "level" of an irreducible representation $ of A (n — 1) 
is defined to be the set of weights of <j> which are obtainable by subtracting j 
simple roots from the highest weight of 0. Now it can be shown (see Hughes 
(4)) that the number of weights on the j th level of the ith fundamental 
representation, II*, of A (n — 1) is equal to the partition (j; n — i, i). 

Thus a consequence of property (a) of §2, with / = n — i, is that 11* has 
i(n — i) levels. Property (b) states that the number of weights of the j th 
and {i(n — i) — j}th levels of II* are equal, so that the weights of II* are 
distributed in a symmetrical manner about its middle level. Property (d) is 
intimately related to the fact that II* and n(w~*_1) are contragredient repre
sentations. 

A consequence of the theorem proved here is that II* is "spindle-shaped", 
i.e., that the dimensions of its levels increase monotonically until the middle 
level (or levels, depending on whether i(n — i) is even or odd), after which 
they decrease again monotonically. This is a very special instance of a theorem 
proved by algebraic techniques by Dynkin (3), namely, that all irreducible 
representations of all semi-simple Lie algebras are spindle-shaped. 
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*See, for example, Dynkin (2) for an account of the properties of A(n — 1), and for the 
notation employed here. 
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