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1. Introduction. The question posed by Sylvester (6) concerning the 
collinearity of a finite set of points in E2 having the property that each two 
together with some third be collinear has been the inspiration for numerous 
investigations. The original question was answered by the following theorem. 

THEOREM 1. If a finite set of k > 2 points in affine n-space An or in projective 
n-space P™ is not a subset of a line, then there exists a line in that space containing 
precisely two of the points. 

Generalizations of this result and additional references are contained in 
(3; 4; 5). 

In some papers the analogous problem was considered for the case when 
points in the above theorem are replaced by disjoint sets. The strongest result, 
obtained in (3), is the following. 

THEOREM 2. If {Sf} is a finite collection of two or more disjoint, non-empty 
compact sets in En with S = ^JSi infinite, then either S is a subset of a line or 
there exists a hyper plane intersecting exactly two members of the family. 

Examples show (see §2) that the assumption that S is infinite cannot, in 
general, be dropped, but the suspicion prevailed that the number of counter
examples was severely limited. In §2 we show that this suspicion is, in a 
certain sense, justified. Specifically we prove Theorem 2.1, according to which 
the counter-examples mentioned above must be confined to dimensions 2 and 3. 

In §3 we free Theorem 2 from its Euclidean setting, by the use of different 
and, we believe, substantially simpler methods than those used in (3). 

The result of the present paper might be summarized as follows. 

THEOREM 3. If {St} is a finite collection of two or more non-empty disjoint 
compact sets in a real normed linear space, then at least one of the following holds: 

1. There exists a hyper plane intersecting precisely two of the sets. 
2. VJSi spans a space of dimension 1. 
3. yJSi is finite and spans a space of dimension 2 or 3. 

We had hoped to be able to characterize those exceptional sets in dimensions 
2 and 3, but we have thus far been unsuccessful. 
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2. The finite case. 

Example 2 .1 . Consider a regular polygon of 2n vertices in E2 together with 
the n ideal points defined by the sides of this polygon. Label members of a 
set of a l ternate vertices with the number 1, each of the remaining vertices 
with the number 2, and each of the ideal points with the number 3. St is the 
set of points labelled i. I t is easy to verify t h a t a line cut t ing any two of these 
sets cuts the third. 

Example 2.2. In Ez consider the vertices and centre of a cube together with 
the three ideal points defined by the edges of the cube. Label each of the ver
tices with the number 1 or 2 in such a way t h a t no two adjacent vertices carry 
the same number . Label the centre and each ideal point with the number 3. 
Define St to be the set of points numbered i. Here again it is easy to see t h a t 
a line cut t ing any two of the sets cuts the third set. 

In dimension 2 a variety of examples somewhat different from those in 
Example 1 can be constructed b u t in dimension 3, Example 2 is the only one 
known to us. Example 2 is essentially the well-known desmic configuration 
(cf. N . Altshiller-Court, Modern pure solid geometry [New York, 1935]). 

T H E O R E M 2.1. / / {Si} is a finite collection of two or more non-empty disjoint 
finite sets of a linear vector space over an ordered field such that KJSt spans a 
subs pace of at least dimension 4, then there exists a line {and therefore also a 
hyper plane) cutting precisely two of the sets. 

Proof. Motzkin has observed (5) t h a t a pencil of lines in arfine 3-space, 
Az, not all in the same plane mus t contain a pair of lines such t h a t the plane 
defined by these lines contains none of the other lines. 

This follows a t once if we consider a section of the pencil by a plane and 
appeal to the original Sylvester theorem in the plane of the section. 

We now choose a pair of points pi and pi of \JSi where pi and p2 are from 
different St. T h e points of VJSt — {p\, p2} define a pencil of planes with line 
pi p2 as axis. A section of this pencil by a properly chosen 3-space defines a 
pencil of lines in t h a t 3-space not all in a plane and, by the Motzkin observat ion, 
two of the lines of this pencil define a plane free of any of the other lines of 
the pencil. This plane together with the points pi and p2 spans a 3-space F 
such t h a t the points of KJSt in this 3-space are on precisely two planes of the 
original pencil of planes. Each of these planes contains a t least one point of 
VSt- {pi,p2}. 

I t is now an easy ma t t e r to check t h a t if a collection of two or more finite 
non-empty and disjoint sets in Az lie on two planes and not on one, then there 
is a line intersecting precisely two of the sets. 

3. 2-Secants in normed linear spaces. 

D E F I N I T I O N . A hyper plane T in a linear vector space E is called a k-secant of 
a collection {Sa} of subsets of E if it intersects exactly k members of the collection. 
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THEOREM 3.1. Let {St} be a finite collection of two or more non-empty disjoint 
compact sets in a real normed linear space X with yJSt infinite and suppose no 
straight line in X contains W5\-. Then a 2-secant of {St} exists. 

We contend that it is only necessary to establish Theorem 3.1 in the setting 
of a strictly convex normed linear space. In the first place, since each St is 
compact, yJSi is compact and the subspace spanned by US* is separable. Thus 
if we can produce a hyperplane in this subspace of the desired character, the 
extension to the whole space of the defining linear functional is assured and 
the resulting hyperplane will satisfy the demands of the theorem. Now the 
property of the theorem is invariant under a topological isomorphism and by 
a theorem of Clarkson (1; also 2, p. 518), any separable normed linear space is 
topologically isomorphic to a strictly convex one. 

It is convenient to base the proof of Theorem 3.1 on a series of lemmas, the 
proofs of which are quite straightforward and hence will be sketched only 
briefly. 

LEMMA 3.1. If C is a compact set, containing at least two points, in a strictly 
convex normed linear space, then there exists a pair of distinct parallel hyper planes 
each supporting C at precisely one point. 

Proof. Let a, b be a pair of diametral points of C and consider the sphere 
centred at a and passing through b. Since the sphere is strictly convex, there 
is a hyperplane a supporting this sphere at the single point b. This hyperplane 
also supports C at b. It is an easy matter to show that the hyperplane <J' , 
parallel to a through a, supports the sphere centred at b and passing through 
a at the single point a. The hyperplanes a, af are as required in the lemma. 

LEMMA 3.2. Let {Si}, i = 1,2, . . . ,n,n > 2, be a finite collection of disjoint 
non-empty compact sets in a normed linear space, not all on a single line, with S\ 
infinite and KJSi finite. Then \St) has a 2-secant. 

Proof. It clearly suffices to show that a line L exists which cuts Si and exactly 
one more St, i > 2. We distinguish between the case (i) when a line M exists 
such that 

U SiCM 
2 

and (ii) when no such line exists. In the first case, there exists a point 5 of Si 
n 

not on M. L can then be any line through 5 and an arbitrary point of VJ St. 
n 2 

In the second case, let a,b,c be a triple of non-collinear points of US* and con-
2 

sider the collection A of all lines joining these points with those of Si. It is 
easily seen that this collection is infinite. Thus A must contain an L as desired. 

LEMMA 3.3. Let {St}, i = 1, 2, . . . , n, n > 2, be a finite collection of non
empty disjoint compact sets in a normed linear space, not all on a single line, 
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with Si infinite. Suppose all but a finite number of points of \J St lie on a Une 
2 

M which contains an accumulation point p of Si. Then {Si} has a 2-secant. 

Proof. As in the proof of Lemma 3.2, we show that a line L exists which 
cuts exactly two members of the collection. We may clearly assume that 

n 

u sfr\M 9*#. 
2 

If 

U StCM, 
2 

then there is a point q of 5i not on M. The line through q and any point of 
n 

yj Si may serve as L. If not let 
2 

n n 

a e U St DM and b £ U St - M. 
2 2 

The collection of lines A joining {a, b} with Si is obviously infinite and, clearly, 
at most finitely many of them cut three or more members of {Si}. 

LEMMA 3.4. Let {Si}, i = 1, 2, . . . , n (n > 2), be a finite collection of non
empty disjoint compact sets in a normed linear space X. Let a be a hyperplane, 
a+ and a~ the two open half-spaces determined by a, and suppose that 

n 

u Si n a" 
3 

is finite {or empty). Let 13 C a be a hyper plane relative to a and p+ and fi~ the 
two open half-spaces y relative to a, determined by 0, and suppose that 0 P\ S 2 9e 0 
and 

n 

3 

Suppose further that a sequence {pt} of points in a+ C\ Si (a~ C\ Si) exists which 
converges to p € Si Pi @~, and 

u s't n er = 0 (u s'i n ^ = 0) 

where S' t is the set of accumulation points of St. Then there exists a hyperplane in 
X intersecting Si and S2 and no other S^ 

Proof. Let yt denote the hyperplane spanned by (3 and pt. Since 
n n 

U Stn P = 0 and U St fl oT is finite, 
3 3 

an i0 exists such that i > i0 implies 

(u sj n CTJ n Yf = 0-
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Let \pik) be a subsequence of {pi} with the property that all yik are distinct, 
H > io, k = 1, 2, . . . , and write ak = 7ijfc. Let aA

+ be the open half-space 
determined by ak that contains /3+ (#"). The family {ak

+} is clearly an open 
n 

cover of WS\ . Thus 
3 

U 5', C <* + U <**2
+ U • • . U akm

+ H ô* 
3 

Since this set is convex and disjoint from an open ball B(p, e) centred at p 
and of sufficiently small radius e > 0, all ak such that pik £ 5(/>, €) will be 
disjoint from 

n 

US', 
3 

and intersect both Si and 52. Clearly only finitely many of these hyperplanes 
can intersect 

n 

KJSt. 
3 

Thus \ak\ contains at least one member which satisfies the demands of 
the lemma. 

n 

Proof of the theorem. The U5'< is a non-empty compact set. Hence, by 
l 

Lemma 3.1, there is a hyperplane w supporting this set at a single point p, 
which we may suppose to be a point of Si. Let T+ be the open half-space 
defined by T that contains 

U S't - {p\ 
1 

and T~~ the complementary open half-space defined by x. Obviously w~ con-
n 

tains at most finitely many points of ^JSt. Suppose wi C TT+ is a hyperplane 
2 

parallel to -K and Z the central projection of 

TT+ n u 5* 
2 

on 7Ti with £ the centre of projection. Z is clearly compact. If Z is empty, then 
the theorem follows by Lemma 3.2, and if Z consists of a single point, the 
theorem follows by Lemma 3.3. 

Suppose then that Z contains at least two points with ôi and Ô2 a pair of 
parallel support hyperplanes relative to 7ri supporting Z at the single points 
di and d2 respectively, as guaranteed by Lemma 3.1. Let pt be the hyperplane 
through p and ôt. These hyperplanes clearly support 

u st n 7T+ 
2 
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at sets of points lying entirely on the rays pdt. We distinguish between two 
cases : 

1. There exists a sequence {pt} of points in Si — {p} approaching p with 
no point in at least one of the two hyperplanes, say pi. 

2. There is no such sequence. n 

In Case 1, let r\ be the point of U5* on the ray pd\ nearest p and r1 the 
2 

point furthest from p. Let cri and a1 be the hyperplanes relative to pi through 
t\ and r1, respectively, parallel to T P I pi. There must be a subsequence of 
\Pi) approaching p from either pi+ or pi~, where pi+ and pi~ are the two open 
half-spaces defined by pi. The theorem follows in either case by an application 
of Lemma 3.4. If pi+ is the half-space containing Z, <n serves as the fi in the 
lemma in the first instance and a1 in the second; p± serves as a in both cases. 

In Case 2, there are infinitely many points of Si — {p} in pi A p2 r\ U for 
each neighbourhood U of p. Obviously, then, a line L through ri and 

qes1- \p\ 

in pi exists such that 

n 

LDU St= 0. 
3 

By an argument similar to the one used in the proof of Lemma 3.4 it is readily 
n 

seen that a hyperplane through L, which is disjoint from U6\ , exists. This 
completes the proof of the theorem. 
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