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Canonical commutation relations

Throughout this chapter (Y, ω) is a pre-symplectic space, that is, Y is a real
vector space equipped with an anti-symmetric form ω. From the point of view of
classical mechanics, Y will have the interpretation of the dual of a phase space,
or, as we will say for brevity, of a dual phase space. Note that for quantum
mechanics dual phase spaces seem more fundamental that phase spaces.

In this chapter we introduce the concept of a representation of the canonical
commutation relations (a CCR representation). According to a naive definition,
a CCR representation is a linear map

Y � y �→ φπ (y) (8.1)

with values in self-adjoint operators on a certain Hilbert space satisfying

[φπ (y1), φπ (y2)] = iy1 ·ωy21l. (8.2)

We will call (8.2) the canonical commutation relations in the Heisenberg form.
They are unfortunately problematic, because one needs to supply them with the
precise meaning of the commutator of unbounded operators on the left hand
side.

Weyl proposed replacing (8.2) with the relations satisfied by the operators
eiφπ (y ) . These operators are bounded, and therefore one does not need to discuss
domain questions. In our definition of CCR representations we will use the canon-
ical commutation relations in the Weyl form (8.4). Under additional regularity
assumptions they imply the CCR in the Heisenberg form.

We will introduce two kinds of CCR representations. The usual definition is
appropriate to describe neutral bosons. In the case of charged bosons a somewhat
different formalism is used, which we introduce under the name “charged CCR
representations”. Charged CCR representations can be viewed as special cases
of (neutral) CCR representations, where the dual phase space Y is complex and
a somewhat different notation is used.

8.1 CCR representations

8.1.1 Definition of a CCR representation

Let H be a Hilbert space. Recall that U(H) denotes the set of unitary operators
on H.
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174 Canonical commutation relations

Definition 8.1 A representation of the canonical commutation relations or a
CCR representation over (Y, ω) in H is a map

Y � y �→Wπ (y) ∈ U(H) (8.3)

satisfying

Wπ (y1)Wπ (y2) = e−
i
2 y1 ·ωy2 Wπ (y1 + y2). (8.4)

Wπ (y) is then called the Weyl operator corresponding to y ∈ Y.

Remark 8.2 The superscript π is an example of the “name” of a given CCR
representation. It is attached to W , which is the generic symbol for “Weyl oper-
ators”. Later on the same superscript will be attached to other generic symbols,
e.g. field operators φ.

Remark 8.3 Sometimes we will call (8.3) neutral CCR representa-
tions, to distinguish them from charged CCR representations introduced in
Def. 8.35.

Proposition 8.4 Consider a CCR representation (8.3). Let y, y1 , y2 ∈ Y,
t1 , t2 ∈ R. Then

Wπ∗(y) = Wπ (−y), Wπ (0) = 1l,

Wπ (t1y)Wπ (t2y) = Wπ
(
(t1 + t2)y

)
,

Wπ (y1)Wπ (y2) = e−iy1 ·ωy2 Wπ (y2)Wπ (y1). (8.5)

Definition 8.5 A CCR representation (8.3) is called regular if

R � t �→Wπ (ty) ∈ U(H) is strongly continuous for any y ∈ Y. (8.6)

8.1.2 CCR representations over a direct sum

CCR representations can be easily tensored with one another:

Proposition 8.6 If

Yi � yi �→ Wi(y) ∈ U(Hi), i = 1, 2, (8.7)

are two CCR representations, then

Y1 ⊕ Y2 � (y1 , y2) �→W 1(y1)⊗W 2(y2) ∈ U(H1 ⊗H2)

is also a CCR representation.

8.1.3 Cyclicity and irreducibility

Consider a CCR representation (8.3). The following concepts are parallel to the
analogous concepts in the representation theory of groups or C∗-algebras:
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8.1 CCR representations 175

Definition 8.7 We say that a subset E ⊂ H is cyclic for (8.3) if Span
{
Wπ (y)Ψ :

Ψ ∈ E , y ∈ Y} is dense in H. We say that Ψ0 ∈ H is cyclic for (8.3) if {Ψ0} is
cyclic for (8.3).

Definition 8.8 We say that the CCR representation (8.3) is irreducible if
the only closed subspaces of H invariant under the Wπ (y) for y ∈ Y are {0}
and H.

Proposition 8.9 (1) A CCR representation is irreducible iff B ∈ B(H) and
[Wπ (y), B] = 0 for all y ∈ Y implies that B is proportional to identity.

(2) In the case of an irreducible representation, all non-zero vectors in H are
cyclic.

8.1.4 Characteristic functions of CCR representations

Definition 8.10 We say that Y � y �→ G(y) ∈ C is a characteristic function if
for α1 , . . . , αn ∈ C, y1 , . . . , yn ∈ Y and n ∈ N we have

n∑
i,j=1

αiαjG(−yi + yj )e
i
2 yi ·ωyj ≥ 0. (8.8)

Note that for any CCR representation y �→W (y) ∈ U(H) and any vector Ψ ∈
H

G(y) := (Ψ|W (y)Ψ) (8.9)

is a characteristic function. We will see that every characteristic function comes
from a certain CCR representation and a cyclic vector, as in (8.9).

Until the end of this subsection we assume that y �→ G(y) is a characteristic
function. Set H0 = cc(Y, C), as in Def. 2.6, that is, H0 is the vector space of
finitely supported functions on Y. Equip it with the sesquilinear form (·|·) defined
by

(δy1 |δy2 ) := e
i
2 y1 ·ωy2 G(−y1 + y2).

It follows from (8.8) that (·|·) is semi-positive definite. Let N be the space of
vectors in ξ ∈ H0 such that (ξ|ξ) = 0. Set H := (H0/N )cpl.

For any y ∈ Y we define a linear operator W0(y) on H0 by

W0(y)δy1 := e
i
2 y ·ωy1 δy1 +y .

The operator W0(y) preserves the form (·|·), hence it preserves N . Therefore, it
defines a linear operator W (y) on H0/N by

W (y)ξ := W0(y)ξ +N , ξ ∈ H0 .

W (y) extends to a unitary operator on H. We set Ψ := δ0 +N .
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176 Canonical commutation relations

Proposition 8.11 Consider the family of operators

Y � y �→ W (y) ∈ U(H) (8.10)

constructed above from a characteristic function y �→ G(y).

(1) (8.10) is a CCR representation, Ψ is a cyclic vector and G(y) = (Ψ|W (y)Ψ).
(2) The following conditions are equivalent:

(i) (8.10) is regular.
(ii) R � t �→ G(y1 + ty2) is continuous for any y1 , y2 ∈ Y.

8.1.5 Intertwining operators

Let

Y � y �→ W 1(y) ∈ U(H1), (8.11)

Y � y �→ W 2(y) ∈ U(H2) (8.12)

be CCR representations over the same pre-symplectic space Y.

Definition 8.12 We say that an operator A ∈ B(H1 ,H2) intertwines (8.11) and
(8.12) iff

AW 1(y) = W 2(y)A, y ∈ Y.

We say that (8.11) and (8.12) are unitarily equivalent if there exists U ∈
U(H1 ,H2) intertwining (8.11) and (8.12).

The proof of the following proposition is essentially identical to the proof of
Thm. 6.29:

Proposition 8.13 If the representations (8.11) and (8.12) are irreducible, then
the set of operators intertwining them is either {0} or {λU : λ ∈ C} for some
U ∈ U(H).

8.1.6 Schrödinger representation

Let X be a finite-dimensional real vector space. Equip X # ⊕X with its canonical
symplectic form. It follows from Thms. 4.28 and 4.29 that the map

X # ⊕X � (η, q) �→ ei(η ·x+q ·D ) ∈ U
(
L2(X )

)
(8.13)

is an irreducible regular CCR representation.

Definition 8.14 (8.13) is called the Schrödinger representation over X # ⊕X .

Conversely let (Y, ω) be a finite-dimensional symplectic space and

Y � y �→ W (y) ∈ U(H) (8.14)
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8.1 CCR representations 177

be a regular CCR representation. By Thm. 1.47, there exists a space X such
that Y can be identified with X # ⊕X as symplectic spaces. Thus we can rewrite
(8.14) as

X # ⊕X � (η, q) �→ W (η, q)

satisfying

W (η1 , q1)W (η2 , q2) = e−
i
2 (η1 ·q2 −η2 ·q1 )W (η1 + η2 , q1 + q2).

The maps

X # � η �→W (η, 0),

X � q �→ W (0, q)

are strongly continuous unitary groups satisfying

W (η, 0)W (0, q) = e−iη ·qW (0, q)W (η, 0).

The following theorem is a corollary to the Stone–von Neumann theorem:

Theorem 8.15 Under the above stated assumptions, there exists a Hilbert space
K and a unitary operator U : L2(X )⊗K → H such that

W (η, q)U = Uei(η ·x+q ·D ) ⊗ 1lK.

The representation is irreducible iff K = C.

Proof It suffices to use Thm. 4.34 and the identities

W (η, q) = e−
i
2 η ·qW (η, 0)W (0, q), ei(η ·x+q ·D ) = e−

i
2 η ·qeiη ·xeiq ·D .

�

The following corollary follows directly from Thm. 4.29 and Prop. 8.13:

Corollary 8.16 Suppose that Y is a finite-dimensional symplectic space. Let
Y � y �→Wi(y) ∈ U(H), i = 1, 2, be two regular irreducible CCR representa-
tions. Then there exists U ∈ U(H1 ,H2), unique up to a phase factor, such that
UW1(y) = W2(y)U .

8.1.7 Weighted Schrödinger representations

Suppose that X is a finite-dimensional vector space with a Lebesgue measure dx.
Fix m ∈ L2

loc(X ) such that m �= 0 a.e.. Define the measure dμ(x) = |m|2(x)dx.
Then

L2(X ,dμ) � Ψ �→ UΨ := mΨ ∈ L2(X ,dx)

is a unitary operator. If in addition m ∈ L2(X ), then U1 = m.
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178 Canonical commutation relations

The following theorem is obvious:

Theorem 8.17

X ∗ ⊕X � (η, q) �→ U∗eiη ·x+iq ·D U

= eiη ·x+iq ·D+m−1 (x)q ·∇m (x) ∈ U
(
L2(X ,dμ)

)
is a regular irreducible CCR representation.

Remark 8.18 If V (x) := 1
2 m−1(x)Δm(x) is sufficiently regular, then we can

define the Schrödinger operator H := − 1
2 Δ + V (x). If m ∈ L2(X ), then we have

Hm = 0.
The operator H in the L2(X ,dμ) representation looks like

U∗HU = −1
2
Δ−m−1(x)∇m(x)·∇.

It is called the Dirichlet form corresponding to H. If m ∈ L2(X ), then 1 is its
eigenstate with the eigenvalue 0.

8.1.8 Examples of non-regular CCR representations

In most applications to quantum physics, CCR representations are regular. How-
ever, non-regular representations are also useful. In this subsection we describe
a couple of examples of non-regular CCR representations.

Recall that, for a set I, l2(I) denotes the Hilbert space of square summable
families of complex numbers indexed by I.

Example 8.19 Consider the Hilbert space l2(Y) and the following operators:

W d(y)f(x) := e−
i
2 y ·ωxf(x + y). (8.15)

Then

Y � y �→W d(y) ∈ U
(
l2(Y)

)
(8.16)

is a CCR representation.
Note that R � t �→ W d(ty) is not strongly continuous for non-zero y ∈ Y.

Hence (8.16) is non-regular.

Example 8.20 Let X be a real vector space (of any dimension). Recall that
X # ⊕X is naturally a symplectic space. On l2(X ) define the following operators:

V (η)f(x) := eiη ·xf(x), η ∈ X # ;

T (q)f(x) := f(x− q), q ∈ X .

Then

X # ⊕X � (η, q) �→ V (η)T (q)e
i
2 η ·q ∈ U

(
l2(X )

)
(8.17)

is a CCR representation.
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8.1 CCR representations 179

Note that R � t �→ T (tq) is not strongly continuous for non-zero q ∈ X . Hence
(8.17) is non-regular.

8.1.9 Bogoliubov transformations

Let

Y � y �→W (y) ∈ U(H) (8.18)

be a CCR representation.
Recall that Y# denotes the space of linear functionals on Y, and Sp(Y) the

group of symplectic transformations of Y. Let v ∈ Y# , r ∈ Sp(Y). Clearly, the
map

Y � y �→Wv,r (y) := eiv ·yW (ry) ∈ U(H) (8.19)

is a CCR representation.

Definition 8.21 (8.19) can be called the Bogoliubov transformation of (8.18)
by (v, r). Alternatively, if r = 1l, it can be called the Bogoliubov translation by
v or, if v = 0, the Bogoliubov rotation by r.

The pairs (v, r) that appear in (8.19) are naturally interpreted as elements
of the group Y# � Sp(Y), the semi-direct product of Y# and Sp(Y), with the
product given by

(v2 , r2)(v1 , r1) := (r#
1 v2 + v1 , r2r1).

Note that Y# � Sp(Y) can be viewed as a subgroup of the affine group Y# �
Sp(Y# ) = ASp(Y# ), with the homomorphic embedding

Y# � Sp(Y) � (v, r) �→ (r# −1v, r# −1) ∈ ASp(Y# ).

Proposition 8.22 (1) If (v1 , r1), (v2 , r2) ∈ Y# � Sp(Y), then(
W (v1 ,r1 ))(v2 ,r2 )(y) = W (v1 ,r1 )(v2 ,r2 )(y).

(2) The set of (v, r) ∈ Y# � Sp(Y) such that (8.19) is unitarily equivalent to
(8.18) is a subgroup of Y# � Sp(Y) containing ωY � {1l} ⊂ Y# � {1l}.

(3) (8.19) is regular iff (8.18) is.
(4) (8.19) is irreducible iff (8.18) is.

Proof To see that for v ∈ ωY (8.19) and (8.18) are equivalent, we note

Wv,1l(y) = W (ω−1v)W (y)W (−ω−1v). �

Proposition 8.23 Let Y be finite-dimensional and ω symplectic. Then

(1) (8.18) and (8.19) are unitarily equivalent for any (v, r) ∈ Y# � Sp(Y).
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180 Canonical commutation relations

(2) Let Op(·) and Op(v ,r)(·) denote the Weyl quantization w.r.t. (8.18) and
(8.19) respectively. (See (8.42) later on for the definition of the Weyl quan-
tization.) For b ∈ S ′

(Y# ), set

bv,r (w) = b(r# w + v), w ∈ Y# .

Then Op(v ,r)(b) = Op
(
b(v ,r)

)
.

8.2 Field operators

Throughout the section, (Y, ω) is a pre-symplectic space and we are given a
regular CCR representation

Y � y �→ Wπ (y) ∈ U(H). (8.20)

8.2.1 Definition of field operators

By regularity and (8.6), R � t �→Wπ (ty) is a strongly continuous unitary group.
By Stone’s theorem, for any y ∈ Y, we can define its self-adjoint generator

φπ (y) := −i
d
dt

Wπ (ty)
∣∣
t=0 .

In other words, eiφπ (y ) = Wπ (y).

Definition 8.24 φπ (y) will be called the field operator corresponding to y ∈ Y.
(Sometimes the name Segal field operator is used.)

Theorem 8.25 Let y, y1 , y2 ∈ Y.

(1) Wπ (y) leaves invariant Dom φπ (y1) and

[φπ (y),Wπ (y1)] = y1 ·ωy Wπ (y1). (8.21)

(2) φπ (ty) = tφπ (y), t ∈ R.
(3) One has Dom φπ (y1) ∩Dom φπ (y2) ⊂ Dom φπ (y1 + y2) and

φπ (y1 + y2) = φπ (y1) + φπ (y2), on Dom φπ (y1) ∩Dom φπ (y2). (8.22)

(4) In the sense of quadratic forms on Dom φπ (y1) ∩Dom φπ (y2), we have

[φπ (y1), φπ (y2)] = iy1 ·ωy21l. (8.23)

Proof (8.21) follows immediately from differentiating in t the identity

Wπ (ty)Wπ (y1) = Wπ (y1)Wπ (ty)e−ity ·ωy1 .
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8.2 Field operators 181

To obtain (8.22), we note that, for Ψ ∈ Dom φπ (y1) ∩Dom φπ (y2),

t−1(Wπ (t(y1 + y2))− 1l
)
Ψ = e−

i
2 t2 y1 ·ωy2 Wπ (ty1)t−1(Wπ (ty2)− 1l

)
Ψ

+ e−
i
2 t2 y1 ·ωy2 t−1(Wπ (ty1)− 1l

)
Ψ

+ t−1(e− i
2 t2 y1 ·ωy2 − 1l

)
Ψ

→
t→0

iφ(y2)Ψ + iφ(y1)Ψ.

By differentiating the identity(
Wπ (t1y1)Ψ1 |Wπ (t2y2)Ψ2

)
= e−it1 t2 y1 ·ωy2

(
Wπ (t2y2)Ψ1 |Wπ (t1y1)Ψ2

)
w.r.t. t1 and t2 , and setting t1 = t2 = 0, we obtain (8.23). �

Sometimes it is convenient to introduce CCR representations with help of
field operators, as described in the following proposition. We recall that Clh(H)
denotes the set of self-adjoint operators on H.

Proposition 8.26 Let Y � y �→ φπ (y) ∈ Clh(H) be a map such that

(1) φπ (ty) = tφπ (y), t ∈ R;
(2) eiφπ (y1 )eiφπ (y2 ) = e−

i
2 y1 ·ωy2 eiφπ (y1 +y2 ), y1 , y2 ∈ Y.

Then Y � y �→Wπ (y) := eiφπ (y ) is a regular CCR representation, and φπ (y) are
the corresponding Segal field operators.

Remark 8.27 Let X ⊂ Y be an isotropic subspace. Then the field operators
φπ (q) with q ∈ X commute with one another. Hence

φπ (q), q ∈ X ,

is an X # -vector of commuting self-adjoint operators (see Def. 2.77). If f is a
cylindrical Borel function on X # , then the operator f(φπ ) is well defined by the
functional calculus.

8.2.2 Common domain of field operators

Definition 8.28 The Schwartz space for the CCR representation (8.20) is
defined as the intersection of Dom φπ (y1) · · ·φπ (yn ) for y1 , . . . , yn ∈ Y. It is
denoted H∞,π and has the structure of a topological vector space with semi-norms
‖φπ (y1) · · ·φπ (yn )Ψ‖.

Clearly, polynomials in φπ (y) act as operators on H∞,π .

Theorem 8.29 Let Y be finite-dimensional. Then

(1) H∞,π is dense in H.
(2) If ω = 0, then H∞,π coincides with the space of C∞ vectors for the vector of

commuting self-adjoint operators φπ .
(3) If ω is non-degenerate, then Ψ ∈ H∞,π iff the function Y � y �→ (Ψ|Wπ (y)Ψ)

belongs to S(Y).
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182 Canonical commutation relations

(4) If Y = X # ⊕X and (8.20) is the Schrödinger representation in L2(X ), then
H∞,π equals S(X ).

Proof (2) is obvious. (3) follows from Thms. 8.15 and 4.30. (4) follows from
Thm. 4.15.

Let us prove (1). Set Y0 = Ker ω. Let Y1 ⊂ Y be a complementary space to
Y0 . Y1 is symplectic, hence we can assume that, for some space X , Y1 = X # ⊕X
with the canonical symplectic form. By Thm. 8.15, there exists a unitary map
U : L2(X )⊗K → H such that

Wπ (y1) = UW (y1)⊗ 1lKU∗, y1 ∈ Y1 ,

where W (y) denote the Weyl operators in the Schrödinger representation. Now
we know from (3) that U S(X )

a l⊗K is contained in the Schwartz space for Y1 �
y1 �→Wπ (y1).

Using that Y0 and Y1 are orthogonal for ω and Thm. 4.29, we obtain that
U∗Wπ (y0)U = 1l⊗Wπ0 (y0) for y0 ∈ Y0 , where Y0 � y0 �→ Wπ0 (y0) ∈ U(K) is a
CCR representation. By (2), the corresponding Schwartz space K∞,π0 is dense
in K. Thus U S(X )

a l⊗K∞,π0 ⊂ H∞,π is dense in H. �

If Y has an arbitrary dimension, then Thm. 8.29 is still useful, because it can
be applied to finite-dimensional subspaces of Y. In particular, Thm. 8.29 implies
that for an arbitrary symplectic space Y, the spaces Dom φπ (y1) ∩Dom φπ (y2)
considered in Thm. 8.25 are dense in H.

8.2.3 Non-self-adjoint fields

As in Subsect. 1.3.5, we can equip CY with the anti-symmetric form ωC.

Definition 8.30 For w = y1 + iy2 , y1 , y2 ∈ Y, we define the field operator

φπ (w) := φπ (y1) + iφπ (y2) with domain Dom φπ (y1) ∩Dom φπ (y2).

Proposition 8.31 (1) For w = y1 + iy2 , y1 , y2 ∈ Y,

φπ (w) is closed on Dom φπ (y1) ∩Dom φπ (y2).

(2) For w1 , w2 ∈ CY, λ1 , λ2 ∈ C,

φπ (λ1w1 + λ2w2) = λ1φ
π (w1) + λ2φ

π (w2) on Dom φπ (w1) ∩Dom φπ (w2).

(3) For w1 , w2 ∈ CY,

[φπ (w1), φπ (w2)] = iw1 ·ωCw21l as a quadratic form on

Dom φπ (w1) ∩ Dom φπ (w2).

Proof By Thm. 8.25, we have, for Ψ ∈ Dom φπ (y1) ∩Dom φπ (y2),

‖φπ (y1 + iy2)Ψ‖2 = ‖φπ (y1)Ψ‖2 + ‖φπ (y2)Ψ‖2 − y1 ·ωy2‖Ψ‖2 . (8.24)
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8.2 Field operators 183

We know that φπ (y1) and φπ (y2) are self-adjoint, hence closed. Therefore,
Dom φπ (y1) and Domφπ (y2) are complete in the graph norms. Hence so is
Dom φπ (y1) ∩ Dom φπ (y2) in the intersection norm. This proves (1). (2) is imme-
diate and (3) follows immediately from Thm. 8.25 (4). �

8.2.4 CCR over a Kähler space

In this subsection we assume that ω is symplectic. We fix a CCR representation
(8.20). We use the notation and results of Subsects. 1.3.6, 1.3.8 and 1.3.9.

The following proposition shows that choosing a sufficiently large subspace of
commuting field operators that annihilate a certain vector is equivalent to fixing
a Kähler structure in (Y, ω).

Proposition 8.32 Suppose that Z is a complex subspace of CY such that

(1) CY = Z ⊕ Z,
(2) z1 , z2 ∈ Z implies φπ (z1)φπ (z2) = φπ (z2)φπ (z1) (or, equivalently, Z is

isotropic for ωC).

Then there exists a unique pseudo-Kähler anti-involution j on (Y, ω) such that

Z = {y − ijy : y ∈ Y}. (8.25)

If in addition
(3) there exists a non-zero Ω ∈ H such that Ω ∈ Dom φπ (z) and φπ (z)Ω = 0,
z ∈ Z, then j is Kähler.

Proof By (1), each y ∈ Y can be written uniquely as y = zy + zy . Clearly, zy

depends linearly on y. We have i(2zy − y) = i(2zy − y). Hence jy := i(2zy − y)
defines j ∈ L(Y), and (8.25) is true.

(2) implies

0 = (y1 + ijy1)·ωC(y2 + ijy2)

= y1 ·ωy2 − (jy1)·ω(jy2) + i
(
(jy1)·ωy2 + y1 ·ωjy2

)
.

Hence

y1 ·ωy2 − (jy1)·ω(jy2) = (jy1)·ωy2 + y1 ·ωjy2 = 0,

which shows that j is symplectic and infinitesimally symplectic, hence pseudo-
Kähler.

Then we compute using (3):

0 = ‖φ(y + ijy)Ω‖2

=
(
Ω|φπ (y)2Ω

)
+
(
Ω|φπ (jy)2Ω

)− i
(
Ω|[φπ (jy), φπ (y)]Ω

) ≥ −y·ωjy. �
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Motivated in part by the above proposition, let us fix j, a pseudo-Kähler anti-
involution on (Y, ω). Recall that the space Z given by (8.25) is called the holo-
morphic subspace of CY (see Subsect. 1.3.6).

Definition 8.33 We define the (abstract) creation and annihilation operators
associated with j by

aπ∗(z) := φπ (z), aπ (z) := φπ (z), z ∈ Z.

By Prop. 8.31, if z = y − ijy ∈ Z, then aπ (z) = φπ (y) + iφπ (jy), aπ∗(z) =
φπ (y)− iφπ (jy) are closed operators on Dom φπ (y) ∩Dom φπ (jy).

Proposition 8.34 (1) One has φπ (z, z) = aπ∗(z) + aπ (z), z ∈ Z.
(2)

[aπ∗(z1), aπ∗(z2)] = 0, [aπ (z1), aπ (z2)] = 0,

[aπ (z1), aπ∗(z2)] = z1 · z21l, z1 , z2 ∈ Z.

Proof (1) is immediate, since (z, z) = (z, 0) + (0, z). The first line of (2) follows
from the fact that Z, Z are isotropic for ωC (see Subsect. 1.3.9). To prove the
second line we write

[aπ (z1), aπ∗(z2)] = [φπ (z1), φπ (z2)] = iz1 ·ωCz21l

= −iz1 · jCz21l = z1 · z21l,

using Subsect. 1.3.9 and the fact that jCz2 = iz2 , since z2 ∈ Z. �

Note that in the case of a Fock representation, considered in Chap. 9, the space
Y has a natural Kähler structure. The abstract creation and annihilation opera-
tors defined in Def. 8.33 coincide then with the usual creation and annihilation
operators.

If the space Y is equipped with a charge 1 symmetry, then we have a natural
pseudo-Kähler structure (see Subsect. 1.3.11). The corresponding creation and
annihilation operators are then called charged field operators. However, in this
case we prefer to use a slightly different formalism, which is described in the next
subsection.

8.2.5 Charged CCR representations

CCR representations, as defined in Def. 8.1, are used mainly to describe neutral
bosons. Therefore, sometimes we will call them neutral CCR representations.
In the context of charged bosons one uses another formalism described in the
following definition.

Definition 8.35 Let (Y, ω) be a charged pre-symplectic space, that is, a complex
vector space equipped with an anti-Hermitian form denoted (y1 |ωy2), y1 , y2 ∈ Y
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(see Subsect. 1.2.11). Let H be a Hilbert space. We say that a map

Y � y �→ ψπ (y) ∈ Cl(H)

is a charged CCR representation if there exists a regular CCR representation of
(YR,Re (·|ω·))

Y � y �→ Wπ (y) = eiφπ (y ) ∈ U(H) (8.26)

such that

ψπ (y) =
1√
2
(φπ (y) + iφπ (iy)), y ∈ Y.

Proposition 8.36 Suppose that Y � y �→ ψπ (y) is a charged CCR representa-
tion. Let y, y1 , y2 ∈ Y. We have:

(1) ψπ (λy) = λψπ (y), λ ∈ C.
(2) On Dom ψπ (y1) ∩Dom ψπ (y2) we have ψπ (y1 + y2) = ψπ (y1) + ψπ (y2).
(3) In the sense of quadratic forms, we have the identities

[ψπ∗(y1), ψπ∗(y2)] = [ψπ (y1), ψπ (y2)] = 0,

[ψπ (y1), ψπ∗(y2)] = i(y1 |ωy2)1l.

By definition, a charged CCR representation determines the neutral CCR rep-
resentation (8.26) on the symplectic space (YR,Re(·|ω·)) with the fields given by

φπ (y) :=
1√
2

(ψπ (y) + ψπ∗(y)) , y ∈ Y. (8.27)

In addition, (YR,Re(·|ω·)) is equipped with a charge 1 symmetry

U(1) � θ �→ eiθ ∈ Sp(YR).

Conversely, charged CCR representations arise when the underlying symplectic
space of a (neutral) CCR representation is equipped with a charge 1 symmetry.
Let us make this precise. Suppose that (Y, ω) is a symplectic space and

Y � y �→ eiφ(y ) ∈ U(H)

is a regular neutral CCR representation. Suppose that

U(1) � θ �→ uθ = cos θ1l + sin θjch ∈ Sp(Y)

is a charge 1 symmetry. We know from Prop. 1.94 (2) that jch is a pseudo-Kähler
anti-involution. Set

ψπ (y) =
1√
2
(φπ (y) + iφπ (jchy)), ψπ∗(y) =

1√
2
(φπ (y)− iφπ (jchy)), y ∈ Y.
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Then we obtain a charged CCR representation over YC with the complex struc-
ture given by jch and the anti-Hermitian form

(y1 |ωy2) := y1 ·ωy2 − iy1 ·ωjchy2 , y1 , y2 ∈ Y.

We can look at this construction as follows. By the standard procedure
described in the previous subsection, we introduce the holomorphic subspace
for jch , that is,

Zch := {y − ijchy : y ∈ Y} ⊂ CY.

Introduce the creation and annihilation operators associated with jch :

aπ
ch(z) := φπ (z) , aπ∗

ch (z) := φπ∗ (z) , z ∈ Zch .

We have a natural identification of the space Zch with Y:

Y � y �→ z =
1√
2
(1l− ijch)y ∈ Zch . (8.28)

Then

ψπ (y) := aπ
ch(z), ψπ∗(y) := aπ∗

ch (z).

8.2.6 CCR over a symplectic space with conjugation

Let X be a real vector space. Let V be a subspace of X # . Consider the space
V ⊕ X equipped with its canonical pre-symplectic form ω. Clearly, it is also
equipped with a conjugation

τ(η, q) = (η,−q), (η, q) ∈ V ⊕ X .

Let

V ⊕ X � (η, q) �→ eiφπ (η ,q) ∈ U(H)

be a regular CCR representation.

Definition 8.37 The (abstract) position and momentum operators are X - and
X # -vectors of commuting self-adjoint operators defined by

η · xπ := φπ (η, 0), η ∈ V;

q ·Dπ := φπ (0, q), q ∈ X .

A natural conjugation on the symplectic space Y is available in the case of the
Schrödinger representation. In this case the operators defined in Def. 8.37 are
the usual momentum and position operators.

Recall that for the Schrödinger representation the symplectic space is finite-
dimensional. One often considers a conjugation on an infinite-dimensional sym-
plectic space. This is the case for the real-wave representation (see Sect. 9.3),
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which to some extent can be viewed as a generalization of the Schrödinger
representation to infinite dimensions. However, besides a conjugation, the real-
wave representation requires an additional structure: Y needs to be a Kähler
space. CCR relations over a Kähler space with a conjugation are discussed in
the following subsection.

8.2.7 CCR over a Kähler space with conjugation

Suppose that X is a real Hilbert space and c > 0 is an operator on X . Set

Y := (2c)−
1
2 X ⊕ (2c)

1
2 X ,

which is a symplectic space with a conjugation. (Note that (2c)−
1
2 X can be

viewed as the space dual to (2c)
1
2 X ). Consider a regular CCR representation

(2c)−
1
2 X ⊕ (2c)

1
2 X � (η, q) �→ eiφπ (η ,q) ∈ U(H).

Let xπ and Dπ be the position and momentum operators introduced in Def. 8.37.
We introduce the following definition:

Definition 8.38 For w ∈ Cc−
1
2 X we define Schrödinger-type creation and anni-

hilation operators

aπ∗
sch(w) :=

1
2
w · xπ − icw ·Dπ , aπ

sch(w) :=
1
2
w · xπ + icw ·Dπ .

By Subsect. 8.2.3, aπ
sch(w) and aπ∗

sch(w) are closed and the adjoints of each
other on their natural domains.

Proposition 8.39 (1) For η ∈ C(2c)−
1
2 X , q ∈ C(2c)

1
2 X , we have

η · xπ = aπ∗
sch(η) + aπ

sch(η), q ·Dπ =
1
2i
(
aπ

sch(c−1q)− aπ∗
sch(c−1q)

)
. (8.29)

(2) For w1 , w2 ∈ CX ,[
aπ

sch(w1), aπ∗
sch(w2)

]
= w1 · cw21l,[

aπ
sch(w1), aπ

sch(w2)
]

=
[
aπ∗

sch(w1), aπ∗
sch(w2)

]
= 0.

(8.30)

It is easy to interpret Schrödinger-type creation and annihilation operators in
terms of an appropriate Kähler structure on Y with a conjugation, following the
terminology of Subsect. 1.3.10. Let us equip Y = (2c)−

1
2 X ⊕ (2c)

1
2 X with the

anti-involution

j :=
[

0 −(2c)−1

2c 0

]
.

Clearly, the pair j, ω is Kähler. The corresponding scalar product of (ηi, qi) ∈ Y,
i = 1, 2, is

(η1 , q1) · (η2 , q2) = η1 ·2cη2 + q1 ·(2c)−1q2 . (8.31)
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Let us consider the map

Cc−
1
2 X � w �→ z :=

1l− ij
2

(w, 0) =
(1

2
w,−icw

)
∈ CY. (8.32)

(8.32) is unitary onto Z, the holomorphic subspace of CY associated with j. Then
we have

aπ
sch(w) = aπ (z), aπ∗

sch(w) = aπ∗(z),

where aπ∗(z), resp. aπ (z), are the creation, resp. annihilation operators associ-
ated with the anti-involution j, as in Subsect. 8.2.4.

In what follows we drop the superscript π. A standard choice of c is c = 1l, for
which

j =
[

0 − 1
2 1l

21l 0

]
,

and leads to the formulas

a∗
sch(w) =

1
2
w · x− iw ·D, asch(w) =

1
2
w · x + iw ·D,

w · x = a∗
sch(w) + asch(w), w ·D =

1
2i

(−a∗
sch(w) + asch(w)), w ∈ CX .

This choice is the most convenient in the context of the real-wave representation,
which will be described later.

In another choice, which is often found in the literature, one takes c = 1
2 1l

and multiplies asch(w) and a∗
sch(w) by

√
2 to keep the commutation relation

[asch(w1), a∗
sch(w2)] = w1 · w2 , which leads to the formulas

a∗
sch(w) =

1√
2
w · x− i√

2
w ·D, asch(w) =

1√
2
w · x +

i√
2
w ·D,

w · x =
1√
2

(
a∗

sch(w) + asch(w)
)
, w ·D =

1
i
√

2

(−a∗
sch(w) + asch(w)

)
, w ∈ CX .

This choice is more symmetric, but leads to the appearance of ugly square roots
of 2; therefore we will not use it.

8.3 CCR algebras

In some approaches to quantum physics the initial step consists in choosing a
∗-algebra, usually a C∗- or W ∗-algebra, which is supposed to describe observables
of a system. Only after choosing a state (or a family of states) and making the
corresponding GNS construction, we obtain a representation of this ∗-algebra
in a Hilbert space. This philosophy allows us to study a quantum system in a
representation-independent fashion.

Many authors try to apply this approach to bosonic systems. This raises the
question whether one can associate with a given pre-symplectic space (Y, ω)

https://doi.org/10.1017/9781009290876.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.009
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a natural and useful ∗-algebra describing the canonical commutation relations
over Y.

The analogous question has a rather satisfactory answer in the fermionic case.
In particular, there exists an obvious choice of a C∗-algebra describing the CAR
over a given Euclidean space. It turns out, however, that in the bosonic case
the situation is much more complicated, since for a given pre-symplectic space
several natural choices of CCR algebra are possible.

This question is discussed in this section. Throughout this section, (Y, ω) is
a pre-symplectic space and we discuss various ∗-algebras associated with Y. We
will see that each choice has its drawbacks. In the literature, the most popular
choice seems to be the Weyl CCR algebra, which we discuss in Subsect. 8.3.5.
One can, however, argue that, at least in the case of regular representations, it is
more natural to use what we call the regular CCR algebra discussed in Subsect.
8.3.4. Some authors prefer to use the polynomial CCR algebra, discussed in
Subsect. 8.3.1, which is purely algebraic and is not a C∗-algebra.

Unfortunately, the C∗-algebraic approach to bosonic systems has some serious
problems. Many authors apply it in the case of free dynamics (given by Bogoliu-
bov automorphisms). In the case of physically interesting interacting dynamics,
the C∗-algebraic approach is not easy to apply. In fact, in the case of bosonic
systems with infinite-dimensional phase spaces it is usually difficult to find a
natural C∗-algebra preserved by a non-trivial dynamics. Sometimes, in such a
case one can apply W ∗-algebras, which we do not discuss here.

In the approach to canonical commutation relations discussed in this book, the
central role is played by CCR representations, as defined in Def. 8.1. We view
various CCR algebras introduced in this section more as academic curiosities
than as basic tools. Therefore, the reader in a hurry may skip this section on the
first reading.

8.3.1 Polynomial CCR ∗-algebras
In this subsection we discuss the polynomial CCR ∗-algebra over Y. Note that for
non-zero ω we cannot represent CCRpol(Y) as an algebra of bounded operators
on a Hilbert space. The usefulness of this ∗-algebra for rigorous mathematical
physics is rather limited.

Definition 8.40 The polynomial CCR ∗-algebra over Y, denoted by CCRpol(Y),
is defined to be the unital complex ∗-algebra generated by elements φ(y), y ∈ Y,
with relations

φ(λy) = λφ(y), λ ∈ R, φ(y1 + y2) = φ(y1) + φ(y2),

φ∗(y) = φ(y), φ(y1)φ(y2)− φ(y2)φ(y1) = iy1 ·ωy21l.

Let us describe basic properties of CCRpol(Y).

https://doi.org/10.1017/9781009290876.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.009


190 Canonical commutation relations

Proposition 8.41 (1) Let r ∈ ASp(Y). Then there exists a unique ∗-
isomorphism r̂ : CCRpol(Y) → CCRpol(Y) such that r̂(φ(y)) = φ(ry), y ∈ Y.

(2) Let Y1 be a subspace of Y. Then CCRpol(Y1) is naturally embedded in
CCRpol(Y), such that, for y ∈ Y1 , φ(y) in the sense of CCRpol(Y1) coin-
cide with φ(y) in the sense of CCRpol(Y). If moreover Y1 �= Y, then
CCRpol(Y1) �= CCRpol(Y).

Definition 8.42 r̂ defined in Prop. 8.41 is called the Bogoliubov automorphism
of CCRpol(Y) corresponding to r.

Proposition 8.43 Let H be a Hilbert space and let Y � y �→ eiφπ (y ) ∈ U(H) be
a regular CCR representation. Recall that H∞,π denotes the Schwartz space for a
given regular CCR representation, and was defined in Def. 8.28. Then there exists
a unique ∗-representation π : CCRpol(Y) → L(H∞,π ) such that π(φ(y)) = φπ (y).

8.3.2 Stone–von Neumann CCR algebras

In this subsection we always assume that (Y, ω) is a finite-dimensional pre-
symplectic space. We set Y0 := Ker ω ⊂ Y. In this case there exists a natural
candidate for a CCR algebra suggested by the Stone–von Neumann theorem
(Thm. 8.15), which implies the following proposition:

Proposition 8.44 (1) Let Mi ⊂ B(Hi), i = 1, 2, be von Neumann algebras with
distinguished unitary elements Wi(y) depending σ-weakly continuously on
y ∈ Y. Let Zi be the centers of Mi. Assume that

(i) Wi(y1)Wi(y2) = e−
i
2 y1 ·ωy2 Wi(y1 + y2), y1 , y2 ∈ Y;

(ii) Span
{
Wi(y) : y ∈ Y} is σ-weakly dense in Mi;

(iii) Zi are ∗-isomorphic to L∞(Y#
0 );

(iv) M′
i = Zi.

Then there exists a unique σ-weakly continuous ∗-isomorphism ρ : M1 → M2

such that

ρ
(
W1(y)

)
= W2(y), y ∈ Y.

Moreover, there exists a unitary operator U :H1 →H2 such that ρ(·)= U ·U∗.
If Ui, i = 1, 2, are two such operators, then U∗

1 U2 ∈ Z1 and U1U
∗
2 ∈ Z2 .

(2) Identify Y with Y0 ⊕X # ⊕X and ω with the canonical symplectic form
on X # ⊕X extended by zero on Y0 . Let v denote the generic variable in
Y#

0 and the corresponding multiplication operator. Then the von Neumann
algebra

L∞(Y#
0 )⊗B

(
L2(X )

) ⊂ B
(
L2(Y#

0 ⊕X )
)

(8.33)

and the family of its elements W (y) := ei(y0 v+ηx+qD ), y = (y0 , η, q) ∈ Y0 ⊕
X # ⊕X , satisfy the requirements of (1). (⊗ used in (8.33) is the tensor
multiplication in the category of W ∗-algebras; see Subsect. 6.3.2.)
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Prop. 8.44 suggests the following definition:

Definition 8.45 A Stone–von Neumann CCR algebra over Y is defined as a von
Neumann algebra M with distinguished unitary elements W (y), y ∈ Y, satisfying
the conditions of Prop. 8.44. It is denoted CCR(Y) and the Hilbert space it acts
on is denoted HY .

Prop. 8.44 shows that CCR(Y) is defined uniquely up to a spatially imple-
mentable ∗-isomorphism. Clearly, if ω = 0, then CCR(Y) � L∞(Y# ). If ω is
symplectic, then CCR(Y) = B(HY).

Definition 8.46 Let y ∈ Y. The corresponding abstract field operator φ(y) is
defined as the self-adjoint operator on HY such that W (y) = eiφ(y ).

Note that the operators φ(y) are affiliated to CCR(Y).
Note also that the definition of the Stone–von Neumann CCR algebra is sim-

pler if ω is symplectic – we can then drop (iii) and (iv) from Prop. 8.44.
The following proposition is an analog of Prop. 8.41 about polynomial CCR

∗-algebras. But whereas Prop. 8.41 was a trivial algebraic fact, Prop. 8.47 is
somewhat deeper.

Proposition 8.47 (1) Let r ∈ ASp(Y). Then there exists a unique spatially
implementable ∗-isomorphism r̂ : CCR(Y) → CCR(Y) such that r̂(W (y)) =
W (ry), y ∈ Y.

(2) Let Y1 ⊂ Y. Then there is a unique embedding of CCR(Y1) in CCR(Y), such
that, for y ∈ Y1 , W (y) in the sense of CCR(Y1) coincide with W (y) in the
sense of CCR(Y). If moreover Y1 �= Y, then CCR(Y1) �= CCR(Y).

Definition 8.48 r̂ defined in Prop. 8.47 is called the Bogoliubov automorphism
of CCR(Y) corresponding to r.

Here is yet another reformulation of the Stone–von Neumann theorem (see
Thm. 8.15):

Theorem 8.49 Let (Y, ω) be symplectic. Let Y � y �→ Wπ (y) ∈ U(H) be a reg-
ular CCR representation. Then there exists a unique σ-weakly continuous ∗-
representation π : CCR(Y) → B(H) such that π(W (y)) = Wπ (y), y ∈ Y. More-
over, π is isometric and

π(CCR(Y)) =
{
Wπ (y) : y ∈ Y}′′.

If in addition the representation is irreducible, then there also exists a unitary
operator U : H → HY , unique up to a phase factor, such that π(·) = U · U∗.

8.3.3 S- and S ′-type operators

In this subsection we fix a finite-dimensional symplectic space (Y, ω) and con-
sider the von Neumann algebra CCR(Y) = B(HY). We will describe an abstract
version of the constructions described in Subsect. 4.1.11.
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Definition 8.50 Ψ ∈ HY is called an S-type vector if the function

Y � y �→ (Ψ|W (y)Ψ)

belongs to S(Y). The abstract Schwartz space for Y is defined as the set of S-type
vectors. It is denoted H∞.

Clearly, φ(y), y ∈ Y, leaves H∞ invariant. Thus we can define a family of
semi-norms

H∞ � Ψ �→ ‖φ(y1) · · ·φ(yn )Ψ‖, y1 , . . . , yn ∈ Y,

which equip H∞ with the structure of a Fréchet space.

Definition 8.51 H−∞ is defined as the topological dual to H∞. It is called the
abstract S ′ space for Y.

Note that CCRpol(Y) can be represented as an algebra of linear operators on
H∞, as well as on H−∞.

Definition 8.52 A ∈ CCR(Y) is called an S-type operator iff it is trace-class
and the function

Y � y �→ Tr AW (y)

belongs to S(Y). The set of S-type operators is denoted CCRS(Y).

Clearly, CCRS(Y) is a ∗-algebra. It is equipped with a topology by the family
of semi-norms

CCRS(Y) � A �→ |Tr φ(y1) · · ·φ(yn )A|, y1 , . . . , yn ∈ Y.

Definition 8.53 Continuous linear functionals on CCRS(Y) are called S ′-type
forms over Y. Their space is denoted by CCRS′

(Y).

Let

CCRS(Y) � A �→ B(A) ∈ C (8.34)

be an S ′-type form. Clearly, for any Ψ1 ,Ψ2 ∈ H∞, the operator |Ψ2)(Ψ1 | belongs
to CCRS(Y). Thus, (8.34) defines a continuous sesquilinear form on H∞:

H∞ ×H∞ � (Ψ1 ,Ψ2) �→ B (|Ψ2)(Ψ1 |) ∈ C.

In what follows we will use the “operator notation”, writing (Ψ1 |BΨ2) instead of
B (|Ψ2)(Ψ1 |). Thus bounded operators can be viewed as elements of CCRS′

(Y),
so that we have

CCRS(Y) ⊂ CCR(Y) ⊂ CCRS′
(Y).

As in Subsect. 4.1.11, we define the adjoint form B∗ by (Ψ1 |B∗Ψ2) =
(Ψ2 |BΨ1). If B1 or B∗

2 extend as continuous operators on H∞, then we can
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define B2 ◦B1 as an element of CCRS′
(Y) by

(Ψ1 |B2 ◦B1Ψ2) := (Ψ1 |B2(B1Ψ)), or (Ψ1 |B2 ◦B1Ψ2) := (B∗
2 Ψ|B1Ψ).

In particular this is possible if B1 or B2 ∈ CCRpol(Y).
If Y � X # ⊕X and we consider the Schrödinger representation on L2(X ),

then CCRS(Y) coincides with the set of operators whose integral kernel is in
S(X × X ). CCRS′

(Y) consists then of forms whose distributional kernel is in
S ′(X × X ), which were considered already in Subsect. 4.1.11.

8.3.4 Regular CCR algebras

Until the end of this section, (Y, ω) is a pre-symplectic space of arbitrary dimen-
sion. Recall that Fin(Y) denotes the set of finite-dimensional subspaces of Y.

In this subsection we introduce the notion of the regular CCR C∗-algebra over
Y. In the literature, it is rarely used. Weyl CCR C∗-algebras are more common.
Nevertheless, it is a natural construction. Its use was advocated by I. E. Segal.

Let Y1 ,Y2 ∈ Fin(Y) and Y1 ⊂ Y2 . We can define their Stone–von Neumann
CCR algebras, as in Def. 8.45. By Prop. 8.47, we have a natural embedding,

CCR(Y1) ⊂ CCR(Y2).

We can define the algebraic regular CCR ∗-algebra as the inductive limit of
Stone–von Neumann CCR algebras:

Definition 8.54 We set

CCRreg
alg (Y) :=

⋃
Y1 ∈Fin(Y)

CCR(Y1). (8.35)

Clearly, CCRreg
alg (Y) is a ∗-algebra equipped with a C∗-norm.

Definition 8.55 We define the regular CCR C∗-algebra over Y as

CCRreg(Y) :=
(
CCRreg

alg (Y)
)cl

.

Clearly, CCRreg(Y) is a generalization of the Stone–von Neumann algebra
CCR(Y) from Def. 8.45.

We have an obvious extension of Prop. 8.47:

Proposition 8.56 (1) Let r ∈ ASp(Y). Then there exists a unique ∗-
isomorphism r̂ : CCRreg(Y) → CCRreg(Y) such that r̂(W (y)) = W (ry),
y ∈ Y.

(2) Let Y1 ⊂ Y. Then CCRreg(Y1) is naturally embedded in CCRreg(Y). If more-
over Y1 �= Y, then CCRreg(Y1) �= CCRreg(Y).
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Proof Let us give a proof of (2). Working in the Schrödinger representation
we see that ‖W (y1)−W (y2)‖ = 2 if y1 �= y2 . Hence, if y ∈ Y\Y1 , then W (y) �∈
CCRreg(Y1). �

Definition 8.57 r̂ defined in Prop. 8.56 is called the Bogoliubov automorphism
of CCRreg(Y) corresponding to r.

The following proposition is an extension of Thm. 8.49:

Proposition 8.58 Suppose that ω is symplectic. Let Y � y �→ Wπ (y) ∈ U(H)
be a regular CCR representation. Then there exists a unique ∗-representation
π : CCRreg(Y) → B(H) such that π(W (y)) = Wπ (y), y ∈ Y, and which, for
Y1 ∈ Fin(Y), is σ-weakly continuous on the sub-algebras CCR(Y1) ⊂ CCRreg(Y).
Moreover, π is isometric.

Proof We use the fact that if ω is symplectic then we can restrict the union in
(8.35) to run over finite-dimensional symplectic subspaces of Y. �

8.3.5 Weyl CCR algebra

In this subsection we introduce the notion of the Weyl CCR C∗-algebra over Y.
This is the C∗-algebra generated by elements satisfying the Weyl CCR relations
over Y. Mathematical physicists use Weyl CCR algebras often in their description
of bosonic systems.

Note that Weyl CCR algebras can be viewed as non-commutative generaliza-
tions of algebras of almost periodic functions. Indeed, CCRWeyl

alg (Y) consists of
almost periodic functions on Y if ω = 0.

Let us start with the definition of algebraic Weyl CCR algebras.

Definition 8.59 CCRWeyl
alg (Y) is defined as the ∗-algebra generated by the ele-

ments W (y), y ∈ Y, with relations

W (y)∗ = W (−y), W (y1)W (y2) = e−
i
2 y1 ·ωy2 W (y1 + y2), y, y1 , y2 ∈ Y.

Let Y � y �→ Wπ (y) ∈ U(Hπ ) be a CCR representation. Clearly, there exists
a unique unital ∗-isomorphism π : CCRWeyl

alg (Y) → B(Hπ ) such that π(W (y)) =
Wπ (y).

Let R(Y) be the class of CCR representations over Y. R(Y) is non-empty. In
fact, we always have the (non-regular) CCR representation Y � y �→ W d(y) ∈
U
(
l2(Y)

)
defined in (8.15). It yields a corresponding faithful representation πd :

CCRWeyl
alg (Y) → B

(
l2(Y)

)
.

Definition 8.60 For A ∈ CCRWeyl
alg (Y) we set

‖A‖ := sup
{‖π(A)‖ : π ∈ R(Y)

}
. (8.36)
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The Weyl CCR C∗-algebra is defined as

CCRWeyl(Y) :=
(
CCRWeyl

alg (Y)
)cpl

.

Clearly, ‖ · ‖ defined in (8.36) is a C∗-norm and CCRWeyl(Y) is a C∗-algebra.

Proposition 8.61 (1) Let r ∈ ASp(Y). Then there exists a unique
∗-isomorphism r̂ : CCRWeyl(Y) → CCRWeyl(Y) such that r̂(W (y)) =
W (ry), y ∈ Y.

(2) Let Y1 ⊂ Y. Then CCRWeyl(Y1) is naturally embedded in CCRWeyl(Y). If
moreover Y1 �= Y, then CCRWeyl(Y1) �= CCRWeyl(Y).

(3) If Y �= {0}, then CCRWeyl(Y) is non-separable.

Proof (1) and (2) are obvious analogs of Prop. 8.41. (3) follows from the fact
that y1 �= y2 implies ‖W (y1)−W (y2)‖ = 2. �

Definition 8.62 r̂ defined in Prop. 8.61 is called the Bogoliubov automorphism
of CCRWeyl(Y) corresponding to r.

Let us give an analog of Prop. 8.43:

Proposition 8.63 Let Y � y �→ Wπ (y) ∈ U(H) be a CCR representation. Then
there exists a unique ∗-homomorphism

π : CCRWeyl(Y) → B(H)

such that π(W (y)) = Wπ (y).

If ω is symplectic, the algebra CCRWeyl(Y) enjoys especially good proper-
ties. In particular, there is no need to consider the norms given by all possible
representations, since all of them are equal.

Theorem 8.64 Let ω be symplectic. Then

(1) For A ∈ CCRWeyl(Y), ‖A‖ = ‖πd(A)‖.
(2) Every representation π described in Thm. 8.63 is isometric.
(3) CCRWeyl(Y) is simple.

Proof Let us prove (2).
For y ∈ Y we define R(y) ∈ U

(
l2(Y)

)
by setting

(R(y)f)(x) := f(x + y), f ∈ l2(Y).

Let Ŷ be the Pontryagin dual of Y (the space of characters on the group Y with
values in {z ∈ C : |z| = 1}). Let F : l2(Y) → L2(Ŷ) be the (unitary) Fourier
transformation. Then FR(y)F∗ = R̂(y), where R̂(y) ∈ U

(
L2(Ŷ)

)
is defined by

(R̂(y)g)(χ) := χ(y)g(χ), g ∈ L2(Ŷ), χ ∈ Ŷ.
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Consider now a CCR representation

Y � y �→ Wπ (y) ∈ U(H).

On the Hilbert space H⊗ l2(Y) � l2(Y,H) we introduce the unitary operator U

defined by

UΦ(x) := Wπ (x)Φ(x), Φ ∈ l2(Y,H), x ∈ Y.

Note that

U Wπ (y)⊗R(y) U∗ = 1l⊗W d(y). (8.37)

Now ∥∥∥∑λiW
d(yi)

∥∥∥ =
∥∥∥∑λiW

π (yi)⊗R(yi)
∥∥∥

=
∥∥∥∑λiW

π (yi)⊗ R̂(yi)
∥∥∥

= sup
χ∈Ŷ

∥∥∥∑λiW
π (yi)χ(yi)

∥∥∥
= sup

x∈Y

∥∥∥∑λiW
π (yi)e−ix·ωyi

∥∥∥
=
∥∥∥∑λiW

π (yi)
∥∥∥ .

First we applied (8.37). Next we used that F is unitary. Then we used that the set
of characters χx(y) := e−ix·ωy for x ∈ Y is dense in Ŷ, since ω is non-degenerate.
Finally we noted that

Wπ (yi)e−ix·ωyi = Wπ (x)Wπ (yi)Wπ (−x).

(2) immediately implies (1).
By Subsect. 6.2.3, (2) implies (3). �

8.4 Weyl–Wigner quantization

The Weyl–Wigner quantization has a long and complicated history. It also has
many names.

It was first proposed by Weyl in 1927 in his book on group theory in quantum
mechanics (Weyl (1931)). Hence it is commonly called the Weyl quantization.

Wigner was the first who considered its inverse, at least in the case of an oper-
ator of the form |Ψ)(Ψ|; see Wigner (1932b). Hence the name Wigner function
is commonly used to denote the inverse of the Weyl quantization.

Apparently, for some time the link between the Weyl quantization and the
Wigner function was not understood. This link seems to have been clarified only
in the late 1940s by Moyal (1949). Moyal also found a version of the formula
(8.41). The non-commutative operation ∗ defined by b := b1 ∗ b2 as in (8.41) is
often called the Moyal star. Moyal also found the identity (8.44).
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Our terminology, “the Weyl–Wigner quantization” and “the Weyl–Wigner
symbol”, is thus a compromise between the names “Weyl quantization” and
“Wigner function”. In the literature, one can also find the name Weyl–Wigner–
Moyal quantization.

One can argue that the Weyl–Wigner quantization is the most important kind
of quantization. It is certainly the most canonical quantization – its definition
depends only on the symplectic structure of the phase space. It is, however, not
so useful if the phase space has infinite-dimension.

Historically, Weyl introduced this quantization in the context of the
Schrödinger representation, which hides the symplectic invariance of this con-
cept. Therefore, in our presentation we start from manifestly symplectically
invariant definitions, which involve a regular CCR representation. The case of
the Schrödinger representation is discussed later, in Subsect. 8.4.3.

8.4.1 Quantization of polynomial symbols

In this subsection we will consider the Weyl–Wigner quantization only for poly-
nomial symbols. More general symbols will be considered in the following sub-
sections. (In the subsequent subsections we will, however, restrict ourselves to
finite-dimensional symplectic spaces Y).

Suppose that (Y, ω) is an arbitrary pre-symplectic space. Let

Y � y �→ eiφ(y ) ∈ U(H) (8.38)

be a regular CCR representation. Let H∞ denote the abstract Schwartz space for
this representation introduced in Def. 8.28. Recall that CCRpol(Y) denotes the
polynomial CCR algebra over Y, which can be treated as an algebra of operators
on H∞.

Definition 8.65 Let y1 , . . . , yn ∈ Y. We can treat these as polynomials on Y#

and take their product y1 · · · yn ∈ Polns (Y# ). We define

Op(y1 · · · yn ) :=
1
n!

∑
σ∈Sn

φ(yσ1) · · ·φ(yσn ). (8.39)

The map extends uniquely to a linear bijective map

CPols(Y# ) � b �→ Op(b) ∈ CCRpol(Y). (8.40)

Theorem 8.66 (1) Op(b)∗ = Op(b), for b ∈ CPols(Y# ).
(2) If y ∈ CY, then

Op(y) = φ(y).
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More generally, let X be an isotropic subspace in Y# , so that the operators
φ(y), y ∈ X commute with one another. Then, for f ∈ CPols(X ), Op(f)
coincides with f(φ) defined by the functional calculus.

(3) If b1 , b2 ∈ CPols(Y# ), then Op(b1)Op(b2) = Op(b) for

b(v) = exp
(
− i

2
Dv1 ·ωDv2

)
b1(v1)b2(v2)

∣∣
v=v1 =v2

. (8.41)

(4) If b ∈ CPols(Y# ) and y ∈ CY, then

1
2
(
φ(y)Op(b) + Op(b)φ(y)

)
= Op(yb).

Remark 8.67 We refer to Remark 8.27 for the notation used in (2). The r.h.s.
of (3) can be interpreted as a finite sum of differential operators.

The following theorem is a version of the Wick theorem adapted to the Weyl–
Wigner quantization.

Theorem 8.68 If b, b1 , . . . , bn ∈ CPols(Y# ) and

Op(b) = Op(b1) · · ·Op(bn ),

then

b(v) = exp
(

i
2

∑
i<j

∇vi
·ω∇vj

)
b1(v1) · · · bn (vn )

∣∣
v=v1 =···=vn

.

8.4.2 Quantization of distributional symbols

In this subsection we assume that the form ω is symplectic and Y is finite-
dimensional. We set 2d = dimY. Denote by dy the Liouville measure on Y
defined in Subsect. 3.6.3. The dual space Y# is equipped with the symplectic
form ω−1 and the dual measure dv.

Consider a regular irreducible CCR representation (8.38). In this subsection
we extend the Weyl–Wigner quantization to S ′(Y# ).

Recall that for b ∈ S ′(Y# ) the Fourier transform of b, denoted b̂ ∈ S ′(Y),
satisfies

b(v) = (2π)−2d

ˆ
Y

b̂(y)eiy ·vdy, v ∈ Y# .

Definition 8.69 If b ∈ S ′(Y# ), then Op(b) ∈ CCRS′
(Y) is defined by the

formula(
Ψ1 |Op(b)Ψ2

)
:= (2π)−2d

ˆ
Y

b̂(y)
(
Ψ1 |W (y)Ψ2

)
dy (8.42)

= (2π)−2d

ˆ
Y

ˆ
Y#

b(v)
(
Ψ1 |W (y)Ψ2

)
e−iv ·ydydv, Ψ1 ,Ψ2 ∈ H∞.
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Recall that H∞ is the space of S-type vectors for the representation (8.38).
We know from Thm. 8.29 that if Ψ1 ,Ψ2 ∈ H∞, then Y � y �→ (Ψ1 |W (y)Ψ2

)
is

a Schwartz function. Therefore, the integral (8.42) is well defined.
The following theorem extends some of statements of Thm. 8.66 to the case

of distributional symbols:

Theorem 8.70 (1) If b ∈ CPols(Y# ), then the definition (8.39) coincides with
(8.42).

(2) W (y) = Op(eiy (·)). More generally, if X is an isotropic subspace of Y, and
f ∈ S ′(X # ) ⊂ S ′(Y# ) is a measurable function, then Op(f) coincides with
f(φ) defined by the functional calculus.

(3) Op(b)∗ = Op(b).
(4) If b1 ∈ CPols(Y# ), b2 , b ∈ S ′(Y# ) and Op(b1)Op(b2) = Op(b), then

b(v) := exp
(
− i

2
Dv1 ·ωDv2

)
b1(v1)b2(v2)

∣∣∣
v=v1 =v2

= π−2d

ˆ

Y#

ˆ

Y#

e2i(v−v1 )·ω−1 (v−v2 )b1(v1)b2(v2)dv1dv2 .

(5) For v ∈ Y# , W (−ω−1v)Op(b)W (ω−1v) = Op(b(· − v)).
(6) The map

S ′(Y# ) � b �→ Op(b) ∈ CCRS′
(Y) (8.43)

is bijective.
(7) Op(b) ∈ B2(H) iff b ∈ L2(Y# ), and

Tr Op(b)∗Op(a) = (2π)−d

ˆ
b(v)a(v)dv, a, b ∈ L2(Y# ). (8.44)

Proof To prove (1), it is enough to consider y0 ∈ Y and b(v) = (y0 · v)n ,
because such polynomials span CPols(Y# ). The Fourier transform of b is b̂ =
(2π)2d in (y0 ·∇y )nδ0 . Hence

Op(b) = (−i)n (y0 ·∇y )nW (y)
∣∣
y=0 = φ(y0)n .

(2) follows from the spectral theorem and (3) is immediate.
To prove (4), set

b0(v1 , v2) = e−
i
2 Dv 1 ·ωDv 2 b1(v1)b2(v2).

Clearly,

b̂0(y1 , y2) = e−
i
2 y1 ·ωy2 b̂(y1)b̂(y2).

Moreover,

b(v) = b0(v, v) = (2π)−4d
´

b̂(y1 , y2)ei(y1 +y2 )·vdy1dy2

= (2π)−4d
´

b̂1(y1)b̂2(y2)e−
i
2 y1 ·ωy2 ei(y1 +y2 )·vdy1dy2 .
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Hence

Op(b) = (2π)−4d

ˆ ˆ
b̂1(y1)b̂2(y2)e−

i
2 y1 ·ωy2 W (y1 + y2)dy1dy2

= (2π)−4d

ˆ ˆ
b̂1(y1)b̂2(y2)W (y1)W (y2)dy1dy2

= Op(b1)Op(b2).

To prove the last two items of the theorem it is convenient to use the
Schrödinger representation, considered in the next subsection. �

Definition 8.71 The inverse of (8.43) will be called the Weyl–Wigner sym-
bol. If B ∈ CCRS′

(Y), its Weyl–Wigner symbol will be denoted by sB ∈
S ′(Y# ).

8.4.3 Weyl–Wigner quantization in the Schrödinger

representation

Let X be a finite-dimensional real vector space. Consider the Schrödinger repre-
sentation

X # ⊕X � (η, q) �→ ei(η ·x+q ·D ) ∈ U
(
L2(X )

)
.

Remark 8.72 In the Schrödinger representation one often writes bw (x,D)
instead of Op(b).

Theorem 8.73 (1) Let b ∈ S ′(X ⊕ X # ). The distributional kernel of B =
Op(b) can be computed as follows:

B(x, y) = (2π)−d

ˆ
b
(x + y

2
, ξ
)
ei(x−y )·ξdξ. (8.45)

(2) Let B ∈ CCRS′
(X # ⊕X ). The symbol of B can be obtained from its distri-

butional kernel by the formula

sB (x, ξ) =
ˆ

B
(
x +

y

2
, x− y

2

)
e−iξ ·ydy.

(3) The relationship between the x,D-symbol and the Weyl–Wigner symbol is as
follows: If Opx,D (b+) = Op(b), then

b+(x, ξ) = e
i
2 Dx ·Dξ b(x, ξ)

= π−d

ˆ
e−i2(x−x1 )·(ξ−ξ1 )b(x1 , ξ1)dx1dξ1 .
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(4) If Op(b) = Op(b1)Op(b2), then

b(x, ξ)

= exp
i
2

(
Dξ1 ·Dx2 −Dξ2 ·Dx1

)
b1(x1 , ξ1)b2(x2 , ξ2)

∣∣∣
x = x1 = x2

ξ = ξ1 = ξ2

= π−2d

ˆ
e2i(x−x1 )·(ξ−ξ2 )−(x−x2 )·(ξ−ξ1 )b1(x1 , ξ1)b2(x2 , ξ2)dx1dξ1dx2dξ2 .

Proof Let us prove (1). It is enough to check (8.45) for b(x, ξ) := ei(η ·x+q ·ξ) . We
know that

Op(b) = W (η, q) = ei(η ·x+q ·D ) = e
i
2 η ·xeiq ·D e

i
2 η ·x ,

which has the integral kernel

B(x, y) = (2π)−d

ˆ
X#

e
i
2 η ·(x+y )eiq ·ξ+iξ ·(x−y )dξ.

Properties (2), (3), (4) then follow from (1). �

Example 8.74 Let P0 be the operator considered in Example 4.42 (the orthog-
onal projection onto π− d

4 e−
1
2 x2

). Then

sP0 (x, ξ) = 2de−x2 −ξ 2
.

8.4.4 Parity operator

Let (Y, ω) be a symplectic space of dimension 2d. Consider a regular irreducible
CCR representation (8.38). Let δv denote the delta function at v ∈ Y# .

Definition 8.75 Define the parity operator

I := Op(πdδ0). (8.46)

Theorem 8.76 (1) I is self-adjoint and I2 = 1l.
(2) IOp(b)I = Op(b0), where b0(v) = b(−v).
(3) In the Schrödinger representation,

IΨ(x) = Ψ(−x). (8.47)

Proof Let us show (3) first. The distributional kernel of I in the Schrödinger
representation is

I(x, y) = 2−d

ˆ
δ
(x + y

2
, ξ
)
ei(x−y )·ξdξ

= 2−dδ
(x + y

2

)
= δ(x + y).

This proves(3).
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In the case of the Schrödinger representation, (1) and (2) follow immediately
from (3). But every regular irreducible CCR representation is equivalent to the
Schrödinger representation. �

Definition 8.77 Define the parity operator centered at v as

Iv := Op(πdδv ) = W (−ω−1v)IW (ω−1v), v ∈ Y# .

Theorem 8.78 (1) Iv is self-adjoint and I2
v = 1l.

(2) IvOp(b)Iv = Op(bv ), where bv (w) = b(2v − w).
(3) In the Schrödinger representation,

I(q ,η )Ψ(x) = e2iη ·(x−q)Ψ(2q − x). (8.48)

The following theorem is an analog of Prop. 4.31.

Theorem 8.79 (1) If b ∈ L1(Y# ), then Op(b) is a compact operator. In terms
of an absolutely norm convergent integral, we can write

Op(b) = π−d

ˆ
Iv b(v)dv. (8.49)

Hence,

‖Op(b)‖ ≤ π−d‖b‖1 . (8.50)

(2) If B ∈ B1(H), then sB ∈ C∞(Y# ) and

sB (v) = 2dTrIvB. (8.51)

Hence

|sB (v)| ≤ 2dTr|B|.
Proof Clearly, b =

´
b(v)δvdv. Therefore, (8.49) follows from Iv = Op(πdδv ).

(8.49) implies (8.50).
Let b ∈ L1(Y# ). Let bn ∈ L2(Y# ) ∩ L1(Y# ) such that bn → b in L1(Y# ). By

Thm. 8.70 (6), the operators Op(bn ) are Hilbert–Schmidt and hence compact.
By (8.50), we have Op(bn )→ Op(b) in norm. Therefore, b is compact.

Let us prove (2). Let a ∈ L2 ∩ L1 and let B be trace-class. Then B is also
Hilbert–Schmidt. Using first Thm. 8.70 (7), then (8.49), and finally the trace-
class property of B, we obtain

(2π)−d

ˆ
a(v)sB (v)dv = Tr Op(a)∗B = π−dTr

(ˆ
a(v)IvdvB

)
= (2π)−d

ˆ
a(v)2dTrIvBdv.

This proves the identity (8.51) for almost all v.
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Using the fact that v �→ Iv is strongly continuous and B is trace-class we see
that v �→ 2dTrIvB is continuous. Using w − lim

‖v‖→∞
Iv = 0 and Prop. 2.40, we

conclude that lim
‖v‖→∞

2dTrIvB = 0. �

Remark 8.80 The Weyl–Wigner symbol of a quantum state can be measured.
The first such experiment involved the motional degrees of freedom of an ion and
was performed by Leibfried et al. (1996).

In the case of a light mode this was first done in a simple and elegant experi-
ment by Wódkiewicz, Radzewicz, Banaszek and Krasiński (described in Banaszek
et al. (1999)). A mode of a laser light was trapped between two mirrors. By apply-
ing an external source of light its state was “translated” in the phase space. The
parity was measured by counting the number of scattered photons. Then the for-
mula (8.51) was used to compute the Weyl–Wigner symbol of a given quantum
state.

8.5 General coherent vectors

By translating a fixed normalized vector with Weyl operators we obtain a family
of vectors parametrized by the phase space. These vectors will be called coherent
vectors. The family of coherent vectors has properties similar in some respects
to those of an o.n. basis.

Coherent vectors can be used to define two kinds of quantizations. These two
quantizations go under various names. We use the names proposed by Berezin
(1966): the covariant and contravariant quantizations. These two quantizations
are often used in applications.

In the literature the name “coherent vector” (or “coherent state”) usually has
a narrower meaning, of a Gaussian vector translated in phase space. Up to a
phase factor, Gaussian coherent vectors can be also defined as eigenvectors of
the annihilation operator. The covariant, resp. contravariant quantization w.r.t.
Gaussian coherent vectors are also known as the Wick, resp. anti-Wick quanti-
zation. (Other names are used as well.)

In this section we describe the properties of general coherent vectors. We also
discuss the covariant and contravariant quantization related to a given family of
coherent vectors.

Gaussian coherent vectors, as well as Wick and anti-Wick quantizations, will
be discussed in Chap. 9 about the Fock representation.

Throughout this section Y is a finite-dimensional symplectic space of dimen-
sion 2d. Y � y �→ W (y) ∈ U(H) is an irreducible regular CCR representation.
Ψ0 ∈ H is a fixed normalized vector and P0 := |Ψ0)(Ψ0 | is the corresponding
orthogonal projection.
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8.5.1 Coherent states transformation

Definition 8.81 The family of coherent vectors associated with the vector Ψ0

is defined by

Ψv := W (−ω−1v)Ψ0 , v ∈ Y# .

The orthogonal projection onto Ψv , called the coherent state, will be denoted

Pv := W (−ω−1v)P0W (ω−1v), v ∈ Y# .

Remark 8.82 One often assumes that, for any y ∈ Y, Ψ0 ∈ Dom φ(y) and(
Ψ0 |φ(y)Ψ0

)
= 0.

This assumption implies that Ψv ∈ Dom φ(y) and(
Ψv |φ(y)Ψv

)
= v·y, v ∈ Y# .

Thus Ψv is localized in the phase space around v ∈ Y# . Note, however, that we
will not use the above assumption in this section.

Definition 8.83 The coherent states transform of Φ ∈ H is defined as

Y# � v �→ T FBIΦ(v) := (2π)−
d
2 (Ψv |Φ).

The coherent state transform is sometimes also called the FBI transform, for
Fourier, Bros and Iagolnitzer.

Example 8.84 Assume for the moment that Y = X # ⊕X and H =
L2(X ). Consider the Schrödinger representation X # ⊕X � (η, q) �→ ei(η ·x+q ·D ) ∈
U
(
L2(X )

)
. Fix a normalized vector Ψ ∈ L2(X ). Let (q, η) ∈ Y# = X ⊕ X # . The

coherent vectors and states are then given by

Ψ(q ,η )(x) = ei(−q ·D+η ·x)Ψ(x) = eiη ·x− i
2 q ·ηΨ(x− q),

P(q ,η )(x1 , x2) = Ψ(x1 − q)Ψ(x2 − q)ei(x1 −x2 )·η .

Theorem 8.85 (1)

(2π)−d

ˆ
Pvdv = 1l, as a weak integral. (8.52)

(2) If Φ ∈ H, then T FBIΦ ∈ L2(Y# ) ∩ C∞(Y# ) and

‖T FBIΦ‖2 = ‖Φ‖H, ‖T FBIΦ‖∞ ≤ (2π)−
d
2 ‖Φ‖H. (8.53)

In particular, T FBI is an isometry from H into L2(Y# ).
(3) The FBI transformation intertwines the representation W with a certain

representation of CCR on L2(Y# ):

eiy ·( 1
2 v−ωDv )T FBI = T FBIW (y), y ∈ Y.
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Proof To prove (1) we use the Schrödinger representation. Let Φ ∈ L2(X ). Thenˆ

X⊕X#

(Φ|P(q ,η )Φ)dqdη

=
ˆ

X⊕X#

ˆ

X

ˆ

X
Φ(x1)Ψ0(x1 − q)Ψ0(x2 − q)ei(x1 −x2 )·ηΦ(x2)dx1dx2dqdη

= (2π)d

ˆ

X

ˆ

X
Φ(x)Ψ0(x− q)Ψ0(x− q)Φ(x)dxdq = (2π)d‖Φ‖2‖Ψ0‖2 .

The first statement from (2) follows immediately from (1), the second
from the definition of T FBI and the fact that W (y) tends weakly to 0 when
y →∞.

To prove (3) we compute(
T FBIW (y)Φ

)
(v) =

(
Ψ0 |W (ω−1v)W (y)Φ

)
= e

i
2 y ·v(Ψ0 |W (ω−1(v + ωy))Φ

)
= e

i
2 y ·v ei(ωy )·Dv

(
Ψ0 |W (ω−1v)Φ

)
=
(
eiy ·( 1

2 v−ωDv )T FBIΦ
)
(v).

�

8.5.2 Contravariant quantization

Recall that Meas(Y# ) denotes the space of complex Borel pre-measures on
Y# . The subspace of Meas(Y# ) consisting of finite Borel measures is denoted
Meas1(Y# ). If b ∈ L1

loc(Y# ), then dμ = bdv belongs to Meas(Y# ) and ‖μ‖1 =
‖b‖1 . In such a case, μ is absolutely continuous w.r.t. the Lebesgue measure dv

and b is its Radon–Nikodym derivative w.r.t. dv. Thus L1
loc(Y# ), resp. L1(Y# )

can be viewed as subspaces of Meas(Y# ), resp. Meas1(Y# ). In such a case, we
will abuse notation and write simply b ∈ Meas(Y# ).

Actually, we will abuse the notation even further. We will write bdv instead
of dμ even if μ ∈ Meas(Y# ) is not absolutely continuous w.r.t. the Lebesgue
measure dv. Thus b will denote the “Radon–Nikodym derivative of μ w.r.t. dv”,
even if strictly speaking such a derivative does not exist.

By smearing out coherent states with a classical symbol we obtain the so-called
contravariant quantization. In the following proposition we describe properties
of the contravariant quantization. Note in particular that positive symbols cor-
respond to positive operators.

Proposition 8.86 Let b ∈ L∞(Y# ) + Meas1(Y# ). Then the formula(
Φ|Opct(b)Φ

)
:= (2π)−d

ˆ
(Φ|PvΦ)b(v)dv (8.54)
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defines Opct(b) ∈ B(H). We have

‖Opct(b)‖ ≤ (2π)−d‖b‖1 , b ∈ Meas1(Y# ), (8.55)

‖Opct(b)‖ ≤ ‖b‖∞, b ∈ L∞(Y# ). (8.56)

Definition 8.87 Opct(b) ∈ B(H) defined in (8.54) is called the contravariant
quantization of b.

Proof of Prop. 8.86. If b ∈ Meas1(Y# ), then the integral on the r.h.s. of (8.54)
is finite and we obtain (8.55).

If b ∈ L∞(Y# ), we can write

Opct(b) = T FBI∗b(v)T FBI , (8.57)

where on the r.h.s. b(v) has the meaning of a multiplication operator on L2(Y# ),
and we obtain (8.56).

In the general case, we can write

b = b0 + b1 , b0 ∈ L∞(Y# ), b1 ∈ Meas1(Y# ), (8.58)

and set

Opct(b) := Opct(b0) + Opct(b1). (8.59)

It is easy to see that (8.59) does not depend on the decomposition (8.58). �

Proposition 8.88 (1) Opct(1) = 1lH.
(2) Opct(b)∗ = Opct(b).
(3) If v ∈ Y# , then

W (−ω−1v)Opct(b)W (ω−1v) = Opct(b(· − v)).

(4) If b ∈ L∞(Y# ) is real-valued, then

ess inf b ≤ Opct(b) ≤ ess sup b. (8.60)

(5) Let b ≥ 0. Then Opct(b) ≥ 0. Moreover, b ∈ Meas1(Y# ) iff Opct(b) ∈ B1(H),
and

Tr Opct(b) = (2π)−d

ˆ
b(v)dv. (8.61)

(6) If b ∈ Meas1(Y# ), then Opct(b) ∈ B1(H) and (8.61) is true.
(7) Suppose that b ∈ L∞

∞(Y# ) + Meas1(Y# ), where L∞
∞(Y# ) denotes the set of

b ∈ L∞(Y# ) such that lim
|v |→∞

b(v) = 0. Then Opct(b) is compact.

Proof (3) follows from W (−ω−1v)Pw W (ω−1v) = Pw+v . (8.60) follows immedi-
ately from (8.57).
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We will now prove (5). Let b be positive. Let {ei}i∈I be an o.n. basis of H. By
Fubini’s theorem, we get

Tr Opct(b) =
∑
i∈I

(
ei |Opct(b)ei

)
= (2π)−d

ˆ ∑
i∈I

b(v)(ei |Pvei)dv

= (2π)−d

ˆ
b(v)TrPvdv = (2π)−d

ˆ
b(v)dv,

which proves (5).
To show (6) we use (5) and the decomposition b = b1 + ib2 − b3 − ib4 , where

bi ∈ Meas1 and bi ≥ 0. Finally, if b = b0 + μ for b0 ∈ L∞
∞(Y# ), μ ∈ Meas1(Y# ),

we write bn = 1l[0,n ]
(|v|)b0 + μ, so that bn ∈ Meas1(Y# ), Opct(bn ) ∈ B1(H), and

‖Opct(bn − b)‖ ≤ ‖bn − b‖∞ → 0 when n →∞. This proves (7). �

Definition 8.89 If the map

L∞(Y# ) + Meas1(Y# ) � b �→ Opct(b) ∈ B(H)

is injective, then its inverse is called the contravariant symbol. For B ∈ B(H),
its contravariant symbol will be denoted sct

B .

8.5.3 Covariant quantization

In this subsection we describe the covariant quantization, which in a sense is the
operation dual to the contravariant quantization. Strictly speaking, the operation
that has a natural definition and good properties is not the covariant quantization
but the covariant symbol of an operator.

Definition 8.90 Let B ∈ B(H). Then we define its covariant symbol by

scv
B (v) := TrPvB

=
(
W (−ω−1v)Ψ0 |BW (−ω−1v)Ψ0

)
, v ∈ Y# .

Theorem 8.91 (1) scv
1l = 1, scv

B∗ = scv
B .

(2) If B ∈ B(H), Bv := W (−ω−1v)BW (ω−1v), then

scv
Bv

= scv
B (· − v).

(3) If B ∈ B(H), then scv
B ∈ C(Y# ) ∩ L∞(Y# ) and

‖scv
B ‖∞ ≤ ‖B‖. (8.62)

(4) Let B ≥ 0. Then scv
B ≥ 0. Moreover, B ∈ B1(H) iff scv

B ∈ L1(Y# ), and

Tr B = (2π)−d

ˆ
scv
B (v)dv. (8.63)

(5) If B ∈ B1(H), then scv
B ∈ L1(Y# ) and (8.63) is true.

(6) If B is compact, then scv
B ∈ C∞(Y# ).
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Proof (1) and (2) are immediate. Let us show (3). It is easy to see that the
inequality (8.62) is true. Moreover

v �→W (ω−1v)BW (−ω−1v) ∈ B(H)

is strongly continuous. Hence v �→ sB (v) is continuous. To prove (6), we note
that Ψv goes weakly to zero as |v| → ∞. Hence, for compact B, sB (v) → 0 as
|v| → ∞.

To show (4), we use (8.52) and apply the trace to the identity

B = (2π)−d

ˆ
Y#

B
1
2 PvB

1
2 dv.

The interchange of trace and integral is justified by Fubini’s theorem. To prove
(5), we note that, if B ∈ B1(H), we can decompose it as B = B1 + iB2 −B3 −
iB4 , with Bi ≥ 0, Bi ∈ B1(H). �

Definition 8.92 If the map

B(H) � B �→ scv
B ∈ C(Y# ) ∩ L∞(Y# )

is injective, then its inverse will be called the covariant quantization. If b is a
function on Y# , its covariant quantization will be denoted Opcv(b).

8.5.4 Connections between various quantizations

In this subsection we show how to pass between the covariant, Weyl–Wigner
and contravariant quantizations. Note that there is a preferred direction: from
contravariant to Weyl–Wigner, and then from Weyl–Wigner to covariant. Going
back is less natural.

Let w ∈ Y# . Let us compute various symbols of Pw :

scv
Pw

(v) = |(Ψw−v |Ψ0)|2 ,
sPw

(v) = 2d(Ψw−v |IΨw−v ),

sct
Pw

(v) = (2π)dδ(v − w).

The functions described in the following proposition will be used in formulas
connecting various quantizations:

Proposition 8.93 Set

k1(v) := (2π)−dsP0 (v) = π−d(Ψ0 |IvΨ0), (8.64)

k2(v) := (2π)−dscv
P0

(v) = (2π)−d |(Ψv |Ψ0)|2 . (8.65)

Then k2 is an even function in C∞(Y# ), k1 ∈ L1(Y# ) ∩ C∞(Y# ) and

k2(v) =
ˆ

k1(w − v)k1(w)dw. (8.66)
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Proof Assume first that Ψ0 ∈ H∞. (Recall that H∞ is defined in Def. 8.28.)
Then sP0 ∈ S(Y# ) and using (8.49) we have

P0 = π−d

ˆ
sP0 (w)Iw dw

as a norm convergent integral. Next, by (8.51),

sP0 (w − v) = 2dTr(Iw−vP0)

= 2dTr(Iw Pv ).

Hence,

scv
P0

(v) = Tr(P0Pv ) = π−dTr
ˆ

sP0 (w)Iw Pvdw

= (2π)−d

ˆ
sP0 (w)sP0 (w − v)dw.

If Ψ0 ∈ H, we choose a sequence (Ψn ) of normalized vectors in H∞, such that
Ψn → Ψ0 when n →∞. Then sPn

→ sP0 in L2(Y# ), and scv
Pn
→ scv

P0
in C∞(Y# ).

(8.66) holds for Ψn . By letting n→∞, it also holds for Ψ0. �

Define the integral operator

KΨ(v) :=
ˆ

k1(v − w)Ψ(w)dw. (8.67)

Then the identity (8.66) means that

K∗KΨ(v) =
ˆ

k2(v − w)Ψ(w)dw,

where K∗ is the adjoint w.r.t. the scalar product of L2(Y# ).

Theorem 8.94 We have the following identities between various symbols of an
operator B, valid for example if sct

B ∈ L2(Y# ):

sB (v) =
´

sct
B (w)k1(v − w)dw, or sB = Ksct

B ,

scv
B (v) =

´
sB (w)k1(w − v)dw, or scv

B = K∗sB ,

scv
B (v) =

´
sct

B (w)k2(w − v)dw, or scv
B = K∗Ksct

B .

8.5.5 Gaussian coherent vectors

Let us consider the Schrödinger representation on L2(X ) and fix a Euclidean
metric on X . Consider the normalized Gaussian vector

Ψ(0,0)(x) = π
d
4 e−

1
2 x2

. (8.68)

The corresponding coherent vectors are

Ψ(q ,η )(x) = π− d
4 eiη ·x− i

2 q ·η− 1
2 (x−q)2

, (q, η) ∈ X ⊕ X # . (8.69)
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In the literature, when one speaks about coherent states, one usually has in
mind (8.69). They are also called Gaussian or Glauber’s coherent states. We will
say more about them in the next chapter, because they appear naturally in the
context of the Fock representation; see Chap. 9.

The covariant, resp. contravariant quantization for Gaussian coherent states
coincides with the so-called Wick, resp. anti-Wick quantization, which will be
discussed in Sect. 9.4. The corresponding integral kernels k1 , k2 introduced in
(8.64) and (8.65), and the corresponding operators K and K∗K are

k1(x, ξ) = π−de−x2 −ξ 2
, K = K∗ = e−

1
4 (D 2

x +D 2
ξ ) ,

k2(x, ξ) = (2π)−de−
1
2 x2 − 1

2 ξ 2
, K∗K = e−

1
2 (D 2

x +D 2
ξ ) .

Thus in the Schrödinger representation one can distinguish five most natural
quantizations. Their respective relations are nicely described by the following
diagram, sometimes called the Berezin diagram:

anti-Wick
quantization⏐⏐-e−

1
4 (D 2

x +D 2
ξ )

D,x-
quantization

e
i
2 Dx ·Dξ

−→
Weyl–Wigner
quantization

e
i
2 Dx ·Dξ

−→
x,D-

quantization⏐⏐-e−
1
4 (D 2

x +D 2
ξ )

Wick
quantization

8.6 Notes

The relations

eiη ·xeiq ·D = e−iq ·η eiq ·D eiη ·x , η, q ∈ R (8.70)

were first stated by Weyl (1931). The proof of the Stone–von Neumann theo-
rem can be found in von Neumann (1931); see also Emch (1972) and Bratteli–
Robinson (1996). The canonical commutation relations for systems with many
degrees of freedom were used by Dirac (1927) to describe quantized electromag-
netic field.

We sketched the early history of the Weyl–Wigner(–Moyal) quantization in
the introduction, with basic references Weyl (1931), Wigner (1932b) and Moyal
(1949). In pure mathematics it became well known quite late. It was recognized
in the so-called microlocal analysis – a powerful approach to the study of partial
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differential equations; see especially Hörmander (1985). It is also very useful in
closely related semi-classical analysis; see e.g. Robert (1987).

The fact that the Weyl–Wigner quantization of the delta function is propor-
tional to the parity operator was discovered only in the 1970s by Grossman
(1976).

The Weyl CCR algebra was studied by, among others, Manuceau (1968) and
Slawny (1971). Thm. 8.64 comes from Slawny (1971); see also Bratteli–Robinson
(1996).

The original and still the most common meaning of the term “coherent state” is
what we call a “Gaussian coherent state”. These were first studied by Schrödinger
(1926). They were extensively applied in quantum optics by Glauber (1963), for
which he was awarded the Nobel Prize. Glauber introduced the name “coherent
state” and, together with Cahill, studied quantizations based on coherent states
in Cahill–Glauber (1969).

Various forms of quantization involving a family of general coherent states, in
particular the covariant and contravariant quantizations, were studied by Berezin
(1966). For a discussion of quantization see also Berezin–Shubin (1991) and Fol-
land (1989).

The concept of coherent states has been generalized even further to the context
of a rather general Lie group with a distinguished subgroup by Perelomov (1972).

The name “FBI transformation” comes from Fourier–Bros–Iagolnitzer. The
FBI transformation was used by Iagolnitzer (1975) to study microlocal properties
of distributions.
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