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REMARKS ON OP AND TOWBER RINGS 

DAVID LISSNER AND ANTHONY GERAMITA 

1. Introduction. In this paper all rings considered have identity and are 
commutative, and all modules are finitely generated. We shall make liberal 
use of the definitions and notation established in [6; 7]. 

Towber observed in [9] that a local Outer Product ring (OP-ring) must 
have v-dimension rg 2, and so a local OP-ring is either regular of global 
dimension ^ 2 or it has infinite global dimension. Since the global dimension 
of a noetherian ring is the supremum of the global dimensions of its localiza­
tions, we immediately obtain the following result. 

THEOREM 1.1. The global dimension of a noetherian OP-ring is eitherco or ^ 2 . 

All of these cases do in fact occur, for if K is a field, then K, K[x], and 
K[x, y] are OP-rings of global dimensions 0, 1, and 2, respectively, and Z4 is 
an OP-ring of infinite global dimension (see [4, Chapter VI, Exercise 1] and 
Theorem 2.1 of this paper). 

In all the cases we have considered, the Towber rings are precisely the 
OP-rings of finite global dimension; we conjecture that this is always the case 
for noetherian rings. Of course, a noetherian Towber ring is an OP-ring by 
definition and has finite global dimension [7, Theorem 4.7] ; thus our conjecture 
amounts to the converse. In this paper we shall give several instances which 
support this conjecture. 

A noetherian ring of global dimension ^ 1 is a finite direct sum of 
Dedekind domains [1, Proposition 4.13]; Dedekind domains are Towber rings 
[9, Theorem 1.2]; and the finite direct sum of Towber rings is a Towber ring 
[7, Theorem 5.4] ; hence we have the following result. 

THEOREM 1.2. A noetherian ring of global dimension rgl is a Towber ring. 

This, of course, provides a partial answer to our conjecture, and reduces 
the question to rings of global dimension 2. 

In § 2 we investigate the OP and Towber properties in several special 
classes of rings (principal ideal rings (PIR), rings with descending chain 
condition (DCC), local rings, and non-semi-simple integral domains, i.e. 
integral domains with non-zero Jacobson radical) and verify the conjecture 
in each of these cases. We also state a conjecture equivalent to the original 
one, which may be a little more accessible. 
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In § 3 we study the structure of uL under various conditions, and verify 
the conjecture formulated in § 2, and hence also the original conjecture, for 
unique factorization domains (UFD). Along the way we show that a unique 
factorization domain (which need not be noetherian) of global dimension ^ 2 
is a Towber ring if and only if its finitely generated projective modules are 
free; this generalizes slightly the equivalence of [7, parts (1) and (3) of 
Theorem 7.5]. We also show, as a consequence of these considerations, that in 
a noetherian integral domain of global dimension ^ 2 the inverse of any 
fractional ideal is an invertible ideal. 

We close with some general remarks about the relation between the structure 
of uL and the decomposability of u; roughly speaking, these are not as closely 
related as some of the results in [7; 9] would seem to imply. 

2. Examples. 

Definition 2.1 [11, Chapter IV, § 15, p. 245]. A principal ideal ring (PIR) 
is called special if it has a unique proper prime ideal and that prime ideal 
is nilpotent. 

LEMMA 2.1. A special PIR is an OP-ring. 

Proof. Every vector over such a ring is a constant multiple of a unimodular 
vector; thus it will be sufficient to show that all unimodular vectors are outer 
products, i.e., that these rings are H-rings. But they are surely local rings, 
and local rings are H-rings by [7, Corollary 2.12]. 

THEOREM 2.1. Every PIR is an OP-ring. 

Proof. A PIR is a finite direct sum of principal ideal domains (PID) and 
special PIRs [11, Chapter IV, Theorem 33] and the OP-property is invariant 
under direct sums [7, Theorem 5.4], hence this follows from Lemma 2.1 and 
[6, Theorem 2.2]. 

As in [7], we shall use D(R) to denote the global dimension of the ring R. 
See also [7, § 4] for the definition of Tp

n. 

THEOREM 2.2. If R is a PIR, then the following statements are equivalent: 
(1) R is a Towber ring; 
(2) R has property T2

4; 
(3) R is a finite direct sum of PIDs; 
(4) D{R) 5 a ; 
(5) D(R) < o o . 

Proof. (1) <=» (2). This is [7, Theorem 7.4]. 
(2) => (3). This is a consequence of [7, Proposition 4.4 and Theorem 5.4], 

and the structure theorem for PIRs mentioned above. 
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(3)=» (4). If i ? i s a P I D , then D(R) ^ 1, and D(£i © Rt) = sup, D(Rt). 
(4) => (5). This is clear. 
(5) => (1). If D(R) <oo , then no direct summand of R is a special PIR, 

since a non-trivial special PIR is an irregular local ring and so has infinite 
global dimension. Hence R is a direct sum of PIDs and therefore a Towber 
ring [7, Theorem 5.4; 6, Theorem 2.2]. 

Thus the conjecture mentioned in the introduction is valid for PIRs: these 
are all OP-rings, and they are Towber rings if and only if their global dimension 
is finite. The next theorem establishes the conjecture for (commutative) rings 
with DCC. 

THEOREM 2.3. For a ring R with DCC the following statements are equivalent: 
(1) R is a Towber ring; 
(2) R has property T2

4; 
(3) R is a finite direct sum of fields; 
(4) D(R) = 0; 
(5) D(R) <co. 

Proof. (1) <=» (2). This is [7, Theorem 7.4]. 
(2) =» (3). Every ring with DCC is a direct sum of noetherian primary rings 

[11, Chapter IV, Theorem 3], i.e., noetherian rings with exactly one proper 
prime ideal. Since property T2

4 is inherited by every summand of R, we need 
only show that such a ring with property T2

4 must be a field. 
Let R be a noetherian primary ring with maximal ideal M; then 

pij^o Mk = (0) by Krull's Theorem, and R has the DCC, and so Mi s 
nil potent. This contradicts [7, Proposition 4.4] unless M = (0), i.e., unless R 
is a field. 

(3) => (4). Fields have global dimension 0, and D ( £ * © Rt) = supiD(Ri). 
(4) =» (5). This is obvious. 
(5) => (1). If A is a primary ring with maximal ideal not (0), then Krull 

dimension ^ 4 = 0 and v-dim A > 0, and so D(A) = oo. Thus D(R) < oo 
implies that all summands of R are primary rings whose sole proper prime 
ideal is (0), i.e., fields. Of course, fields are Towber rings and the Towber 
property is preserved by finite direct sums. 

Towber has shown that a local ring is an OP-ring if and only if it has 
v-dimension ^ 2 [10] and a Towber ring if it has global dimension ^ 2 
[9, Theorem 1.1]. In [7, Theorem 4.7] we showed that a local ring is a Towber 
ring only if it has global dimension ^ 2 ; thus our conjecture also holds for 
local rings. 

Since a noetherian ring of finite global dimension is a (finite) direct sum of 
integral domains [1, Corollary 4.4] and since the OP and Towber properties 
are invariant under direct sums, it would be sufficient to verify the conjecture 
for integral domains. For the rest of this paper we shall restrict ourselves to 
this case. 
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Thus, let R be an integral domain, 12 its maximal spectrum, 12p its prime 
spectrum, and J its Jacobson radical. For any closed subset F of 12 and any 
ideal 7 in R let 

7(F) = n x and W(I) = {p £ Qp\ p 2 1} ; 

then 1(F) is an ideal in R and W(7) is a closed subset of 12̂ . 

LEMMA 2.2. 7/ J? w noetherian and F is irreducible, then 1(F) is a prime ideal 
in Rand F = W(I(F))r\Q. 

Proof. F = W(I) C\ 12 for some ideal 7, since 7" is closed. Then certainly 
7 C 7(F), and so W(I(F)) C W(I) and W(7(F)) H 12 C F. The opposite 
inclusion is clear, thus W/(7(F)) P\ 12 = F, and it remains only to show that 
1(F) is prime. Let pi, . . . , pk be the prime ideals belonging to 1(F); then 
W(I(F)) = W(£i) U . . . U TF(p*) and 

F = [^(pj) n û ] u . . . u [^(£*) r\ 12]. 
Since F is irreducible, it follows that F = T^(^0 P\ 12 for some i. Then 
^z £ DXÇF x = 7(F), and so pt = 1(F) and 7(F) is prime. 

LEMMA 2.3. 7/ i? is a non-semi-simple noetherian integral domain, then 
dim 12 g 7>(F) - 1. 

Proof. If F0 C 7\ C • • • C Fn is a proper chain of irreducible closed sets 
in 12, then 7(F0) 12 7(FX) 2 . . . Z> 7(Fre) is a chain of prime ideals ini?, 
and the inclusions are proper, since, by Lemma 2.2 7(Fa) = I(Fa+i) would 
imply Fa = Fa+i. Of course 

7 (FJ = Pl x^ C\x = J and 7 ^ (0) ; 

thus 7 ( F J ^ (0) and 7(F0) D 7(7\) D . . . D 7 ( F J D (0) is a proper chain 
of prime ideals in R of length n + 1. Thus the Krull dimension of i? must 
be ^ dim 12 + 1 and of course D(R) ^ Krull dimension of R, and hence 
D(R) ^ dim 12 + 1 also. 

THEOREM 2.4. For non-semi-simple noetherian integral domains the Towber 
property is equivalent to global dimension r§2. 

Proof. The Towber property implies global dimension ^ 2 [7, Theorem 4.7], 
and so we need only show the converse. Of course D (R) ^ 2 implies dim 12 ^ 1 ; 
thus by [8, Theorem 1], every projective i^-module is the direct sum of a free 
module and an ideal. Then R is a Towber ring [7, Theorem 3.5]. 

Again, our conjecture holds for the given class of rings. The next theorem 
will enable us to restate the conjecture in a possibly more accessible form. 

THEOREM 2.5. Let R be a noetherian integral domain with property T2
3. Then 

D(R) ^ 2 if and only if R is integrally closed. 
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Proof. Necessity. A noetherian integral domain of finite global dimension 
is integrally closed [1, Proposition 4.2]. 

Sufficiency. All the hypotheses are retained by localization, and so we may 
assume that R is a local ring. Then R has v-dimension 5^2 [7, Proposition 4.6], 
and so has Krull dimension ^ 2 also. If the Krull dimension is 0, then R is a 
field and D(R) = 0, while if the Krull dimension is 2, then R is regular and 
D(R) — 2. If the Krull dimension of R is 1, then the maximal ideal of R is 
the only non-trivial prime ideal; in this casein is noetherian, integrally closed, 
and its only prime is maximal; thus R is a Dedekind domain [11, Chapter V, 
Theorem 13] and D(R) = 1. Thus D(R) ^ 2 in any case. 

In view of the above theorem our conjecture amounts to the following 
statement. 

For integrally closed noetherian domains, the OP and Towber properties 
are equivalent. 

In the next section (Theorem 3.4) we shall show that this is, at any rate, 
the case for UFDs. 

THEOREM 2.6. Let Rbe a noetherian integral domain with global dimension ^ 2 
and trivial class group. Then R is a Towber ring if and only if all finitely generated 
projective R-modules are free. 

Proof. If projective i^-modules are free, then R is a Towber ring [7, 
Theorem 3.5] ; thus suppose that R is a Towber ring, and let P be a (finitely 
generated) projective i^-module. By [7, Theorem 7.1], there is an jR-module I 
of rank 1 for which P © I is free. / is then projective, hence isomorphic to 
an invertible ideal, and hence free, since by hypothesis invertible ideals are 
principal. Then P is also free, since Towber rings are certainly H-rings. 

Of course, UFDs always have trivial class group, and so it follows in 
particular that a noetherian UFD of global dimension ^ 2 is a Towber ring 
if and only if its projective modules are free. In the next section (Theorem 3.2) 
we show that this is in fact true without the noetherian hypothesis. 

3. The s t ruc tu re of u1-. Let R be an integral domain with field of quotients 
K and let u G /\sKn. As in [7], we shall consider Rn to be contained in Kn 

and f\Rn in f\Kn, and shall use uK
L to denote {v £ Kn\ v A u = 0} and UR1-

(or sometimes simply u^ if u £ f\sRn) for uK
L Pi Rn. 

PROPOSITION 3.1. Let R be an integral domain, let P ® Q = Rn and 
rank P = s. Then P = u-1 for some decomposable vector u G /\s Rn. 

Proof. As usual we use PK to denote the X-space P ®RK, and consider 
this to be contained in Kn\ then Kn = PK © QK. Let {vi, . . . , vs\ be a basis 
for PK and {vs+i, . . . , vn] a basis for QK, and let u = Vi A . . . A Î̂ S G /\sKn. 
Then PK = uK

L and P = PK C\ Rn, and so P = uR
L. By clearing denominators 

if necessary we may assume that Vi, . . . , vs G P\ then u is a decomposable 
vector in /\sRn and P = u1-, as desired. 
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Thus every projective i^-module actually occurs as the annihilator of some 
decomposable vector. 

PROPOSITION 3.2 (Towber). Let Rbe a UFD and u a Plucker vector in /\k Rn 

whose natural coordinates have greatest common divisor 1. Then u is decomposable 
if and only if u1 is free. 

Proof. This is [9, Theorem 2.3]. (Actually, Towber states his theorem 
without the gcd condition, but his proof assumes this and the theorem would 
be false without it. For if it were true, then by our Proposition 3.1 every 
projective module over a UFD would be free, and this is not the case.) 

THEOREM 3.1. If R is a (not necessarily noetherian) UFD with property Tk
n 

and u is a Plucker vector in /\k Rn, then uL is free. 

Proof. If the gcd of the natural coordinates of u is 1, the theorem follows 
from Proposition 3.2. If the gcd is not 1, we factor it out; the resulting vector 
is also a Plucker vector, and hence decomposable. Thus u = cv, where c G R 
and v1- is free by Proposition 3.2. Of course uL = vL, hence this proves the 
theorem. 

COROLLARY 3.1. If R is a (not necessarily noetherian) Towber UFD, then 
finitely generated projective R-modules are free. 

Proof. By Proposition 3.1, every finitely generated projective module occurs 
as a u1- for some decomposable exterior vector u. Decomposable vectors are 
certainly Plucker vectors; thus the corollary then follows from Theorem 3.1. 

By [7, Proposition 3.1; 9, Proposition 1.3], any integral domain of global 
dimension 5^2 whose projective modules are free is a Towber ring. This, 
together with the preceding corollary, yields the following result. 

THEOREM 3.2. A (not necessarily noetherian) UFD of global dimension ^ 2 
is a Towber ring if and only if its finitely generated projective modules are all free. 

An argument similar to that of Theorem 3.1 yields a simple proof of the 
following well-known result, which we used in § 2. 

THEOREM 3.3. UFD s have trivial class group. 

Proof. Let / be a projective ideal. By Proposition 3.1, I = uL for some 
u G f\} Rn, and as before we can write u = cv with v a vector whose coordinates 
have gcd 1. Then u-1 = v1- and v is trivially decomposable; thus / is free by 
Proposition 3.2, and therefore principal. 

THEOREM 3.4. For noetherian UFD s the OP and Towber properties are 
equivalent. 

Proof. Towber rings are certainly OP-rings; thus we must show the converse. 
If R is a noetherian UFD with the OP property, then D(R) S 2 by Theorem 
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2.5, and by Theorem 2.6 it will be sufficient to show that projective P-modules 
are free. 

In view of Serre's theorem [8, Theorem 1], we need only show that projective 
modules of rank 2 are free, so let P be projective of rank 2 and choose Q so 
that P © Q = Rm for some m. By applying Serre's theorem to Q and Bass' 
cancellation theorem [2, Theorem 9.3] to P © Q we may further assume 
that rank Q = 2. Then P © Q = P 4 and there is a decomposable vector 
u £ / \ 2 P 4 such that P = u1-; letu = vx A ^.Thenz/i A v2 9* 0 (since P 9* P4) 
and we can find vz £ P 4 such that vi A v2 A Vz 9e 0 also. Let 

5 = (vi A 2̂ A fls)-1-. 

Then 5 ~ P 3 by Theorem 3.1, and of course P Ç 5. In particular, v± and v2 

are in 5, and P = (Ï/I A î'2)1; thus P is free by another application of 
Theorem 3.1. 

LEMMA 3.1. Let R be a noetherian integral domain and Ku . . . , Kv non-zero 
fractional ideals of R. Let Ij = R: Kj for each j , and M = Ii © . . . © Iv. 
Then M = (vi A . . . A Vp)1- for some n and some vlf . . . , vp £ Rn-

Proof. Since R is noetherian, each Kj is finitely generated ; say Kj is generated 
by {aia\ . . . , asj^} for each j . We may, of course, assume that the KjS 
are all integral ideals, in which case a*00 G R for all i and j . Let 

n = si + . . . + sp 

and define vectors vu . . . , vp £ Pw as follows: 

» ! = (<*!<»,..., a,^», 0, . . . , 0 ) , 
v2 = (0, . . . , ( W 2 \ . . . , aS2<2\0, . . . , 0 ) , 

»p = (0, . . . , ( W * \ . . . , a ^ ) . 

Let P be the field of quotients of R. For each j , some at
U) 9e 0 (since 

Kj ^ (0)), and so the z ŝ are linearly independent over P, and 

(fli A . . . A vp)F-L = Fvi © . . . © Fvv. 

Of course (vi A . . . A v^)^ = (vi A . . . A ^ ) F X H Rn, and so 

wÇ (»! A . . . A vp)Ri-

if and only if w G Rn and «/ = /i^i + . . . + fvvv for some / 1 , . . . ,fp £ P 
Clearly / ^ i + . . . + / ^ a ï ï if and only if fp^ G R for all j and all 
relevant i, i.e., if and only if fj £ Ij for all 7. Thus (vi A . . . A ^)ig-L = 
Ii^i © . . . © / ^ ~ I\ © . . . © /p, as desired. 

If / is a non-zero fractional ideal in an integral domain R, the ideal R:I in 
general need not be invertible, as examples in [3; 5] show. By Lemma 3.1, 
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however, if R is noetherian we do have R:I ~ vL for some v G A 1 ^ * a ° d 
hence dimB(R:I) ^ max(D(R) - 2,0) [7, Proposition 3.1]. If D(R) ^ 2, 
R:I is therefore projective and hence invertible; this proves the following 
result. 

THEOREM 3.5. / / R is a noetherian integral domain of global dimension ^ 2 , 
then R:I is invertible for every non-zero fractional ideal I. 

Again let R be a noetherian integral domain and u a Plûcker vector in 
/\p Rn. In [7, Theorem 3.4; 9, Theorem 2.2], it is stated, roughly, that if uL is 
fairly simple, then u is decomposable. The converse, however, is not true; 
uL can be very complicated even when u is decomposable. One indication of 
this is given by Proposition 3.1, which states that every projective i?-module 
can be realized as a uL for some decomposable u. Another indication is 
[7, Proposition 3.2], according to which uL need not even be projective. 
Specifically, if R is a noetherian integral domain of global dimension n (2^2) 
this proposition yields a Plùcker vector u for which \\-àïm(uL) = n — 2. 
u is then decomposable over the quotient field of R, and so some scalar 
multiple is decomposable over R, and of course has the same annihilator; thus 
this proposition yields decomposable vectors whose annihilators have arbi­
trarily large homological dimension (or at any rate the largest homological 
dimension allowed by [7, Proposition 3.1]). If R is not regular (that is, if 
some localization of R has infinite global dimension), the construction yields 
a decomposable vector whose annihilator has infinite homological dimension. 

The next proposition indicates the universality of this sort of behaviour. 

PROPOSITION 3.3. Let Rbea regular noetherian domain of global dimension ^ 3. 
Then for every pair (g, n) such that 2 ^ q < n there is a decomposable vector 
u G /\qRn for which uL is not projective. 

LEMMA 3.2. If R is a local ring with property T / , then v-dim R ^ 2. 

The proof of the lemma is a simple adaptation of the argument used in the 
proof of [9, Theorem 2.4]; we will not repeat that argument here. 

Proof of Proposition 3.3. Since R is noetherian and D(R) ^ 3, there is a 
maximal ideal M for which D(RM) ^ 3. By Lemma 3.2, RM does not have 
property Tq

n; thus there is a Plûcker vector u G f\qRM
n which is not de­

composable. By [9, Proposition 1.3], (w-1)^ is then not free, and hence not 
projective, since RM is a local ring. But (U±)BM is (isomorphic to) the 
localization of UR1- at M [7, Proposition 2.15], and so it follows that uR

L is 
not projective either. 

Since u is a Plûcker vector, it is decomposable over the quotient field of 
RM, which is of course the same as the quotient field of R; a suitable scalar 
multiple cu will then be decomposable over R, and of course (cu)^ = uR

r, 
which is not projective. 
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Perhaps the real point here is that for any Plucker vector u over an integral 
domain R one can find a non-zero r Ç R such that ru is decomposable. Then 
(ru)1 = u1, ru is decomposable, and u in general will not be; hence the struc­
ture of uL is not as closely related to the decomposability of u as some of our 
earlier results might suggest. 
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