# A THEOREM CONCERNING PARTITIONS AND ITS CONSEQUENCE IN THE THEORY OF LIE ALGEBRAS 

J. W. B. HUGHES

1. Introduction. In the first part of this paper we state and prove a theorem concerning the partition ( $j ; l, i$ ) of an integer $j$ into at most $l$ integers $k_{p}$, none of which exceed $i ; l$ and $i$ being themselves integers. $(j ; l, i)$ is thus the number of distinct solutions of the equations

$$
\begin{equation*}
j=k_{1}+\ldots+k_{l} \tag{1.1}
\end{equation*}
$$

where the $k_{p}$ satisfy the inequalities

$$
\begin{equation*}
i \geqslant k_{1} \geqslant k_{2} \geqslant \ldots \geqslant k_{l} \geqslant 0 \tag{1.2}
\end{equation*}
$$

In the second part a consequence of this theorem in the theory of representation of the Lie algebra of the unitary unimodular group, $S U(n)$, is noted.
2. Before stating the theorem, some well-known properties of $(j ; l, i)$ are noted.
(a) For fixed $l, i$, it is clear that the maximum value that $j$ may have is $i l$, and that

$$
\begin{equation*}
(i l ; l, i)=1 \tag{2.1}
\end{equation*}
$$

(b) One may trivially show that

$$
\begin{equation*}
(j ; l, i)=(i l-j ; l, i) \tag{2.2}
\end{equation*}
$$

(c) The following formula is given by Dickson (1):

$$
\begin{equation*}
(j ; l+1, i)-(j-1 ; l+1, i)=(j-1 ; l, i)-(j-1-i ; l, i) \tag{2.3}
\end{equation*}
$$

(d) One may also trivially show that

$$
(j ; l, i)=(j ; i, l) .
$$

Theorem. ( $j ; l, i)-(j-1 ; l, i) \geqslant 0$ for integers $j \leqslant t_{l}$, where

$$
t_{l}=1+\left[\frac{1}{2} i l\right] .
$$

Proof. We prove this theorem by induction on $l$. Now, clearly,

$$
(j ; 1, i)= \begin{cases}1, & j \leqslant i \\ 0, & j>i\end{cases}
$$

hence for $j \leqslant t_{1}=1+\left[\frac{1}{2} i\right]$, we have

$$
(j ; 1, i)-(j-1,1, i)=1-1=0
$$

Thus the theorem is true for $l=1$. Suppose it to be true for some $l \geqslant 1$; we try to infer it for $l+1$. Thus we need to prove that, for $j \leqslant t_{(l+1)}$,

$$
(j ; l+1, i)-(j-1 ; l+1, i) \geqslant 0
$$

or, using equation (2.3), that

$$
\begin{equation*}
(j-1 ; l, i)-(j-1-i ; l, i) \geqslant 0 \tag{2.4}
\end{equation*}
$$

For $j \leqslant t_{l}+1$, i.e., for $j-1 \leqslant t_{l}$, this follows immediately from the statement of the theorem for $l$, since we may write

$$
\begin{aligned}
(j-1 ; l, i)- & (j-1-i ; l, i)= \\
+[ & (j-1 ; l, i)-(j-2 ; l, i)] \\
+ & (j-2 ; l, i)-(j-3 ; l, i)]+\ldots \\
& +[j-i ; l, i)-(j-i-1 ; l, i)]
\end{aligned}
$$

All the bracketed terms are non-negative since if $j-1 \leqslant t_{l}$, then so are $j-2, j-3$, etc. Hence we have shown that for $j \leqslant t_{l}+1$,

$$
(j ; l+1, i)-(j-1 ; l+1, i) \geqslant 0
$$

For those cases where $t_{l}+1 \geqslant t_{(l+1)}$ the theorem for $(l+1)$ is already proved. This occurs when $i=1,2$ and, for $l$ an even integer, $i=3$. In the following we therefore restrict ourselves to the cases where $t_{l}+1<t_{(l+1)}$. It therefore remains to prove equation (2.4) for $t_{l}+1<j \leqslant t_{(l+1)}$ or, writing $j^{\prime}=j-1$, that for $t_{\iota}<j^{\prime}<t_{(l+1)}$,

$$
\left(j^{\prime} ; l, i\right)-\left(j^{\prime}-i ; l, i\right) \geqslant 0
$$

Using equation (2.2) this becomes

$$
\begin{equation*}
\left(i l-j^{\prime} ; l, i\right)-\left(j^{\prime}-i ; l, i\right) \geqslant 0 \tag{2.5}
\end{equation*}
$$

Equation (2.5) will follow from the statement of the theorem for $l$ if
(a) $i l-j^{\prime} \geqslant j^{\prime}-i$ and
(b) $\quad i l-j^{\prime} \leqslant t_{l}$.
(a) $\left(i l-j^{\prime}\right)-\left(j^{\prime}-i\right)=i(l+1)-2 j^{\prime}$.

Now $j^{\prime} \leqslant t_{(l+1)}-1 \leqslant \frac{1}{2} i(l+1)$ or $i(l+1)-2 j^{\prime} \geqslant 0$ so that $\left(i l-j^{\prime}\right)$ $-\left(j^{\prime}-i\right) \geqslant 0$,

$$
\begin{equation*}
i l-j^{\prime} \leqslant i l-\left(t_{l}+1\right) \leqslant 2 t_{l}-\left(t_{l}+1\right)=t_{l}-1 \tag{b}
\end{equation*}
$$

and therefore condition (b) is also satisfied. Thus the inequality (2.5) follows from the statement of the theorem for $l$ and therefore

$$
(j ; l+1, i)-(j-1 ; l+1, i) \geqslant 0
$$

for $t_{l}+1<j \leqslant t_{(l+1)}$ as well as for $j \leqslant t_{l}+1$. Therefore, truth of the theorem for $l$ implies truth of the theorem for $l+1$, so that, by induction, the theorem is true.
3. Consider the Lie algebra, $A(n-1)$, of the unitary unimodular group in $n$ dimensions, $S U(n)$. This is an $(n-1)$-rank algebra and therefore has $(n-1)$ inequivalent fundamental representations, which we denote* by $\Pi^{i}, i=1$, $\ldots, n-1$. The $j$ th "level" of an irreducible representation $\phi$ of $A(n-1)$ is defined to be the set of weights of $\phi$ which are obtainable by subtracting $j$ simple roots from the highest weight of $\phi$. Now it can be shown (see Hughes (4)) that the number of weights on the $j$ th level of the $i$ th fundamental representation, $\Pi^{i}$, of $A(n-1)$ is equal to the partition $(j ; n-i, i)$.

Thus a consequence of property (a) of $\S 2$, with $l=n-i$, is that $\Pi^{i}$ has $i(n-i)$ levels. Property (b) states that the number of weights of the $j$ th and $\{i(n-i)-j\}$ th levels of $\Pi^{i}$ are equal, so that the weights of $\Pi^{i}$ are distributed in a symmetrical manner about its middle level. Property (d) is intimately related to the fact that $\Pi^{i}$ and $\Pi^{(n-i-1)}$ are contragredient representations.

A consequence of the theorem proved here is that $\Pi^{i}$ is "spindle-shaped", i.e., that the dimensions of its levels increase monotonically until the middle level (or levels, depending on whether $i(n-i)$ is even or odd), after which they decrease again monotonically. This is a very special instance of a theorem proved by algebraic techniques by Dynkin (3), namely, that all irreducible representations of all semi-simple Lie algebras are spindle-shaped.

## References

1. L. E. Dickson, History of the theory of numbers, Vol. 2 (Stechert, New York, 1934).
2. E. B. Dynkin, Maximal sub-groups of the classical groups, Supplement, Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 319.
3. -_Some properties of the system of weights of a linear representation of a semisimple Lie group, Dokl. Akad. Nauk SSSR (N.S.), 71 (1950), 221.
4. J. W. B. Hughes, Theory of unitary groups, University College, London, Department of Physics Review paper (September, 1965).

Queen Mary College, London
*See, for example, Dynkin (2) for an account of the properties of $A(n-1)$, and for the notation employed here.

